
Digital VLSI System Design

Prof. Dr. S. Ramachandran

Department of Electrical Engineering

Indian Institute of Technology, Madras

Lecture - 13

RTL Coding Guidelines

Slide – Summary of contents covered in previous lecture.

(Refer Slide Time: 01:09)

Slide – Summary of contents covered in this lecture.

(Refer Slide Time: 01:27)

Slide – Summary of contents covered in this lecture.

(Refer Slide Time: 01:49)

We have so far seen how to model in Verilog the combinational and sequential circuits which are

vital ingredients in any digital VLSI system design. The ultimate goal of the designer is to finally

map it on to a device such as an FPGA or in ASIC. This is possible only if you follow certain

guidelines. The popular guideline is to follow the RTL coding; RTL stands for Register Transfer

Logic level. It is basically a synchronous circuit design which we already used. It signifies the

data flow and how you process the data.

(Refer Slide Time: 03:02)

Basically, it is a synchronous design which should naturally run smoothly through simulation;

then synthesis and then finally on place and route. In order to do this, you have to isolate the

combinational and sequential circuit; asynchronous fall under that combinational which we have

already seen in our earlier lectures and it has got to be separated out as we have already done in

the previous class.

(Refer Slide Time: 03:33)

Basically RTL coding style is once again same as synchronous design. You have a

combinational circuit and it can be any complex combinational circuit then follow this with

registering this combinational output. This may be an intermediate output then follows the same

pattern successively. This keeps going in this fashion and data flows in this fashion naturally. It

is normally referred to as a pipeline which we will cover in depth later on then we deal with

arithmetic circuits. For the time being this is enough if you know that RTL coding style is

basically based on separating out combinational as well as sequential circuits.

(Refer Slide Time: 04:36)

It basically consists of dos and don’ts, because this is supposed to be a guideline for the

designers. The common mistake is to take a combinational output and feed it back; this is

detrimental in making a chip. For example, if you apply a 0 at the input here and the

combinational produce 1 here (Refer Slide Time: 05:10) and then 1 being fed back it keeps on

rapidly switching from one state to another. This will be uncontrollable and thereby it will not

work in the ultimate chip that you have designed. Furthermore this may be rejected at the

synthesis level itself when you use the synthesis tool, this is not permitted. It will give warning

or error message; perhaps you can veto that and go along but ultimately you will end up messing

the whole design. For simple reason that your design will not work for ASIC or FPGA that you

have ultimately done. That is the reason why we should stick on to this RTL coding guidelines

without which you will not get a working chip. Remedy for this is to break the feedback.

Fortunately we have synchronous approach for this that is depicted in the next slide.

(Refer Slide Time: 06:14)

These you have a flip-flop here, D input flip-flop. You break this earlier feedback here pass it

through a flip-flop. Feed it to the D flip-flop and there will be a system clock which will be

separately given to a clock input. Q Output is actually fed back. Whatever is the combination

logic that you have inside will produce this output. This will be processed only when the system

clock arrives that is at the rising edge if it is programmed for rising edge direction. Q output is

naturally delayed by 1 clock pulse because this will take effect for the next iteration or whatever

you call next processing only at the next clock pulse. This is the price that you have to pay for

breaking that combinational logic but this will result in system which will work on the IC;

whereas the other previous one will not work on the IC. Instantly, it eliminates racing as well as

glitches which are normally present in asynchronous circuits which we will see later. This is the

basic building block for asynchronous logic.

Another mistake designer does is gate the clock. This is very detrimental because it introduces

skew in the clock. If you have so many registers in your system and the clock may arrive at one

point of time here and the same clock may arrive at different points of time; owing to which we

will be violating set up and hold times which we have seen earlier what they are. The solution is

once again breaking this gating of the clock and use in this fashion.

(Refer Slide Time: 08:20)

After all what you want is to process the data for different conditions which you can do by using

a MUX like this. Your input data can be fed to the one of the inputs and you can interpose once

again a register here, D flip-flops here. A MUX output being input to the D here and once again

system clock separately routed to the clock input of flip-flop and Q fed back to one of the inputs

(Refer Slide Time: 08:49). This means D out is preserved when I0 is selected. I0 can be selected

if select is 0. If you want to select the actual input which is the combinational or a synchronous

input select will add 1 here, this is clear from this picture. This will be 1 and then this input will

go through this path and land up into this register which will be registered at the positive edge of

the clock that will be stored here. What is stored here will also be fed. This is a combinational

path here. Once the select goes to 0 it will register the same input which was the previous output

here. I think this is clear to you. That is what it says the logic must be incorporated in data input

instead of gating the clock.

(Refer Slide Time: 10:00)

Another point is normally we would like to create pulses. Let us say we wish to create a pulse for

a typical application can be a timer say, photography timer you want to produce single push

button activation and you want to stimulate that so you need a pulse of that kind. It can be either

single pulse or it can be long duration pulse. In the traditional way designers normally use an

erroneous design practice. We will need to put different buffers in order to achieve this n times

propagation delay. For example, tp is the propagation delay for each of this buffer. You have a

total delay of n into tp at this point. This is inverted here and fed here in the gate and also input is

fed to this gate with a view to get this final output, positive pulse from the 2 inputs that we have

here. This input is basically like, as I said a push button switch, of course you cannot straight

away have proper de-bouncing and that is implied here.

This output here is nothing but the same input after a delay. This is the delay that you have. This

delay is turned by the total numbers of buffers that you have, the total delay appears at the output

also If you combine these two in this fashion with a note the bubble here then out comes the

desired single pulse the duration of which is given by this n times tp. This is the traditional way

but this unfortunately depends upon the technology. For example, if you are in point 65 micron

technology, you might have produced let us say 100 units of time, say 100 milliseconds or

something. The technology has changed say currently it is on point 09 micron technology.

Naturally several-fold has galloped may be 8 to 10 times. In which case, if you had not changed

the design and but you have changed the device, then what will happen? The time delay that you

have put here will not be achieved in the current technology so it will be 10 fold less it may not

be enough to trigger some other mechanism that you might have any point of design that it is a

technology dependent.

(Refer Slide Time: 12:59)

So the way out here is if you are interested in just creating a single pulse like this so what you

can do is you can have two flip-flops and input is applied here and that is here . It may appear at

any point of time. Let us say it appears here. There is a clock here and we are going to reckon the

whole thing on positive edge basis. First flip-flop output is Q1, naturally when rising edge clock

is encountered here at this point of time In is 0; naturally the output is 0 here. When it is

subsequently it is 1 here but, this will be registered only at the positive edge of the clock.

It should have happened here but going to delay here between the clock and the Q output. This is

naturally staggered a bit here that is a delayed bit and otherwise this is nothing other than the

input itself. This in turn is applied to another flip-flop and that output also can just have a look.

That is also a delayed output of this for Q1. Once again we get it here in this fashion. Ultimately

we get a pulse like this (Refer Slide Time: 14:20). Notice that actual width of this pulse is

actually the width of this clock period. Except that there is a delay here owing to the delay

between clock and Q because internally there are circuits and any gate means delay that is what

is getting reflected finally. This is how we solve for a single pulse if you desire just a single pulse

to be created. On the other hand, if you want high timings say of the order of milliseconds or

even seconds or even beyond; we have already seen one application called non retriggerable

mono that is what is put here.

(Refer Slide Time: 15:07)

Just to recollect what we have done earlier it is based on a counter. It was an 8 bit wide. You had

a setting also built there. You can trigger this basically a monoshot or you can view it as a timer

it can be triggered - that trigger is a starting of the delay. The desired delay is the same as in the

previous case except that this delay is now controlled by the set value that you have already

programmed it in. It has a system reset and a system clock. The simple wave form for this is

when trigger is encountered at the rising edge of this; delay also starts here. Whatever is the set

value here you will get exactly in number of clock cycles. Had you set 255 inside you will get

exactly the same 255 clock cycles.

Now you would notice as in the previous case, where a single pulse was produced as well as in

this particular example it is technology independent. It is dependent only on the system clocks

you can see in the previous thing (Refer Slide Time: 16:30). This final delay is based on the

clock and not the technology. Even if technology changes, any future technology that would

come your design investment that you had made and adopted this 1 of the 2 schemes is still

preserved. That is how we say it is a technology independent design. A designer will have to

keep all this dos and don’ts in mind prior to actually designing any circuit.

(Refer Slide Time: 17:06)

Another thing we talked of earlier is the glitch which is an unwanted uninvited guest that you

would like to eliminate. For example, this circuit gives a glitch as far as this combinational

circuit is considered and a narrow pulse like this is known as the glitch (Refer Slide Time:

17:30). How is it produced? We will just have a look. These are all plain AND gates here with an

inverter here. Finally, these 2 OR are here then applied to a D flip-flop. Let us consider a case

where in In0 and In1 both inputs are high. In such a case what will happen to this circuit let us

have a look. Let us say this select goes from high to low as in this case. Naturally, after inverter

this select bar will be the inverse of that so here and of course that is the delay here this gate

delay is because of this inverter here. If you see the output here at D1 what happens? It is nothing

but ORing of this if since In0 and In1 are 1 each.

Whatever you apply here is select bar here and select here; this will appear at the respective ends

here; this OR you get basically this precisely this; this is caused because you can just see here

this is 1 and this is 0. Being an OR 1 plus 0 is or the other way it is going to be 1 just as here also

0 1 here. All through it will be 1 except for a small interval here, at this portion it is 0 here and it

is also 0. This 0 will produce 0 here right at the D1 that is how you get the glitch here. This is

contributed by the inverter. The propagation delay of the inverter is responsible for creating this.

If you had processed this, say, elsewhere, without the flip-flop what will happen? It may happen

when your circuit is sampling, it may sample at this point, that is not the desired point. You wish

to know the sample only when actual D1 is high, but you might sample here without your

knowledge. That will play havoc had you given this as a clock input for some other circuit. It is

very essential that we get it of this glitch at all costs. The way to do is put the flip-flop here.

What happens if there is a flip-flop here? Naturally can be assured that there are other flip-flops

from which other signals are coming it may even be asynchronous in which you cannot directly

put here you need another flip-flop and then only process other asynchronous input which we

will see in the later slides.

This is happening, all this glitch will happen before this rising edge of the pulse; total delay of

this one you should keep in mind and then only select your frequency. The frequency operation

is given mainly by the total delay you encounter in a combinational circuit. If you had taken this

into account then you can always condition your whole circuit in such a fashion that whatever

glitch appears will be ignored and steady state value only will be registered. In this particular

case it will be registered only here. We make sure that all these unwanted signals such as this

glitch occur prior to this positive edge rising edge. Then you will be safe and not register the

glitch but, it will only register the steady state output here. Prior to this you would have

registered this here provided that is the logic that you have. This is possible only if you have a

synchronous circuit.

(Refer Slide Time: 21:37)

Another thing normally designer does is, as in a ripple counter you give the Q output of one flip-

flop into another and to clock of next. This is another practice which is not encouraged. In fact, it

will create problems. For example, you may violate whole time if you do not take one particular

state. This is the clock and D1 D2 are coming from external source and suppose D1 changes

somewhere here arbitrarily which is here; D2 changes here, simultaneously let us say Q1 also

changes. This is possible because D2 is not in our control. It may appear at any point of time so

what prevents you from getting that D2 change when there is a rising edge for this clocks you

cannot. In such an event what will happen? You are actually violating the whole time. So,

actually these are all the steady state of the previous clock.

Normally this will not host any problem that means it already satisfies the setup time. What is

going to be violated is the actual whole time. When clock rises, data is not stable. As per the

whole time the data will have to be stable for tH time beyond that. Naturally this is violated and

you have no control over that. It has to be eliminated from it. The way out is, after all you may

decide to have a counter basically. We have already seen how to implement a counter and that

implementation actually confirms to the RTL coding. In fact all that we have considered right

from beginning, it confirms to the RTL coding style. Now what we are formularizing is the need

for following that style, some of that we have seen already.

(Refer Slide Time: 24:01)

Earlier, we have seen the basic RTL coding style we will follow the pattern as depicted in this

figure (Refer Slide Time: 24:18) first combinational; then register that and then follow it by

another combinational register and so on; this is how a data flows. It flows from one point here;

then it flows to this; then sets down here and keeps on going stage after stage. It is the same

pattern we have followed there in that particular code which we have. We mentioned earlier that

we need to separate out combinational as well as sequential circuits. Here it gives one particular

module. A module is, you can regard it as a single file in which you need to follow certain

patterns while coding. What we have seen earlier was only piece-meal coding and now it gives

little more information here. For example, it says that the code that you are going to put is some

module. A module is something like a black box; you have a block diagram which you are

already familiar. It will have an IOs that is precisely what you have here. That block can be given

a particular name and the block itself we can call it as a module.

Once you have a module you should signal to the tool that is going to process further by a

corresponding signal called endmodule. Note that there is no gap after end and module; it is a

single word. Module and endmodule; this is a vital thing that you have to keep in mind. Once

you have identified it as a module then you have to give a module name. For example, this is a

model for RTL, so I will name it as RTL underscore model (Refer Slide Time: 26:15). Like this

you may have several such modules but it is illegal to nest modules within modules. The nesting

itself is putting a module within module. For example, I cannot say somewhere here before the

end module, call, another module, sequential module. I cannot put another module that is an

illegal thing in Verilog coding.

Once you identify the actual module, this is the module name then list the IOs here. Put it any

form you want; IOs can be in any order that you like. These are all separated by commas and this

is nothing but a D flip-flop which we have already seen. Only thing is we point out here the need

to separate out the combinational as well as sequential circuits. That is what we are doing here.

List all the inputs which happen to be D1 D2 and clock here. You can put it like this or separate

it out in different statements. So is the case with output; you just list them. We will see more

details when we actually put all the codes that we have learned earlier in one file as a preparation

for simulation later on. Once you have just 2 blocks, ‘always’ block will come to this statement

little later. This is an ‘always’ block which you are once again familiar with. This is just a

combination realization whenever D1 or D2 changes. For example, if D1 was 0 earlier; now it

changes to 1 or let us say D2 was 1 earlier, now it changes to 0.

Only in the event of change occurring this will be processed. You notice that we have given a

name here after begin you are already familiar with ‘begin’ and ‘end’; what has come as extra

here is just a colon here and combinational circuit. That means to say, whatever block that you

have here you can give a specific name and perhaps call it later on when the need arises or we

can just for improving the readability you can have this. It is a good practice to have this and this

does nothing more than take an exclusive OR of 2 inputs and assign it to D that is what this logic

is doing. This is just a D input for a flip-flop and the flip-flop is written in segregated block here

which is also an ‘always’ block; action being taken at positive edge of clock. For simplicity, I

have omitted that negative edge of reset which we had considered earlier and once again in

‘begin’ and ‘end’; note this once again. This was identified this block as a combinational circuit

and this block as a sequential circuit. Here what you need is whatever is the data input we nearly

had two registers when the positive clock occurs edge of the clock occurs. This also we have

seen earlier. This is nothing but an inversion of D and if you look at this synthesis tool later on

you will see that you will be surprised (29:49) (Conversation between professor and student)

(30:04).

Here we are inverting this D; you will be surprised in the synthesis tool to find 2 flip-flops there

not just 1 flip-flop. Our intention was just to make 1 flip-flop and the other one is merely an

inversion of this. Unfortunately, tool has not that much intelligence and as a designer you have to

know the limitations of the tool; then find out ways and means to circumvent those limitations.

One way to circumvent is, do not put this statement here; use an assign statement outside here

and then assign Q underscore n equal to this exclamation mark d or you can even put tilda here -

sign wave like pattern. Coming back to this, we have not set what register is. You note notice

that the outputs in this ‘always’ block are d, Q and Q underscore n. These are all registered

values that mean it is basically a flip-flop.

It is not really a flip-flop here in the usual sense of a sequential circuit but, still it memorizes that

event because whenever there is a change only then we take action. Some sort of storing is taking

place there. Whatever output is defined in a particular block - always block; those things you

declare as a reg; as a general rule. Here it was an intermediate output this d which is nothing but

exclusive of 2 inputs and you declare this d as a reg here and that is what we have done; naturally

Q and Q underscore n are reg being the D flip-flops outputs.

Another thing is if you code it like this, segregating combinational or a synchronous circuit and

to make it different from sequential circuits, then it will be very easy to read your code and you

can minimize your comment writing also. Naturally, that itself is a self documenting feature here

and that is the advantage in following this RTL coding style; this is a typical model of a RTL

coding (Refer Slide Time: 32:38).

(Refer Slide Time: 32:40)

We have also considered ‘if’ statement; we revisit that one in order to see what exactly the

synthesis tool maps. We are all familiar with the 2 way switch you would have used a band

switch in radio just for a short wave and medium wave basically; a SPDT shown here is Single

Pole Double Throw. It rests in either this or that position in a mechanical switch. You can

stimulate this one and we can get out either signal A or B in this case depending upon this

rocker. This digital analogy for this is some MUX which you are already familiar with A B are

precisely the same here, so also the output here. Select is not apparent here but it is the

mechanical control that you have here and that is stimulated by 0 or 1.

This you know anyway; 0 selects A and outputs here otherwise B is output there and ‘if’

statement therefore infers a multiplexer which we have already seen earlier; we will see it once

again here. It is ‘always’ block; it is a combinational circuit and that selects inputs A and B.

Suppose if u want output here it should be B so what should we have select must be 1 here; then

only B is selected that precisely this statement means. If select is if you do not put equal to 1

which you can also do it implies that it is 1. That is a short notation; but I personally discourage

this you put double equal to then 1 stroke D1 that will convey how many bits and all at one

stroke. As we said before it be should as much self documenting as possible; so as to minimize

your comments which you need to be the bare minimum; explaining the modules rather than

every statement that you have written. If select is 0 it will not process the statement, this ‘else’

will take into effect and out will be assigned A now. Notice that we have fully covered all this

possibilities here; the only possibility is here select. So you have only 2 states; we have covered

completely here and that is how it is basically a MUX which is precisely same that is what we

said it happens; if statement normally infers a multiplexer.

(Refer Slide Time: 35:30)

Another thing that you should not do is omit that ‘else’. In the previous example we had an

‘else’here if you omit that ‘else’what happens, the tool will infer it as a latch. A latch is very

detrimental. What is a latch? Basically you have an A input to D input, A B applied to the D

input as long as A is varying the output also will just follow suit is nearly transparent so long as

the clock is 0. That is, when clock is not applied whatever is applied to A without any hindrance

that appears at the output, What will happen here? It keeps on changing here. If you had mixed it

with a synchronous circuit it may latch register at the undecided point. You should avoid the

latches here and the reason for creating the latches you have omitted ‘else’.

(Refer Slide Time: 36:37)

Next thing we are going to see is once again already covered it is priority encoder. This is the

‘always’ block which brings out the priority encoder. This is given the top most priority. It can

regard it as a single 3 bit or as a 3 different inputs base S stands for select. We have three selects

here and we have 4 inputs, this is also a MUX basically. You need to get either In0 or In1 and so

on depending upon S2 S1 or S0 in this fashion. For example, if S2 is asserted then what you need

is at the output of the circuit that is here In0. If this is not satisfied only then it will go to this so

not until then. It implies that S2 is 0 if it had come anywhere here it implies that S2 is 0. If 1 it

would have passes this and got out of this loop; otherwise if S1 is 1 you assign In1 here this is

the case for In2 and otherwise here what I want to point out is this you are already familiar. What

is the point in repeating here is how the synthesis tool uses this and how many MUX it places.

That is the point I would like to show you.

(Refer Slide Time: 38:11)

The very first ‘if’ statement was for S2. This is the top priority as I mentioned, that means, if S2

is 1 this input is straight away output. Gate delay here as far as the input is concerned it is only

from here to here. On the other hand, if you go to in selection of the input 1 then it has to go

through 2 MUX not occurred at the output. So the case with this and one of this will be the

longest path encountered. That is how you get a priority. The price you are paying is 3 MUX

delays.

(Refer Slide Time: 39:02)

This is another case where redundant conditions appear and you will have to remove that. You

have to identify where the redundant case is and remove that what is redundant. We will have a

look at this and do not follow this type of coding, if you do you will create additional MUX and

hence additional delay and that in turn will slow down your frequency of operation. How it does

let us see. This also we are familiar with comparator we have done earlier. If 3 numbers are there

here and basically two numbers are being compared and C D E are outputs here and if A is less

than B, set C as the output. If it is greater than B, set D as the output. If none of these that is that

implies A equal to B, then do this. What is redundant in this statement can you spot it out? I will

tell you, A less B implies if this is not satisfies it goes over here. It implies that it is either equal

to or greater; this statement takes care of the next possibility.

What is left is only equal to here, what is known, why do you want to put another condition

here? If you put this condition what happens it creates one more additional MUX as we have

already seen; one MUX for this if statement then else if one more MUX and one more MUX

here as we have seen earlier; precisely the same. Is there any other possibility? The solution is

simple and you can dispense with one of the MUXes; so this is precisely same and after A is

equal to B, D is assigned 2 Mux already pressed in service and now when we come to this step it

is already A equal to B. Instead of putting ‘else if’, just put ‘else’and then E can be straight away

assigned here and by doing so notice that ‘else if’ combine with ‘else’both means single MUX

only as we have seen earlier also; that is how we say one MUX and thereby improve the speed of

operation.

(Refer Slide Time: 41:35)

We have also considered case statements and we will now see what Verilog directives are. There

are basically 2 directives called full case and parallel case; this indicates when you have a case

statement here. Let us consider 3 bits of information and if all the conditions are specified here

obviously it is not specified here. For 3 bits you have 8 possible states and three such states are

only are considered here. What happens to the rest? When such a condition is encountered will it

be encountered? That is the first question we will have to put our self and if it is encountered we

have to see remedial action for that. For the time being we will see how this does. There is a

directive called synopsis full case full under case this looks like a comment but it is a directive. It

is more than a comment. Take care that you do not put this as any of your comments; if you do

you will get into trouble. What all it signifies for the synthesis tool or even a compiler is that this

we have given only partial list here we have not given the entire thing but you regard it as a full

case; that is what the implication here is so just by giving this here you do not have to list all the

conditions.

Before we consider that one, let us see what this does. This infers a latch for the output since all

possible cases are not specified. Here, as we have seen earlier, once again 8 such possibilities are

there of which we have considered only 1 here 1 here 1. We have not considered 1 1 and1 0 1

and above. We have not considered 5 different cases here and we have not even told what to do

about it (Refer Slide Time: 43:40). We have not put here either full case that directive. What will

happen in this case? Because this is not specified and there is not even a directive, simply this

tool will infer that this is a latch. That means, let us say it has passed through for a particular

condition. Let us say it has passed through this and it has previously stored d let us say because

this is A. Although this is a combinational circuit this may be ultimately used in a sequential

circuit wherein you may register. Still here also it does matter and what will happen so the

previous value was this. Now the present case let us say, one illegal thing as come so it is not in

any of this. It looks here it finds no match. What can it do? What can it infer? It will be confused.

It does not know what to do. What it will do is merely latch whatever was the previous signal. In

this case it came from B, it continues to be in that state and this may be detrimental for your

circuit design.

(Refer Slide Time: 44:51)

Another Verilog directive is a parallel case which indicates that all cases listed are mutually

exclusive to prevent priority encoded logic. We have seen ‘if’ ‘else’ ‘if’ combination to be

priority encoded and case to be not priority. It appears straight away whatever be the condition

here it appears straight away at the output either here or here all equally at the same time. There

is no nesting as such as in the case of ‘if’ ‘else’ ‘if’ wherein you had normally nesting takes place

between MUX. It straightaway appears at different statements; here the directive for such a case

what mutually exclusive is, if you observe this one this is completely different from this. It looks

like a one hot machine; so you can see 1 here, 1 here and then 1. All this cases are mutually

exclusive and based upon the actual input you can output either this pattern or this pattern

depending upon the actual input itself themselves. That is the style adapted for synopsis parallel

case so you have to tell once again that only these mutually exclusive cases are being considered

here. If you do not put this once again it will infer latch like the previous case. Notice that this

full case and parallel case it is not a must that you should adapt this. If you are not happy with it

you can refrain from using them and use the conversion method which had been already covered

in the first, second lecture or third lecture that also we can see here. Another point about this full

case and parallel case is, this particular thing may not these statements directives may not work

in some of these systems. They may be simplicity, may not encounter one of this I am not sure

we will have to experiment with it and find out. It is most likely that it will work in synopsis

platform which is basically a tool for basic design. So as far as possible this full case parallel

case also you try to avoid and in fact you can write code although it may be little longer code

but, it will be safer code if you go the usual way.

(Refer Slide Time: 47:25)

To summarize this and make a comparison between case and ‘if’ ‘else’ ‘if’, it is listed here. We

have already seen if your intention is to make 2 to 1 MUX use always ‘if’ ‘else’ statement. If you

want more than 2 inputs you use case statement. If you want priority encoders we have already

seen ‘if’ ‘else’ ‘if’ and you want to have a synopsis fill case or parallel case use case here and

full case when not all conditions are really specified. That is what we have already covered.

(Refer Slide Time: 48:02)

While writing an FSM state machine you can use case statement which we have already seen

couple of examples before and use case statements to describe basic state machines, finite state

machine this also we have already seen Synopsis parallel case to indicate mutual exclusivity and

full case when not all possible states are covered as for instance one hot machine you can use

here. Do not use defaults unless you want a recovery state. We have one of the examples we

considered earlier. We have used that recovery state as a default. We took it to a safe initial state

S0 condition in while looking at an FSM earlier.

(Refer Slide Time: 48:55)

You have to be very watchful otherwise you will be creating unintentional latches which we

have already considered. In order to do this completely specify all braches for every case at

every case statement for every possibility you have give consider it wholly so also for if else if

statements you have considered all the possibilities. Do not leave anything to chance. Otherwise

you will get into trouble later on with synthesis tool itself it will not permit to go beyond and

even if you wait through all the tools finally when you make the chip you will see that will not

work when you took up the circuit or it may still work and years later on customer end has been

functioning and we have changed the technology mean while then it may malfunction.

For example, the time dependant delays which we have covered earlier will be detrimental here.

Similarly, completely specify all outputs for every case and ‘if’ statement we have seen this also

in always block earlier using case and we had some eight outputs such as D0 through D7 and we

took care at every case statement that we had reset all other unwanted outputs other than the one

which we wanted to set high that is what it implied here use full case if all desired cases have

been specified.

(Refer Slide Time: 50:31)

Before we wind up let us see what is wrong with this particular example. We have an ‘always’

block and this will clear any doubts what you had earlier. For example, you have not covered all

the 5 cases here what is missing here. This will create a latch as we have seen and outputs are not

specifically mentioned. For example, o2 o3 what will happen to this? It is not mentioned here.

You have taken care for 1 output but whatever was the earlier output it will continue to latch.

Here also you will have a problem. You should take care that you reset all the outputs. Either you

can do it here or you can have a statement earlier which will do reset all the outputs right on the

top. It will be better although code is lengthier may be better if you stick on here because,

verifying your code will be easier for you.

(Refer Slide Time: 51:35)

We have one more thing before we wind up. Let us say we want to have arithmetic operation

done. Let us say A plus B plus C plus D is what we want to compute. You will have while the

tool will put, if you put this condition here, the synthesis tool will map it like this it will put 2, 3

adders A plus B result will be available here. This will be added by C with C and that will appear

here and get added the final last added and finally the output will be this. You can improve this

speed of processing what will happen you have 3 adders cascaded. So frequency operation gets

hit here. A better way to do is guide this synthesis tool by putting a parenthesis here for example

if you put parenthesis here A plus B and C plus D here will be computed in parallel as in these

two blocks. These 2 results you can once again add up here to produce the desired output which

is same as this.

All that we had done is just put parenthesis just to guide the synthesis tool. With this I will be

covering RTL coding guidelines. From time to time, if you get any other new points we will

cover it as we take up. Next what we will do is, having learnt combinational, sequential and artial

guidelines; we will put the combinational sequential codes that we have put earlier as in a

piecemeal manner. We will put it together as one file which will be working on this tool which

we will be taking up on later sessions. Thank You.

(Refer Slide Time: 53:25)

(Refer Slide Time: 53:28)

(Refer Slide Time: 53:52)

Next Lecture:

Coding Organization – Complete Realization

(Refer Slide Time: 54:18)

