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Welcome. You had a good review of digital circuit design and it is the right time for us to 

pickup HDL coding for the same. A digital system design is primarily a combinational 

circuit and a sequential circuit combined together in any mix as we will see, as we 

progress further. To start with, we will be learning about simple combinational circuits 

using Verilog and we will also cover little more complex sequential and combination 



circuits. Thereafter we will be going on to sequential circuits and ultimately proceed to 

digital VLSI system designer using Verilog. 

(Refer Slide Time: 03:16) 

 

Before we go into combinational circuits, we will just see the evaluation of HDL. 

(Refer Slide Time: 05:50) 

 

Primarily, HDLs were used in order to speed up design cycle time. Hitherto, schematic 

circuit diagrams were used and it was very handy for designers who had been accustomed 

to design a system using discrete digital ICs which you know 74 series and so on. The 



problem with the schematics when it comes to VLSI design is that, we will have to 

struggle with hundreds of drawing sheets of the size A1; it has other disadvantages such 

as entry time is very high; you had to use Karnaugh, Mcluskey, Queen Mcluskey 

methods of optimization; you had to wait through hundreds of drawing sheets; readability 

is poor; these disadvantages outweighed the need for HDLs. 

(Refer Slide Time: 04:39) 

 

The HDL has brought about a revolution in a digital circuit design in the sense that the 

cycle time reduces very dramatically. From my experience, I can say, there is 3 to 5 times 

speeding up of a cycle time, I could see. It provides a very concise presentation in 

contrast to schematic logic diagrams. There is what is called behavioral statements and 

artial statements and all these can lead to very concise descriptions of the digital 

hardware that you are designing. In contrast to this, in schematic you had to really put 

gate by gate and it will take a quite an effort to achieve the same end result. And there is 

no need for queen map and queen mecholose way of reduction because synthesis tool is 

supposed to take up this role. 



(Refer Slide Time: 08:01) 

 

HDL designs are portable from one vendor platform to another. For example, if you have 

developed your HDL let us say, for Altera platform you can always migrate to another 

vendor such as Zylinks. It is also technology independent; in the sense a few years back, 

it was point 65 micron technology; thereafter point 5, then point 35, then point 135 and 

now, they are embarking on point 09 micron technology. All these technological changes 

had no effect on HDL and that is to clarify, whatever you have designed earlier when the 

technology was low, the same designs will precisely work with the present technology 

and most assuredly, on new technologies as well. 

Two most popular HDLs used currently are: Verilog and VHDL. This is within the 

realms of digital circuit design. Recently, Cavins has come with mixed Verilog log and 

digital circuit design and they call it as Verilog AMS. You can implement A to D 

converter and D to A converter and PLLs and the rest of analog circuits and you can mix 

with digital circuit. It is needless to emphasize that Verilog and HDL can be used in a 

circuit design ranging from SSIs to VLSIs. You may regard up to 500 transistors to be 

falling in SSI category; beyond that and below 5000 for MSIs; beyond 5000 up to 50,000 

for LSIs and beyond that they are termed as VLSIs. There are number of transistors on 

what I am talking. 
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We will be using Verilog in this course for a digital VLSI system design. Verilog is a 

hardware description language; it was developed originally by Gateway Design 

Automation in 1984 and Cavins popularized it later on. In 1987 synthesis was introduced 

using Verilog by Synopsys - one of the leading vendors in ASIC platform. Verilog has 

become an industry standard as you know and because of its simplicity you can quickly 

learn Verilog. In fact it is easier than learning VHDL in my experience. It has a C like 

structure and very fast design cycle times. This C like structure is what I am saying you 

can use ‘if’, ‘then’, ‘else’ statements, case; ‘for’, ‘while’ and the rest of it and even I/O 

structures are more or less similar and of course, there are differences which we will be 

learning gradually. 

This Verilog has been very popular in the hi-tech areas of USA and the west coast belt; 

whereas, VHDL in the east coast. The real reason may be that industries preferred 

Verilog and institutions preferred VHDL. But, it is only a general observation and it is 

not; there are always exceptions. As a designer you can start with Verilog first;; having 

mastered it you can switch over to VHDL later on. Because it in turn depends upon what 

the customer requirement is. In this connection, we will take Verilog in this course and 

specialize on it. Both Verilog and VHDL are confirmed to IEEE standards. We have 

already seen that Verilog is a hardware design language which is very much akin to a C 

but, you should bear in mind that Verilog is a hardware design tool and not a software 



design tool. C is clearly the programming language which basically runs sequentially 

unless you redo it by calls and the rest of it. Whereas, Verilog although it resembles C 

program, but, you should know that they are all concurrent statements. It is precisely the 

same as a digital circuit design making use of the conventional TTL gates. 

(Refer Slide Time: 11:25) 

 

Verilog allows different levels of abstraction one is behavioral what we have already seen 

‘else’ I mean structure and ‘while’ for all those things I would form a behavioral. There is 

another structure called data flow structure. This is basically a concern with a flow of 

data from one place I mean one register to another and so on. We will see quite many 

examples as we progress. For those who are used to gate level simulation as in schematic 

entry earlier, they can still use gate level primitives. If you want get extra timing closures 

probably you may have to use gate level primitives as well. Next most important thing is 

Register Transfer Level and it is called RTL. This is the core of digital design; if you 

violate RTL synthesis tool will promptly reject. 

This is only to ensure that the final product that we are going to tap out will be really 

working on the hardware that you have is meant for. Finally we can use even switches 

like any NMOS or any MOS, in case you need. The problem in these switches is, it is 

technology dependent; the best what will be concentrate on this present course will be 



this artial type and occasionally going for data flow and behavioral type; at very rare 

occasion we will go on gate level as an illustration we may consider a gate later on. 

 (Refer Slide Time: 13:26) 

 

So we will start with the combination circuit using simple assigned statements. It is as 

simple as what you read there as assigned and some of the examples that we will go is for 

very primitive gates. To start with we would like to make a buffer; what all you have to 

do if you put the input here it is A, the output naturally after the buffer is once again A, so 

the output is F1, A is the input. So if you see the corresponding Verilog statement is 

assigned this is the mandatory in order to assign any statement. This is the output on the 

left hand side equal to and it is almost like a C program with the exception that assigns a 

new thing here is because this is a hardware field. Similarly, if you want an inverter all 

you have do is instead of A just invert. This explanation mark is an inversion signal and 

this is a basically logical inversion; we can use it for multi bit precision also - this very 

same symbol. In this place you can use this symbol delta which is the bit wise negation; 

we want to do AND or OR with 2 inputs. It is once again as simple as that what you need 

is one more symbol we had known; it is an ampersand and this vertical slash here. 
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This is for OR, this is for AND (Refer Slide Time: 15:04); likewise whatever gates you 

have already derived you can get its inversion. For example, NAND which can be 

derived from complementing AND; so what you had A and B earlier use the same 

inversion symbol here. And so, is not the case for NOR once again use here inversion 

here and for exclusive OR exclusive NOR once again you see the inversion and for 

exclusive OR the symbol is the hat. 

(Refer Slide Time: 15:31) 

 



Now, that we have seen how to use assign statement for simple combinational circuit. 

(Refer Slide Time: 15:48) 

 

We can also implement the same using ‘always’ statement. Always is actually a block of 

instructions which will be seen from sum of these and a prior writing a code for this 

(Refer Slide Time: 15:58). 
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We will just take simple circuits such as the majority logic here. This is nothing but AB 

plus BC plus CA all single bit signal as such and you need 3, 2 input AND gates and 1, 3 



input OR gate in order to achieve this. Next example we can consider how to concatenate 

different signals. For example, ABC is each 1 bit signal. You can put it concatenation just 

putting it together in the order that you want. This is the flower brackets which has 

signals. The compiler is a concatenation and you separate the signals and one may be the 

tempted to say it is a variable. That is because of our past habits linked to the C language. 

Here I do not speak in terms of variables but as signals; any digital node is a signal; 

whatever I/O you have in your system is a signal. As usual, you can assign this final 

output to any other signal that you want. Let us say when you do this it implies this A is 

in the MSB so always left side will be the MSB in all the treatments here. Naturally, it 

follows the last bit is the LSB. 

(Refer Slide time: 17:36) 

 

Next example will be considering is right shift and left shift. We will shift by just 1 bit in 

these case and 2 bits in this case. When you shift let us say we have a signal which is 3 

bits wide; in fact this F10 (Refer Slide time: 17:36). If you notice it was derived from 

concatenating 3 signals. After right shift what happens is… first, these are all the weights 

you know that 8 4 2 1 codes. Probably, I should have put it or right on the top this is not a 

data as such. It is a bit position that I have what about here and once you right shift this 

one, what you are going do is just shift it here - this 0 bit position (Refer Slide Time: 

18:25). Whatever data is in that position it will get lost because we are not storing it. If 

you want to store that you can use some other Verilog statement to store in case the need 



arises. Otherwise you do not really bother about that. Similarly 2 and 1 will occupy 1 and 

0 of the target. Once this 2 has been used up this becomes vacant an unoccupied bit is 4 

still 0. If it is left shift like this with a 2 shift here, then naturally this bit will come over 2 

and these 2 bits will get lost and in such a case these bits vacated will be occupied by 0s. 

(Refer Slide Time: 19:16) 

 

Now what we have seen over 2, 3 pages we have contained the entire thing in a single 

page here - the program (Refer Slide Time: 19:24). In fact, we can recollect what we had 

done earlier is that we have realized the majority logic which is AB plus BC plus CA. So 

note that ampersand stands for AND, vertical slash for OR and thus does how you get AB 

BC plus CA. This is precisely part of a program as Verilog code and you would notice 

there is 1 ‘always’ statement here and what are all it means is whenever inputs such as 

ABC and F10. If any these inputs changes only then this will become active otherwise 

not. This instruction will be executed only when any of these input changes from the 

previous value. If you have multiple statements like this, you need to put ‘begin’ and 

‘end’ indicating the whole thing is block. In one block you can put on as many 

instructions as you want. Another thing is, when the statement is complete you just end 

up with a semicolon there. 

If you forget this, compiler will promptly report there up as such and will be learning all 

those gradually. Next example was concatenation as they have already seen. It is 



precisely what we have seen pictorially there and these are the square brackets which 

concatenates ABC signal. Suppose you want C as MSB here, (Refer Slide Time: 21:05) 

usually I put C here and then A comma B in any order. 

Suppose we want to add some 3, 0s at the LSB. What all we had to just add this put 

comma here and then say 3 stroke B 000 or any other data you want. If you put 111, 111 

will be concatenated towards the LSB side. In this case, you can insert anywhere you can. 

Instead of that you can put any other signal which already is available here. We have also 

seen shift registers right shift by 1 bit here and 2 bits here. It is as simple as just one 

statement here. What happens here is after right shifting by 1 bit it does not affect this 

F10. It is the source. It can affect some other signal in this case, named as F11. That is the 

beauty of this statement here. In the case with left shift, you may also note that you can 

put any number of bits; all at one stroke it will do this shifting. Suppose you want 10 bits 

shifting, you just replace this 2 by 10. (Refer Slide Time: 22:10). 

(Refer Slide Time: 22:25) 

 

Now, we will go into little more complex things such as multiplexer which you have 

already covered in the review. 



(Refer Slide Time: 22:25) 

 

Let us consider 2 input MUX with I0 and I1 as the 2 inputs and A is the selected input. If 

A equal to 0, it automatically selects I0; otherwise, it selects I1 and outputs on the MUX 

2. In order to write this view, what all we need as a single line, once again, using assign 

statement? Only difference is that you notice that as far as the output is concerned it is 

precisely same up to the equal. Here, you have a select signal and this select signal must 

be first put here and a within brackets you can put here and this is not the only way of 

writing (Refer Slide Time: 23:07). In fact, you can dispense with all these here including 

the brackets. 

I just have plain A; then also it will work or designers normally prefer putting one stroke 

B, 0 or 1, because, that will give an indication of how many bit precision this signal is. 

Here of course it does not arise and we can put it; need not be necessarily this alone. We 

can have one multi bit as an assignment here (Refer Slide Time: 23:51) and question 

mark is once again mandatory thing. For the MUX, this structure at once reveals there it 

is a MUX implementation and it has 2 inputs as we have already seen. The first input that 

you write is not this I0, please make a note of this, we had to write an I1 first and then 

followed by F colon which separates this input from this first input; this is clear I hope. 

Here, 2 slash - this is basically a comment field (Refer Slide Time: 24:25). Once you 

know this is a line comment, you can use a slash star and star slash for more than a group 



of lines. For a line you use this and you can either put it here for want of space, here I 

have just folded it here and shown here. 

(Refer Slide Time: 24:51) 

 

Now we will make a little more complex by going for 4 inputs MUX. Let us consider I0 

I1 I2 I3 is the 4 inputs that you want and naturally this calls for 2 selector pin. They are C 

and note that both have used the same C; here is B and this happens to be the MSB. We 

should be clear, which is MSB and LSB; otherwise, the whole thing will become chaotic 

because they only treat in that particular fashion. For example, this is always a higher 

order input and this one inside, precisely, the same 2 input MUX that we have used 

earlier, except that inputs and outputs are different. Once you say this one, whatever is 

the output will be actually be in this position and that particular thing will go as the 

second input. 

For example, to make it more clear, B selects this MSB we have changed and if you 

notice here I0 I1 is coming over here. As the output of first MUX and second MUX 

output is derived from I2 and I3 here. So by selecting B for example, you select I mean 

make it 0, then this will be selected. When this is selected which of these will be selected 

depends upon C here (Refer Slide Time: 26:20). Naturally, you can very easily select one 

out of the 4 signals. In this case is this and for 1 its takes this, either it selects I0 I1 or I2, 

I3 and assigns it to the very final output MUX here. And a word of caution here, you 



should avoid nesting for the simple reason that you notice that there is a gate delay here 

and this ploughed to another MUX and that in turn will add more delay and if you keep 

this 1. Finally, we get a very delayed output and if you are to use this in between 

sequential circuits in the data path, naturally, your speed of operation will get hit this is 

not a good practice of nesting, so the designers have unwritten law saying that they will 

not go beyond two inputs. You use only 2 inputs MUX in this form with assign statement 

in this form. What is the remedy for this in real life situation? It is not merely 2; it may be 

20 or 40 or even 100s. What you do for that? You had to make an efficient hardware 

design and the way out is to use case statements which will be seeing right now. 

(Refer Slide Time: 27:46) 

 

For example, we have gone to 8 input MUX as such I0 through I7 are the inputs; once 

again ABC you need 2 to power of 3 here for selection; once again ABC is the MSB 

which will have to keep track all the time; MUX 8 is the final output as and we will be 

using always case statements together in order to achieve this and notice that suppose I 

want 64 inputs. It is all child’s play we have only to just add few more statements which 

will be seeing. 



(Refer Slide Time: 29:10) 

 

What you have seen earlier is a MUX circuit; this you are already familiar. It is an always 

block with always a ‘begin’ here and ‘end’ here (Refer Slide Time: 28:33); now we have 

added one more statement called case here which is very much close to C case except that 

this actually hardware design; you should bear in mind. We have also seen a 

concatenation of 3 numbers here and that we put with in brackets. 

This also is a mandatory thing that means single signal can be put here or any other 

multiple ‘even’ statement can be put here; what are all this means is when ABC each of 

them is 0 that is corresponding to this we should get is I0 at the output and similarly if it 

changes for different values let us say 111 naturally I7 must be selected output to the 

MUX 8 it is as simple as that. Notice that we have only put one statement here; 

occasionally you may have to put multiple statements. In which case you start do not fail 

to put begin and end towards end of that statement. When we will be going for a 

DEMUX implementation which is exact counter part of this then we can see more details 

on that. 



(Refer Slide Time: 29:55) 

 

As I said it is a inverse of MUX 8 that is the reason why I am putting MUX 8 which is 

the output in the earlier case as input here. Naturally after this process you naturally get 

back what you have ploughed in as inputs. This D0 should correspond to I0 so on I7 to 

D7. Once again A is the MSB here; this appears to be little more complicated because 

(Refer Slide Time: 30:30) this is once again using same always statement whatever the 

inputs there are being used here and note that MUX 8 is also an input here; you had to list 

all of them and notice that it is only OR no AND is valid here. It only says this signal or 

that signals and so on. 

It is only an OR case there is no such thing as AND in there and there is no logic. This is 

not a logic thing just plain English statement. What it does here is, it reads MUX 8 as the 

input and depending upon ABC inputs, it assigns to that particular output that you really 

design. For example, if it is 000 we notice that MUX 8 must be routed to D0 output. That 

is precisely what is being done here in the statement. So MUX 8 which was the output of 

the multiplexer earlier 8 input multiplexer we have seen and assign it to this D0 here 

(Refer Slide Time: 31:39). Notice that D1 through D7 are all made 0s here because, when 

it enters it can enter from any other state. Unless you make them 0s here, it may hamper 

with the performance. It may come from latch and it may latch on to the old signals and it 

is better to give this here and you may notice that this is done deliberately for every value 

here but this need not be done. 



You can even put all these from D0 through D7 right before this case just after begin and 

put as a single statement and depends with the use here. You just cannot do whatever 

output that you want; only that need to be listed. I have made it deliberate in order to 

drive home the point that we should not forget whatever it is to be forced to 0. They will 

have to be deliberately forced to 0; otherwise tool will not do that on its own. 

(Refer Slide Time: 32:46) 

 

This is a continuation of the same thing assigning different things. Finally, if you see for 

111 input you have MUX 8 assigned to D7 and we have one default here. There is no 

guarantee these inputs are exactly X, valid number here and it may be an X that is I do 

not care or even a Z, a tri state condition. In other cases, you may not have use all these 

conditions. In such a case this default is a mandatory thing otherwise it infer a latch and 

you will run it to problems later on. Finally, when there was a case corresponding end 

case must be there and since we put the begin of the block there must also be an end. If 

you forget any of these including semicolons etc., prompt the error message comes while 

compiling. 



(Refer Slide Time: 33:49) 

 

We have also seen full adder in our review; this is duplicated here for ease of 

understanding. You have ABC as 3 inputs; this may be regarded as a carry in as I 

mentioned here (Refer Slide Time: 34:05); there will be a carry out and a sum. FA stands 

for Full Adder; corresponding truth table is given here (Refer Slide Time: 34:16). This is 

nothing but exclusive OR of 3 input exclusive OR the inputs we just add up all these 

things what you get 00 that we have got here; here in add up it will be 0, 1 and so on it 

goes if you add up last two it means 1 0 and if you add this 1 to that 1 what you get is 1 1 

and as simple as that; hence this expression is nothing but why this bracket is put in a 

Verilog we can implement this using gate level primitives also. 

They are restricted with 2 inputs basically; if I0 to have realized a 3 input exclusive OR 

you will have to use 2 numbers of 2 inputs exclusive OR and carry out is simply majority 

logic and you can easily infer the majority logic. Wherever more than 2, 1s are there you 

will see the corresponding 1 here, and then see here (Refer Slide Time: 35:25). 
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There are 3 ways of implementation of the same full adder: one is we have already seen 

like the earlier stage that we have behavioral type of level of realization. Suppose you can 

just put an simple arithmetic expression as such A plus B and C and this parenthesis is 

only to guide the synthesis tool to make it very efficient and if you do not put this 1 it 

may infer as internally 2 MUX and so on. Instead of that only 1 MUX will be put if you 

guide that synthesis tool, that is why this parenthesis. It is a good habit to use parenthesis 

and you will notice that what we have in a single line we can realize a full adder. Another 

beauty of this is, irrespective of the bit a precision as such, suppose you want 16 bit 

precision for A and B you can still use the very same statement as such. Only thing used 

to will have to declare A B to be of that precision on the top of a program that you will be 

covering it later on; another method of realizing the same thing full adder is to use 2 more 

statements. 

One is for the majority logic expression which you have already seen earlier, so adding of 

AB BC and CA. Then assigning it to carry out and some is nothing but as a said 2 input 

MUX, I mean 2 input exclusive OR is being used here and two times, that is the 

implication there and called as data flow realization and this will be helpful while 

pipelining your design and we will see more about pipelining later on. 



(Refer Slide Time: 37:21) 

 

The very same full adder debited using gates is this and with an NB of primitive gate 

implementation it has been put in the slash on and note that s1 is an intermediate signal 

which will be using and similarly A1 through A3 are intermediate ANDed operation here 

and OR this 2 and once again O1 is an intermediate signal we will be using; final result is 

sum and carry. 

(Refer Slide Time: 37:58) 

 



In the next slide you will see the gate level implementation for the same and notice that 

you made to go for 3 5 7 lines here and this is a very much close into your standard 

schematic based editing, the entry right. So here what you see is that intermediate signal 

what you have seen; this is to invoke primitive which is available in the libraries of 

Verilog. This is exclusive OR which you are already familiar; similarly this is AND and 

OR (Refer Slide Time: 38:36) and first one stands for the output of that gate; whereas rest 

will be the inputs. 

As I mentioned there all restricted 2 inputs normally and some offer higher inputs as well 

but that is not guaranteed on all the platforms. Finally, this provides the next exclusive 

OR along with the third signal which you have not used earlier to get the final sum output 

here. Similarly, you can AND AB BC CA and OR this A1 and A2 here; assign to an 

intermediate signal here and once again you can use this and continue ORing this A3 

which you had not used earlier. Thus, we have got carry out as well as sum here. 

(Refer Slide Time: 39:28) 

 

Before we close this session, we will see how to make magnitude comparators. Let us 

consider we have 2, 8 bit numbers N1 and N2. If N1 is greater than N2, we would like to 

have one output and you can have here; you just label them when we show the program 

we will be using the very same nomenclature and these are all other possibilities. 



Suppose you want N1 less than N2, then activate this output and so on; this is for equality 

this is for not equal to. You are already familiar with exclamation mark for inverting and 

this is symbol for less or equal to and this is greater or equal to and you may get confuse 

with this symbol later on and they are called non blocking statement which will be used 

in always block. We will see more details later on. Let us see how the program goes. 

(Refer Slide Time: 40:43) 

 

Once again we have used an always block and you have to list all the inputs either N1 or 

N2 here and there will be begin and end; all the outputs that you have already seen are 

appearing here on the left hand side here (Refer Slide Time: 41:03) Precisely the same 

statement which is put here as the output only needs to be inserted here in this as you has 

seen here. N1 greater than N2, you assign into F13; this is the comment what you have to 

put. 

For all other things, this is logical equivalence you had to put 2 equals; whereas in the 

ordinary else where other than this you need to have only 1 ‘equal to’. This is a ‘not equal 

to’ and ‘less’ or ‘equal to’ and ‘greater’ or ‘equal to’; I think may have covered all the 

possibilities. Let us consider a design example using some of the methods that we have 

adopted earlier and this example is a simple summation of 2 numbers and then compare it 

with preset value and then output different results. 



For example, you have a number 1, number 2, numbers each of 8 bits and we want to 

take the sum of these 2 and output here provided enable sum is active; that is logic high. 

Further, we wish to compare the sum with preset value, which is also another user input 

just like number 1 and number 2 and then output; if they two match, that is sum and 

preset value matches then you say activate one match signal. 

Similarly, if sum is greater you activate more if it is less, activate less. It is such a simple 

example and we will see how to write the code for these. We can use assign statements 

for this but however, always statement is better thing because we need to take action only 

when there is a change in the inputs. 

So we will use the always statement. First these always block it says always ‘at’, this is 

mandatory. List all the input variables; sorry, you should always speak in terms of signals 

not variables - that is the C habit right? I will just list this enable sum and all the inputs. 

Then next one is number 1 and underscore, then that is 1 or is here then finally, PRESET 

VALUE. Now in order to create sum, we have already seen earlier 1 bit adders, in fact 

full adder and we have also mentioned in a behavioral statement that we can use even 

multi precision in that same add. We will see right now that particular thing is being done 

here .For example, you want to have a sum output so what all we have to do is just write 

sum then equal to that. We have also learnt earlier, how to model a MUX? We will 

combine that MUX in this ‘always’ loop. We should not use an assign for a MUX inside 

the ‘always’ block; that is the difference here. 

What we want to do is we have to take enable sum into account while writing the sum. So 

let us say in the MUX the selector control is enable underscore sum and a MUX is 

identified by this question mark symbol. Now what you want is there are 2 inputs for the 

MUX. So the higher order input will be put here that is what we want here because when 

enable sum is 1 we want to add the 2 numbers. What will do is, we will put (Refer Slide 

Time: 45:39). Do you think the statement will work? We have not put the precision, it 

will still work and we can also make the precision here which is normally done by all 

designers because we do not have to go to the previous way through previous codes and 

find out what precision it is. We can write there in this statement we can identify that by 

just mentioning the range for example 7 to 0 and so on. Will this statement still work? It 



will not because we have not terminated base semicolon here and similarly many people 

especially now a days is, make the mistake of putting a logical OR; this is not a valid 

thing, What we have do is put OR.  

Similarly, will write for the other 3 outputs that is match. Here also we need to put design 

signal I am not writing it here and now this time what we have to be if it is 1 then this is 

corresponding to the 1 input and that is sum equal to. (Refer Slide Time: 47:15) There is 

actually one more mistake here in this sentence (Refer Slide Time: 47:33). We have 

forgotten another input for the MUX. We will had to put a colon and then put what we 

want is just 0 at the output. If the enable is not valid, I mean it is not asserted then we 

need to put just 0 because we just want to make a distinction whether it has gone through 

the actual process or not. Similarly, here we need to put 0 here see this will had to put in 

with in parenthesis and note that this is a logical statement. For logical statement, just 1 

equal if you put at the compiler stage it will reject, what we need to put is 2 equal 

statements. 

For example you want to put an inversion, not equal to what all we have to do is just 

replace this one by an exclamation mark. That exclamation mark is for the logical and 

similarly, we can put ‘less’ as output, here I think I have missed one thing (Refer Slide 

Time: 48:50) that I can put here as same. Here it is less and here it is more (Refer Slide 

Time: 49:00); precisely the same statement will appear and likewise we have a 0 if the 

condition is not satisfied; that is to say as a further explanation what we say is the sum is 

equal to preset value both of which are multi precision bits and what the value it returns 

is actually 1. Are we clear on this? Are we together on this? Then I think that is all as 

simple as this code. We have forgotten one more thing, can you point out what it is? This 

is a multi statement; that is block we need to add ‘begin’ and ‘end’ to that, so we will put 

‘begin’ here and ‘end’ here. 

This completes the code for this. Now an assignment to you, I will suggest that we add 

one more input here saying that sum stroke difference (Refer Slide Time: 50:15). This is 

1 bit input as such the sum is 0; what I want this output is sum otherwise I want 

difference to appear over that, so modify this accordingly. In a different case let us call it 

by a generic name as some D. So the same thing will become mod of 1 N num 2, this is 



clear (50:44) Conversation between professor and student this is 0, (51:15). Conversation 

between professor and student. Yes, this is this one, no these are all single precision. 

Therefore you do not have to mention it specifically as such to know it is a single signal 

as such right? 

To summarize what we had done so for is we have used multi precision in the place of 

single precision because of full adder seen earlier. Next is, we have used precisely the 

same comparators and that is how we have got. We have also combined an ‘always’ 

block and same as a thing by putting assign statements. You can just make that one but 

what will happen when you put assign statement it keeps on turning continuously because 

it is precisely the gate that is going to be mapped on to the device. 

So it will be working all the time. If the circuit is working it consumes more power, so 

the thing always is preferable because this will work only when change is encountered 

there, that is all the difference. To summarize the whole thing we have covered simple 

gates and the symbol for which is ampersand and OR that the vertical slope and exclusive 

OR cap so on; then we have seen how to use assign and ‘always’ block in order to 

achieve any combinational circuits. This way you can make any complicated combination 

circuits. The next class will be seeing how to model a sequential circuit. 

Thank you! 

Summary of Lecture 10 



(Refer Slide Time: 52:48) 

 

(Refer Slide Time: 53:11) 

 



(Refer Slide Time: 53:31) 

 


