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In this lecture, we will continue the design of traffic light controller, which was 

introduced in the last lecture. In the last lecture, we specified the problem with all the 

requirements of the traffic light control. We do the ASM and now the next step, as you 

know, is to draw the ASM table and get the hardware implementation. The ASM table 

can be drawn easily from the ASM chart, which had been drawn in the last lecture. Once 

you have the ASM table as a mapping, the hardware is easy. In order to recapitulate what 

we did in terms of specifications, we will go over the specifications of the traffic light 

controller. At first, it is in Reset State. We will say, this is sort of an algorithm, but not in 

the ASM form. To give you an example, we will give you a quick review as well as a 

summary of the specifications. Reset State - At Reset State, the timer is started. 

Remember, we discussed the lights as M1 and M2. 

M1 Green, M2 Green (both the main road lights are Green), MTR - Main Turn right 

(turning from the main road into the side road - the right turn is Red) and SR - Side turn 

(turning from the side road to the main road, again right, is Red). This will go on for the 

time t, if t is equal to or greater than Tm and S1 or S2 is true. This means, after a specific 

time has elapsed in the Main road, Green and if one of the sensors S1 or S2 is activated, 

we will go to step 3. Here, we will retain our Main 1 as Green (M1G); Main 2 will 

become Yellow (M2Y); Main Turn will be Red (MTR); Side road will be Red (SR). TY is 



a fixed time. This means, when you have a Yellow in any of the lights, then it will allow 

for a while, for the traffic to slow down and stop. 

(Refer Slide Time: 05:20) 

 

TY is called Yellow Timing. After TY, Main 1 continues to be Green (M1G); Main 2 will 

become Red (M2R); Main Turn will become Green (MTG); Side road going from the 

side to the main is still Red (SR), because you can have only one turn at a time and 

cannot have both turns at the same time, as it will lead to collision. We have a specific 

time interval TS, when the Side street will be Green or Turn signal will be Green. After 

TS, Main 1 continues to be Green (M1G); Main 2 will be Red (M2R); Main Turn will 

become Yellow (MTY); Side continues to be Red (SR). now we have a Yellow period 

again after TY. 

We are considering turning because of S1 or S2 being true. If S1 was true and S2 was not 

true, then there is no requirement of traffic from the side road into the main road, then S2 

will not be on. In which case, we can return to the main sequence without having to 

spending time on giving the Green signal for turning from side road to main road. 

On the other hand, if S2 happens to be 1 or because both S1 and S2 were on, we would 

like to service the side road turning into the main road, before we go to the main loop. 

This has to be tested here. After TY, if S2 is 0, then we go back to Step 2. On the other 



hand, else, after TY, if S2 is 1, then we will have to go and stop the main road traffic on 

both sides and allow turning from the side to the main road. 

In this case, what we are specifically assured is, that the main road from left to right is 

Green when you allow the turn from main road to side road. The same main road from 

left to right, will not be Green when you allow the turn from the side road to the main 

road. The traffic on the main road should be stopped in both directions. 

This means, Main 1 is Yellow (M1Y); Main 2 continues to be Red (M2R); Main Turn is 

Red (MTR); Side Red (SR). After TY, it becomes - Main 1 Red (M1R); Main 2 Red 

(M2R); Main Turn Red (MTR); Side Green (SG). Both sides of the main road traffic as 

well as the turning signals from the main to side are all Red. Side street alone is Green, so 

that the traffic is allowed to go. 

After TS, the side street period for which it is Green, will go back and continue to be 

Main 1 Red (M1R); Main 2 Red (M2R); Main Turn Red (MTR); Side is Yellow (SY). 
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After TY, we can restore the original condition of Main 1 Green (M1G); Main 2 Green 

(M2G); Main Turn Red (MTR); Side Red (SR), which is Step 2, go to step 2. Step 1 is 

the Reset State, to start the timer, so that the sequence starts. Most of the time, assuming 



there is no sensors activated anytime (S1 and S2 are both 0s), the system will continue to 

be in state 2, which is M1G, M2G, MTR, SR. As we said, this is a quick summary and 

each stage we have not shown something - each stage we have to start the timer. When 

you go from Step 2 to Step 3, we start the timer. When we go from Step 3 to Step 4, we 

start the timer. Likewise, when going from one State to the next State, the timer should be 

started. I have not shown it here. What I should really say? If TY is greater than TM, and 

S1 is true, start timer and go to M1G. Similarly, I say M1G, M2G, MTR, SR and after TY, 

etc, Start Timer. So Start Timer should be put in each stage here; it is assumed that Start 

Timer has been used in each stage. 

This was just to recapitulate the ASM, because it looks a little complex. Now with this 

background, we want you to look at the ASM table. It is a huge table. Question by the 

student (Refer Slide Time: 12:27). That is a good question. Since we are testing for S2 

before proceeding or returning back to Step 2, why cannot we do a similar thing for S1? 

That is the question. That means, we should check S1 and S2 every time and take 

appropriate action. Yes, it is done. Here, we wanted to introduce some specifications and 

show how these specifications are properly met in an ASM and the hardware. 

(Refer Slide Time: 12:59)  

 



Of course, there are design flaws. Design flaw is different from circuit flaw. It means 

that, you may not think of a case and as long as it works for the specification to give 

hundred percent, it is perfectly okay. We deliberately chose this; already the ASM and 

the number of states and …the first example was a very simple example. This example is 

in order of magnitude more complex than the first example. We can do that - we can 

check S1 first, as we did with RA and RB in the first example (Request by System A and 

Request by System B for the bus). 

RA and RB were tested and then some sort of priority was set. Here too, we can do the 

same thing - S1 and S2 is tested in sequence. Either S1 or S2 can be given priority. We can 

do that. Then each of these S1 and S2 testing should be done, after every change of 

signal. ASM becomes more complex and more number of states will be introduced. If 

that is what you want, you can do it. This example clearly defines that every time we will 

consider either of these two signals. We are going to give the benefit for main road to 

side road traffic, which is a reasonable assumption. 

Some of the traffic will go from main road to side road is an inherent assumption in the 

problem. We are not making this assumption after the problem is given to me. We are 

assuming this specifications that main road will always be given a chance. In fact, it 

would have been easier for me to not go through this test, if we did not have this 

assumption. There are several possibilities. Suppose, we did not have a sensor and allow 

the main road to be green for a while and after this time, we allow traffic from main to 

side for some time and then from side to main for a while and then go back to the original 

- this is one simple way of doing. The number of states will be reduced. Another 

modification will be - one of those sensors will be put in a place where it is less likely to 

occur. Third is to put both sensors and then verify each sensor every time. This will 

become more complex. We thought of taking an intermediate path - we wanted to make 

the problem reasonably complex and another reason is also make it slightly different 

from the routine problem that you find in any Traffic Light Controller example. Traffic 

Light Controller has been a problem of choice for many authors. You will find the main 

road - side road traffic problem in almost every book in digital design from gate level to 

ASM to FPGA to ASIC to microprocessor base. 



Of course, we will understand the standard example when we read it, but when we give 

you a slightly different specification and explain it and you understand that we will be 

confident that you have understood the concept. Now, we go to the ASM table. We are 

not expected to memorize this table - it is a huge table. As you can see, there are 8 states 

here S0 to S7. For each state, we have given a binary assignment. It is called a natural 

binary assignment without any specific guideline for states. 

S0 corresponds to 0 0 0; S1 to 0 0 1; and similarly S7 to 1 1 1, hence 8 states and 3 

variables A, B, and C. The conditions are very simple - Timer Yellow (TY) not 

completed, TY completed, Timer Side street (TS) not completed, TS completed, Timer 

Main (TM) completed, TM not completed. Sensors S1 and S2 are both marked at the first 

stage, whereas only S2 is monitored in the second stage. Based on this, they go from one 

state to the next. You can correlate with the ASM that we drew. The condition from one 

state to the next state and what is the output in each of these states. 

For example, in state S2, which is 0 1 0, all we are looking at is, yellow. This is M2Y, 

where we are allowing for the yellow time to be over before it turns to red to allow the 

main traffic to side road. If it is not there, you continue to be in the same state. After this, 

you go to the next state and so the lights are correspondingly marked here. There is no 

start timer. The start timer will come only when you want to go to the next state. 

Whenever you want to go to the next state, you start the timer. ST stands for the Start 

Timer. These are output signals, which correspond to the lights – Main 1 Green (M1G), 

Main 2 Green (M2G), Main Turn Red (MTR), Side Red (SR), Main 2 Yellow (M2Y), 

Main 2 Red (M2R), Main Turn Green (MTG), Main Turn Yellow (MTY), Main 1 

Yellow (M1Y), Main 1 Red (M1R), Side Green (SG), and Side Yellow (SY). The reason 

it is written in random order and not in the order you would normally like to see – M1G, 

M1Y, M1R, M2G, M2Y, M2R, which is one way of writing is because, this is the way in 

which these outputs appear in the ASM chart. Hence, we put them in this order. 
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Corresponding to this state of 0 1 0, you are waiting for the yellow time to be over. As 

long as the yellow timer is not over, you continue in the same state, keeping the Main 1 

Green (M1G), Main Turn Red (MTR), Side Red (SR), Main 2 Yellow (M2Y), all others 

are 0s. When the turn occurs and the time is over, everything is same except that we start 

the timer. It is the same set of outputs with Start Timer (ST) 1 and then it goes to next 

state 0 1 1, wherein the yellow has completely turned to red and the turn has become 

green. It will become: Main 1 Green (M1G), Main 2 Red (M2R), Main Turn Green 

(MTG), all others are 0s. This is how you write the table. 

Once you have handled this,… purposely chosen problem with so many things, you know 

that you can handle systems. The system complexity does not change the design 

complexity. The design and procedure are the same. With more number of variables and 

more number of conditions, the ASM becomes larger and the number of inputs and 

outputs become large. So, you have to handle them carefully. You have to access with 

extreme care in drawing it. Once you draw this, this is going to be implemented in 

hardware. If this is all right here and you want to do a verilog coding, the whole thing 

will be written in a verilog and then you have to synthesize this and get into FPGA or 

whatever it is. You have to be extremely carefully, because if you make a mistake then 



you have to redo it all over again and then you have to recompile and do everything again 

and again until you are satisfied. 

We are not going to explain this. We have already told you how to get this table and the 

hardware blocks. These are A, B, C - present state and next state we have already seen 

how to do a multiplexer based solution for this. We have 8 to 1 multiplexers with 3 

selector variables A, B, C. Hence, there are 3 multiplexers required here - one for A, one 

for B and one for C. There is a multiplexer for A, a multiplexer for B and a multiplexer 

for C (Refer Slide Time: 21:35). We call it A plus, B plus and C plus, indicating they are 

next state variables. Their states are given by these inputs. ABC inputs are given to, 

selector 2, selector 1 and selector 0. An 8 to 1 multiplexer will have 3 selectors – S2, S1 

and S0, to which we are applying the present state ABC. 

Present state A B C is given, next state variable A plus is the output. Present state ABC is 

not shown here, as the drawings are already too many and cluttered. We do not want to 

increase the complexity of the drawings. A B C are the inputs and B plus is the output. A 

B C is input and C plus is the output. What to give to each of these inputs depend on this 

table. 
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For example, when you are in state S0, the condition under which the next state is 0. For 

the first input to the first multiplexer, corresponding to A, you give 0 as input, I0. 

Wherever it is 0, we have combined them – I0, I1, I2 are all 0s, because first 3 entries are 

all 0s. I1 corresponding to the first state; I2 corresponds to the second state; I3 corresponds 

to the third state. 

For all these states, the next state variable of A is 0. Therefore, I0 has to be 0, I1 has to be 

0, I2 has to be 0. All of them have been combined again to reduce the drawing. Like this, 

you can write the input conditions for each of these inputs I0 to I7, for each of the 

multiplexers A, B and C. The outputs can also be given by multiplexers. We will give 

you one example and you can see the rest. For example, we will see how to get this start 

as an output. These inputs - the next state variables, A plus, B plus and C plus (Refer 

Slide Time: 23:38). Each one is an 8 to 1 multiplexer with 3 selector variables S2, S1 and 

S0 connected to A, B and C. 8 inputs - I0 to I7 are connected to corresponding conditions 

based on the table as already explained. 
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One or two are here and this is how the rest has to be drawn too for output. Before we go 

to the output, we will tell you how to get the output, by taking one example. Let us take 

start signal as example – the rest you can follow based on this. Again, there are only 8 



states. Hardware Implementation for ST (Start Timer): - 8 inputs, 1 output, MUX. A B C, 

present state variables, three selectors – S2 S1 S0. This is the start output F, which is the 

output of the multiplexer; 8 inputs - I0, I1, I2, I3, I4, I5, I6, I7. The condition under which 

the start signal is 1, is all you have to map in this multiplexer. We have to put this by 

looking at the conditions under which start is 1. Start is 1 for the present state 0 0 0. 

If you are in present state 0 0 0, then start is 1. Start is also 1 in S1, provided the condition 

TM (S1 or S2) is valid. Corresponding to I1, we have to put TM (S1 or S2), which means 

after elapse of the time TM - the Main road Green Time and if one of the sensors is true, 

then start timer will be initiated, when you are in state 1. This is how you will map it. We 

have taken care of this by simply looking at the table and writing. For everything else, it 

is the condition. For S2, the output Start Timer will be 1, if TY is 1. Hence, it is TY. 

In S3, it will be 1, if it is TS. Usually, the start timer is after elapse of the time. After the 

elapse of TS, in this case, it is one of these 2 conditions - TY S2 or TY S2 bar, which can be 

combined and written as TY because S2 and S2 bar get cancelled, because S2 plus S2 bar is 

1. It is again TY. When you are in S4; S5, it is TY again. Almost all of it is TY. S6 is TS. S7 

is TY. 
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Remember, we had a timer in the functional block. The timer started with a Start Timer 

signal. We had the clock and then these conditions TM, TY, TS. The functional units of 

these things are available here and depending on which state you are in after this. 

Depending on which state you are in, the corresponding input will be given, so that the 

start timer will get started again. You are resetting the timer again and again. The output 

and the input are same, which means 1; that the start timer is reset and gets started again. 

This is an example of one of the outputs. In all, there are 13 outputs, 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 11, 12 and 13. Among 13 outputs, one is here and all other 12 outputs correspond 

to the 4 lights. There are only four lights - Main 1, Main 2, Main Turn and Side. Each of 

the 4 lights will have a Green, Yellow and Red. 4 times 3 is 12 lights. Start Timer is 13
th

 

signal, we have already shown here. The 12 lights are very easily written. Whenever the 

input is in the state I1, I2, I3, I4, then M1G is on and rest of the inputs are 0. All inputs not 

shown are 0s. Similarly for MTR its 1 for: I1, I2, I5 to I7, and I1 to I5 is also 1 for SR. You 

can write like this. Sometimes, we do not even have to use a multiplexer. These are 8 to 1 

multiplexers – 8 inputs, 1 output, 3 selectors. When the number of outputs is not large, 

you do not need to use a multiplexer - you can use a simple gate. For example, M2G is A 

bar, B bar, C - only one case, so put that here. M1R is only A, B – put a 2 input gate. 

If you do not want these gates here, you can also replace them by multiplexers. You 

know how to do that. In summary, we have taken an example. Question by the student 

(Refer Slide Time: 29:58). The question is I have not shown the state flip-flops. All of 

you know that in a multiplexer based system, there will be state flip-flops. We will now 

remove this table, which you do not need. 
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We are not drawing the full block diagram. There is the question about where to include 

the state flip-flops - there are only 3 flip-flops. We think this is something which we 

already described in detail in previous state graph technique as well as the ASM 

technique using multiplexers. Each variable will have a flip-flop; it is a D flip-flop. Q is 

connected. This will be my A plus (Refer Slide Time: 30:55). A and A plus are the same, 

because the next state becomes present state and then the complements. We will have A, 

because A plus is the input. 

This is the input corresponding to DA, which is also called A plus; B plus or DB - we 

think we have done all these things again and again. You cannot continue doing this in 

every problem. It is assumed architecture. Each of this is given by a multiplexer, which is 

8 to 1 and this is connected here. A, B, C are the inputs selectors. I0 to I7 will be 

connected as shown in this diagram. 
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8 inputs of this will be connected according to A, B and C. We have extra circuitry using 

multiplexers for output functions. To summarise, we have taken an example. Of course, it 

will not work without the clock. We have clock here and all of these things (Refer Slide 

Time: 33:09). Given a problem, understand its specifications, systematic step by step 

procedure called the algorithm, and then write an ASM chart, identify the signal inputs 

and outputs for the controller, get the ASM table, get the implementation using flip-flops 

or multiplexer. Go to the output, also using multiplexers or gates, do the same thing for 

the outputs in multiplexers or gates, and then connect the whole problem together like 

this. 

We do not want to do this architecture repeatedly. We did this in the case of state graph 

and in the case of first example as multiplexer. To avoid repetition and as you are 

familiar with this by now, output of multiplexer drives the flip-flops. That is it. This 

architecture is standard. The size of the multiplexer depends on the number of states - up 

to 8 states multiplexer will be 8 to 1; up to 4 states multiplexer will be 4 to 1; up to 16 

states multiplexer will be 16 to 1. The inputs of the multiplexer are the only thing that is 

different. 



The inputs of the multiplexers will be the only thing different from problem to problem. 

To that extent, it is a very simple design - it is all fixed, except to find that will be 

returned directly from the ASM. Of course, we want to have a ROM based solution for 

this. Yes, it is possible. What will be the size of the ROM it will require - supposing we 

have 8 states? 

The ROM keeps everything and drives the flip-flops. It is called the flip-flops register 

clock, which is common to all the 3. The outputs of this are - A plus, B plus, C plus - D, 

D, D, Q, Q, Q; clock is common in all the 3 flip-flops. This will be your A, B and C. In 

addition, we should give all the inputs and get all the 13 outputs starting with ST, M1G, 

M1Y, M1R, etc. 
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How many inputs will we have here? The input will be TM, TY, TS, S1 and S2. These are 

the inputs to this. The size of this ROM would be 5 plus 3 equals 8 inputs and 13 plus 3 

equals 16 outputs. Hence, its size is - 2 to the power of 8 into 16 or 256 into16 bits or it is 

512 bytes. We have a 512 bytes organized ROM. We can realize all this with additional 3 

flip-flops. This is a ROM based solution. It is very simple. Our ASM chart can be 

expanded. In the ASM chart, we had only rows corresponding to a condition. There were 

8 states 0 0 0 to 1 1 1. 



When you expand each of these states, there will be 256 rows - one row for each 

condition. The size of the truth table would be 256 rows and there are 3 inputs, 5 states 

and 5 conditions. We will have to write a row for each of these states and each of these 

conditions. Our ROM truth table will have 256 rows with each row having 13. Expand 

the ASM table to a ROM table. The ROM table will have 256 entries. A, B, C, S1, S2, TM, 

TY, TS are the 8 inputs, which mean 256 rows and there will be 16 columns. This is how 

you got this number, 256 times 16; there are 256 rows and 16 columns. 

The ASM table has to be expanded - for example, 0 0 0 state goes to the next state 0 0 1, 

whatever the condition may be. You can refer the notes and ASM. In A B C, there is no 

condition; we go to in S0 there is no condition; you will always go to 0 0 1. The output in 

the state is start timer ST. The lights can be main lights. 
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Irrespective of the condition, this will be M2G and M1G and rest are all 0s. You want to 

write red and that all, we are not going to fill as this one is an example. Now, this x x x 

will not hold in a ROM table, whereas in an ASM table we can have a x x x, because we 

are going to look at conditions for next transition. 

Here, these five Xs have to be expanded in 32 rows. There are 5 inputs - we have to start 

with 0 0 0 0 0; 0 0 0 0 1 and so on for 32 rows, where all of them have the same output. 



This block will have the same output. You have to store the same 16-bit word in the first 

32 locations in the ROM. This is repeated for the second and then exhausts all the 8 

states. This is how you get the ROM table. All you need is to get an expanded ROM table 

and program the ROM for this application. Of course, you do not give it in this form. In a 

ROM table, you know you will do in hexadecimal form. ROM table is not returned in 

binary, because it is so huge to write. ASM table, state table or truth table can be written 

in binary. ROM table is generally written in hexadecimal form to compress the size of the 

table. In hexadecimal, this will be written as 0 0, 0 1, 0 2 and so on. 
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The hexadecimal ROM table will look like this. Address and content - for each address a 

corresponding content. Address will be 0 0, 0 1, 0 2, 0 F, 1 0, and so on until F F. What 

do we put in each of these rows? In the first table, for example, first is 3 and something – 

we write it as 3 times x and continue. This is not x - do not put x in your table. We are 

writing x, because we have not fully written all the rows. Instead, we can do it and make 

sure that the way in which it is appearing; it will become ST, M1G, M2G, MTG, SG and 

then we will repeat it for yellow and red. If we take this case, the condition here will be - 

Main will be Green, M2G will be Green, MTG will be 0, SG will be 0 and then, in the 

case of Yellow it will be 0 0 0 0 and in the case of Red, it will be 0 0 1 1. 



The first word will be - the first 8 which is 3C and the next is 03. The first word is 3C03 

and it is repeated for the first 32 entries. You can go to the next step and have a 

Programmable Array Logic (PAL). We will not go over all of this again, because we 

know the difference already - we have discussed the difference between PAL and the 

ROM approach. PAL approach will have a PAL table, which is a simplified form of a 

ROM table, where the redundant entries and entries with no activity will be removed. 

PAL will have fewer rows or fewer product terms. Another advantage is that the registers 

are included in the PAL - we can have a PAL or a PLA, usually PAL, in which register is 

part of the device. 
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In a single device, all we need is to look for a device with 5 plus 3 equals 8 inputs. We 

have seen the design of PAL earlier, so we are not going to spend time on it. In a PAL 

based design, there are 8 inputs and 16 outputs, out of which at least 3 should be 

registered outputs, which are required. 

Of course, there should be a clock input as well. We should have sufficient number of 

product terms, sufficient number of AND gates for each output to fit the design. We will 

leave it here, as there are standard things like AND gates which we are not going to 

design. We are going to look through the library of the manufacturer and then decide the 



appropriate device for this purpose. We have already seen PAL based design in earlier 

examples and those will be used here. 

In summary, we now have an elegant method of drawing a chart and an algorithm based 

on specifications, identifying the functional blocks, identifying the signal, drawing the 

ASM, implementing it in various forms like gate form or you can write Karnaugh maps 

or using number of gates or multiplexer based form or ROM based or PAL based. With 

this, we will stop today’s lecture here and we will see one more example of a slightly 

different nature in the next lecture. 


