
 1 

Solid State Devices 
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Lecture - 8 

Equilibrium and Carrier Concentration (Contd…) 

 

 

This is the 8th lecture in this course and the 6th lecture on Equilibrium Carrier 

Concentration.   
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We have been discussing about carrier concentration of intrinsic semiconductors. First we 

discussed the qualitative model and in the last two classes we have been discussing the 

quantitative or the band model. The summary of the model that we discussed so far, the 

band model is that you have allowed energy levels in a crystal and it allows conduction 

band. 
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This is the top of the conduction band separated by another band that is the valence band. 

This is the bottom of the valence band, so this is the conduction band and this is the 

valence band separated by the energy gap. Then the valence electrons in the crystal 

occupy the balance band at T is equal to 0, some of these electrons may go up to the 

conduction band when you raise the temperature; so all the valance electrons at T is equal 

to 0 occupy the valance band.  

 

Now how are the states for these electrons distributed? We have shown that the 

distribution of the states is the function N(E) and this area indicates the total number of 

states in the valence band. That is four valence electrons for each of the 5 into 10
22

 by cm 

cube
 
silicon atoms. You similarly have a density of states function for the conduction 

band which we plot only near the band edge because we said that the shape of the 

function is somewhat more complicated than the density of states function in the valence 

band. That is why this portion is shown by dotted line.  

 

The third postulate was that, of these available states for the electrons at any temperature 

only a fraction of the states are occupied and this fraction is given by the Fermi-Dirac 

function; f (E, T) because it is also a function of T. So this is the fraction of states 

occupied at any temperature.  
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Now adding this information together, we wrote down an expression for the intrinsic 

concentration and that was ni is equal to ∫N(E) dE, that is the number of states available 

within an energy interval dE at E, multiplied by the fraction of these states which are 

occupied at any temperature. That gives the number of electrons within the energy 

interval dE at energy E. If I were to take the conduction band, that is the interval dE, the 

shaded area is the N(E) into dE, and this small area here is N(E) dE into the Fermi-Dirac 

fraction and that small area represents the number of electrons or occupied states in the 

conduction band. So you integrate from Ec to (E, T) to get the total number of electrons. 

That is how you get the intrinsic concentration of electrons.  

 

We said that if you make some approximations then the formula for the intrinsic 

concentration can be simplified. Here in this formula, the left hand side is occupied 

conduction band states at any temperature T; that is the concentration of electrons. Now 

we need to make the approximations to get a simple expression from here or replace this 

by infinity, it makes no difference because here this Fermi-Dirac function rapidly 

approaches 0 so it does not matter whether you take (E,T) as a limit or infinity as a limit.  

 

The next thing is, for this density of states function use the parabolic approximation; that 

is parabolic density of states approximation. According to this approximation your state 

density is given by square root of E minus EC, that is the parabolic density of states 

approximation. And then for the Fermi-Dirac fraction you will see Boltzmann 

approximation. So this is approximated as fB (symbol B is for Boltzmann) is equal to exp 

to the power minus (E minus EC by KT). We are writing f (E, T) is approximately equal 

to fB (E, T) that is Boltzmann approximation of the Fermi-Dirac fraction and that is given 

by this formula.  

 

So when you substitute this term, the parabolic density of states approximation here and 

then the Boltzmann approximation into this and raise the top limit to infinity then we 
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have shown that we have not done the detail derivation but then we said that the formula 

can be written as: ni is equal to 2 [2pi mn kT by h square] whole cube by 2 into 

exponential to the power minus ((Ec minus Ef) by KT). 

 

(Refer Slide Time: 08:56)  

 

 
 

It is left to you as a home work to do the derivation. We want to interpret this formula 

physically, this is where we left in the last class. I have repeated this portion because this 

is a very important part of the derivation in the energy band approach. How do we 

interpret this formula? Let us denote this term by Nc, try to interpret this constant Nc. As 

we have said this ni represent the occupied conduction band states. Let us look at this 

function and find out what it represents. Thist represents the Boltzmann approximation to 

the Fermi-Dirac function at E is equal to Ec and temperature T.  

 

Let me explain that part again, Fermi-Dirac fraction is given by 1 by 1 plus exp minus (E 

minus Ef by KT).  If I want to get the value of this function at the conduction band edge 

Ec then all that I need is I substitute Ec here instead of E. So this represents the fraction of 

states occupied within the energy interval dE at Ec. Now if you were to take the 

Boltzmann approximation to this function assuming Ec minus Ef ≥ 3 kT; so for Ec minus 

Ef ≥ 3kT we will also use E ≥ 3 kT.  

 

This above function is approximated as this function because one can be neglected. So 

here if you write f(Ec), T is equal to fB (Ec, T) and this is the Boltzmann approximation. 

That means this term represents the fraction of states occupied for energy Ec within an 

interval dE at any temperature. If this is so and if this is the number of occupied states 

then it is easy to see that we could interpret Nc as the number of available states at Ec. 

This is only an effective description; it is not the actual description. It turns out that when 

you work with the actual description and you come up with the simple formula and if you 

want to physically interpret that simple formula in terms of some kind of an effective 

description then since this term represents the fraction of occupied states at Ec at any T 
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under the Boltzmann approximation and ni represents the number of occupied states, 

therefore it is evident that this can be taken to represent the number of available states at 

Ec. So this formula means: Although this is the actual picture where you have the states 

distributed over energy here, in a simple representation of this we could regard this 

picture as equivalent to something like this. This is an effective band picture.  

 

(Refer Slide Time: 13:49)    

 

 
 

You have Ec here and you have Ev; here and you have Nc states all present at Ec. This is 

the approximation and it is interesting. All the Nc states are as though they are present at 

Ec. So how do I represent all the Nc states at Ec? I should use the delta function it is like a 

delta function representation. The area under this function is Nc by cm cube available 

states at energy Ec so all are available at Ec, this is an effective picture. And then if you 

want to know what fraction of these electrons are present at Ec then all you have to do is 

multiply the states by the fraction given by the Boltzmann approximation. That is why Nc 

is called the effective density of states at the conduction band edge, That is a physical 

interpretation of that constant Nc.  

 

We will see a similar picture for the valence band edge but before that let us look at one 

more point. We have said that this formula is derived under the Boltzmann approximation 

apart from the approximation such as the parabolic density of states approximation. Now 

how do we know that this approximation is valid? For this approximation to be valid Ef 

should be below Ec by at least 3(KT). We have said one way of checking the validity is to 

now derive a formula for Ef and then check whether indeed Ef is below 3 (K T). Before 

we do that we can also just do a simple logical reasoning to check if this will be true. So 

can we locate Ef - the Fermi-level in an intrinsic semiconductor from simple reasoning?  
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It turns out that we can do it as follows: Location of Ef by simple reasoning: look at the 

band picture it will show the Ec, Ev, and the energy gap. Let us start with the definition of 

Fermi-level at T is equal to 0.  

 

The definition of Fermi-level is: it is that level above which no level is occupied at T is 

equal to 0 and below which all available states are occupied. It is clear that the Ef cannot 

be in the conduction band because if the Ef was here in the conduction band then we are 

talking at T is equal to 0 and then we will consider what happens for higher temperatures. 

At T is equal to 0, supposing Ef was in conduction band, then what it means is that below 

Ef whatever states are there which are allowed they must be occupied. It means I would 

have so many occupied states here. All the states which are available in this region above 

Ec and below Ef there are some states which are available and that is what our band 

picture says so they must be occupied. This means there must be conduction electrons at 

T is equal to 0 which is not true.  

 

You know that at T is equal to 0 there are no free electrons therefore Ef cannot be in the 

conduction band. This means that Ef cannot be more than Ec, this is Ef.. Can Ef be in the 

valence band? If I assume the Ef to be in the valance band, then again by definition of 

Fermi-level at T is equal to 0 all states above Ef should be unoccupied which means all 

the available states which are in this energy range should not be occupied. But we know 

that at T is equal to 0 the entire valence band is occupied because there is no way the 

electrons can become free, so they must remain within the valance band. They are all 

bonded to the atoms in the bond model. So, in the energy band model they are all in the 

valence band. So again Ef cannot be within the valence band. It is clear that Ef should be 

somewhere between Ec and E. It has to be within the energy gap. Fermi-level is in the 

energy gap. This is clear from the simple analysis at T is equal to 0. Now let us go to 

higher temperatures. Where is the Fermi-level likely to be? Start from T is equal to 0.  
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Supposing Ef is away from the valence band but close to the conduction band within the 

energy gap, now at T greater than 0 if I have find out the Fermi-Dirac fraction based on 

this Ef, it would be something like this. Using this Fermi-Dirac fraction I can find out the 

number of electrons. Using the formula here I will take this fraction multiplied by 

available states, and then integrate and so on. This is what we did; I will get some number 

of electrons. All these electrons have to come from the valence band, which means the 

number of unoccupied states in the valence band should be equal to the number of 

occupied states in the conduction band because the electrons which have come to the 

conduction band for higher temperatures have come from the valence band.  

 

Now it can be easily shown if Ef is close to Ec and away from Ev using the formula for 

the Fermi-Dirac fraction, the number of unoccupied states that you can calculate in the 

valence band will be less than the number of occupied states in the conduction band. In 

other words ni will turn out be more than pi.  

 

Unoccupied states in the valence band indicate the whole concentration, we have already 

said that the whole concentration is equal to electron concentration. This has been 

translated into number of states, unoccupied states in the valence band are the holes; this 

should be equal to occupied states in the conduction band in a pure semiconductor at any 

temperature. If this two turn out to be not equal for a certain choice of Ef then that choice 

of Ef is not correct. Now how do we show that pi is lesser than ni for this condition? We 

can show that pi is lesser than ni for this condition for Ef is very close to the conduction 

band. The number of holes is given by pi is equal to ∫N(E) dE into 1 minus f(E), 

integrated over the valence band. This is the formula for pi from analogy to the formula 

for ni. All that you have done is instead Fermi-Dirac fraction indicating the occupied 

states you are taking 1 minus the Fermi-Dirac fraction because that represents unoccupied 

states. The other part N(E) dE is the same as in the formula for ni. This represents the 

number of available states in energy interval dE at energy E. So, if you integrate this you 

will get the unoccupied states in the valence band. Now let us look at the Fermi-Dirac 

function and 1 minus Fermi-Dirac function.  
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The Fermi-Dirac function is at any temperature T is something like this 0 1 and this is 1 

by 2, this is E and this is f(E), 1 minus f(E) is a symmetric function given like this. It is 

the reflection of this function about this line. Now coming back to this diagram if I were 

to sketch 1 minus f(E) here then it would be something like this. So this is f(E) and this is 

1 minus f(E). You can very clearly see that you put the density of states function, the 

parabolic density of states approximation, allowed states. Now you multiply f(E) into 

N(E) and you get this area by multiplying, then integrating, you can do the same exercise 

here. This is N(E) in a valence band, this is 1 minus Fe, and that is the area which is the 

unoccupied states; that is N(E) dE into 1 minus Fe integrated over the valence band area.  

 

(Refer Slide Time: 25:45) 
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So it is very clear that if your Ef is close to the conduction band edge then this area Ni 

will be less than this area pi. In fact if the parabolic density of states function for valence 

band and conduction band, if the shape of these functions are exactly identical which 

means in the parabolic density of states approximations the constant a, the parabolic 

density of states function is given by square root of E minus Ec for the conduction band. 

For the valance band it is square root of Ev, minus E. So the two constants in the density 

of states functions for the conduction valence bands are exactly same, then it is clear that 

this area pi is equal to ni. if Ef is exactly in the middle of the energy gap.  

 

From this diagram it is very clear that I will get pi is equal to ni if Ef is exactly in the 

middle of the energy gap provided the constants were the same in the parabolic functions. 

So they are slightly different because the effective masses of electrons and holes are 

slightly different. From here we can see that Ef will be very close to the middle of the 

energy gap for T greater than 0 in order that ni is equal to pi. If Ef is very close to the 

middle of the energy gap then what is the distance between Ef and Ec? The energy gap in 

silicon is 1.1 electron volt. Half of that would be 0.55. The values can be 1.1 depending 

on from where we have got the data.  

 

Let us say it is 1.1 to first decimal place, then it is 0.55 electron volt; that is Ec minus Ef. 

Now what is kT at room temperature? It is 0.26 electron volts so 0.26(3kT) is 0.078 

electron volts. If you compare 0.55 electron volt and 0.078 electron volts you will always 

find that Ec minus Ef in a pure semiconductor like silicon and in many other 

semiconductors will always be more than 3kT at any temperature. Therefore Boltzmann 

approximation is valid. The effective density of states picture where you assume that 

there are Nc states available at Ec that is the picture of the conduction band. This shows 

the effectiveness of the density of states and therefore it is quite valid.  

 

The Boltzmann approximation is valid and this formula ni is therefore fairly accurate for 

all practical purposes. We can write down a similar formula for pi and get an exact 

expression for Ef. Now we have placed Ef by logical reasoning to be close to middle of 

the energy gap; it is not exactly at the middle of the energy gap because the effective 

mass of electrons and holes is not the same. Or the parabolic density of states functions 

for conduction band and valence band are slightly different their; constants are slightly 

different.  
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So we need to exactly find out what is Ef. Once you eliminate Ef from this equation then 

you have a formula for ni because right now ni is still a function of Ef and unless you 

know what is Ef, you cannot know ni. We want to calculate ni at any temperature. So, 

based on whatever discussion we have had now we can write down an expression for pi. 

We have pi written here as equal to integration over the valence band of the function 

N(E) dE [1 minus f(E,T)]. We use Boltzmann approximation to the Fermi-Dirac function 

and then use parabolic density of states approximation and you replace the bottom of the 

valence band by minus infinity. And then your result will be exactly analogous to this. So 

you can write down the result for pi simply from the result of ni.  

 

All you have to do is replace mn by mp. Replace Ec by Ev and also you interchange Ef and 

Ev. So instead of Ev minus Ef it should be Ef minus Ev because this term should be 

positive. And the Fermi-level is usually below the conduction band edge but is above the 

valence band edge. So the formula for pi should be the same as the formula for ni with the 

replacements mn replaced by mp and Ec minus Ef replaced by Ef minus Ev. Therefore pi is 

equal to 2(2pi mp kT by x square) whole cube by 2 into exponential to the power minus 

(Ef minus Ev by kT). If you have some difficulty in trying to remember in this formula for 

ni Ec minus Ef or Ef minus Ec, you must know the physical interpretation of the formula. 

That is why we have taken lot of time to interpret this formula. Once you know the 

physical interpretation this problem is eliminated because you know that this represents a 

Boltzmann approximation to the Fermi-Dirac fraction. It is a fraction, it should be lesser 

than 1 there is no doubt. In fact it will be much less than 1. That is why the negative sign 

is kept outside and the term inside the bracket should be positive.  

 

Once you know this you can remember this formula whether it is Ec minus Ef or Ef minus 

Ec and similarly for pi. Now we can eliminate the Ef between these two results by ni into 

pi. When you multiply the Ef will get canceled and we will get the result nipi is equal to 
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4[2pi kT by h square] whole cube into (mnmp) whole cube by 2 into exponential minus 

[Ec minus Ev by kT]. 

 

(Refer Slide Time: 34:03)   

 

 
 

The Ef has got eliminated. If we were to write it using the symbol that we have used 

namely the effective density of states in the conduction band is given by Nc. Now you use 

an analogous representation there will be an effective density of states for the valance 

band that will be given by Nv. Why Nc is different from Nv because mn is different from 

mp, that is the only reason. We can write this term as Nc into Nv and recognize the fact 

that Ec minus Ev is nothing but the energy gap. Therefore this quantity can be written as 

exponential (minus Ec minus Ev by kT). Further I recognize that this term ni into pi since 

ni is equal to pi in a pure semiconductor or intrinsic semiconductor. So I can write this as 

ni square or pi square. The convention is ni. Now I get the relation ni square is equal to nc 

nv into exponential (minus Ec minus Ev by kT). Therefore I can write the formula as ni is 

equal to square root of ncnv into exponential of minus EG (2kT). That is the result for the 

intrinsic concentration as a function of temperature and the physical parameters such as 

energy gap and effective mass of electrons and holes. This result is what we have shown 

earlier.  
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Before I show the graph let me summarize the quantities present in the energy gap, 

energy band diagram, or energy band model of silicon. The parameters you need to know 

is the band gap or energy gap Eg for silicon 1.2 electron volts; for gallium arsenide 1.42 

electron volts. The other important parameter is electron affinity which is the difference 

between the vacuum level and the conduction band edge Ec so E0 minus Ec that is 4.5 

volts for silicon and 4.7 for gallium arsenide so different semiconductors have very close 

electrons affinity values. Then the intrinsic concentration ni, if you substitute in the 

formula you will get these values. Now it turns out that if you substitute the effective 

mass values, the energy gap values and so on you do not get exactly this number. The 

number given here is the value that is obtained from measurements. So in practice instead 

of 1.5 you may get a value of 1.1 or 1 etc.  

 

The next slide will give you the effective mass of electrons and holes. You can use those 

values and you can use this energy gap that is given here and try to estimate the 

concentration. This kind of problem arises because you are independently measuring 

these parameters. Energy gap is being measured by some particular approach. The 

effective mass of electrons and holes are being measured by some other approach. When 

you want to put it all together some inconsistency will be present.  

 

The normal practice is, whichever parameter you want to use you use its experimental 

value; but the formula is very important because now what you can do is use this value of 

ni for room temperature. These values that are being shown are valid at room 

temperature, 300k. So if it is not indicated you must take this value as 300k as the 

temperature. You can use these values of ni at T is equal to 300k and then you can use the 

formula to find out the value at any other temperature. That is the way you must calculate 

the concentration at any other temperature. That means for example, here ni is given by 

this, if you know ni at T is equal to 300k then it means you know Nc and Nv at 300k. You 
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must write an expression for ni as a function of temperature, you can see what kind of 

expression you get here.  

 

(Refer Slide Time: 40:41) 

 

 
 

You will need an expression of the form ni is given by B into T cube by 2 into 

exponential of (minus Eg by 2kT) where the constant B accommodates the effective mass 

of holes, electrons etc. Now you know the value at 300k; so you know ni 300k, use this 

value to get the constant B which is independent of temperature, and then use that 

constant and you can find ni at any other temperature. So, in terms of ni is equal to 300k 

if I want to write down ni T by ni 300k will be given by (T by 300) whole cube by 2; this 

B will cancel because it is independent of temperature into exponential of minus Eg by 

2k into (1 by T minus 1 by 300). This is how you can estimate ni at any other 

temperature. Therefore one has to follow this approach for results which are close to 

experimental values.  
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Now let us look at the other parameter such as effective density of states. At the 

conduction band edge it is Nc these values are given here: for silicon 2.8(10 to the power 

19). So order of effective density of states is 10 to the power 19 in silicon. Nv is slightly 

different which is 1 into 10 to the power 19 by cm cube. It is also important to remember 

the units. The values for gallium arsenide are given here .So what you find is, the 

difference between silicon and gallium arsenide is in silicon Nc is greater than Nv but in 

gallium arsenide Nc is lesser than Nv. All these depend on the effective mass of electrons 

and holes. So, gallium arsenide has a much lower effective mass of electrons than silicon. 

Then you have a dielectric constant given here εr.  

 

(Refer Slide Time: 43:42) 
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This slide now shows you the effective masses. Again these are values at T is equal to 

300k. What is important to note here is you have two types of effective masses: 

conductivity effective mass and density of states effective mass. That is, the effective 

mass used varies with the physical situation. This is because it is an average value. Now 

the average is not necessarily the same in different situations. This is not very difficult to 

understand. If you want to calculate the average of something it depends on the situation. 

How you average is also an important thing. It is a weighted quantity. It is a weighted 

average.  

 

Specifically what is important to see here is, if I take the density of states effective mass 

which is the value that should be used if you want to estimate Nc or Nv effective density 

of states, that is where this is to be used. Then silicon, the electron is heavier than the 

hole. Whereas if you take the conductivity effective mass, conductivity situation for 

estimating the resistivity and so on, you want to find out mobility, later on we will see 

how this effective mass is useful to find mobility as well.  

 

For example, that is the movement of the carrier in response to an electric field. In that 

context this effective mass of electron is less than that of holes. So electron is lighter than 

the hole for conductivity situation. Intuitively this is more satisfying. It is easy to 

understand because the movement of the hole is actually movement of bound electrons 

and therefore that movement is going to be slow. So in density of states effective mass 

you should not invoke the concept of movement. It is some different average used to 

represent the quantum mechanical situation. The only thing you need to remember is that 

the effective mass depends on the situation so you must use appropriate effective mass. 

The values are shown here for gallium arsenide. This value here is not shown because 

there is no agreement for the exact value. That is all what it means; not that there is no 

hole effective mass for gallium arsenide under conductivity situation.  

 

(Refer Slide Time: 46:26)  

 

 
 



 16 

Next, we come back to the behavior that we want to explain using our formula, ni versus 

temperature. So Log of ni versus reciprocal of temperature, it is a straight line, now this is 

very clear from our formula. So ni is equal to square root of Nc Nv into exponential 

(minus Eg by 2kT). ni is equal to B into T cube by 2 into exponential (minus Eg by 2kT). 

So log of ni is equal to log of B plus 3 by 2 log T minus Eg by 2k into (1 by T). Now this 

log of T is dependent on temperature but this variation with temperature is very small 

because it is logarithmic dependence on temperature whereas this particular term which 

depends on 1 by T varies much more rapidly than this term. And that is why what you 

have is log of ni versus, if you plot 1 by T, so log of ni versus this i by T term would be a 

straight line. This effect of log of T you will not see here in your line. That is why it 

almost looks like a straight line. Even though strictly speaking this term is present, its 

effect is not so much, it does not show up in the variation and this also shows that the 

slope of the straight line is Eg by 2k. The slope depends on the energy gap and 

Boltzmann constant k.  

 

(Refer Slide Time: 48:54)  

 

 
 

So ni on a log scale and 1 by T the slope is equal to minus Eg by 2. You can use the slope 

to get the energy gap of the semiconductor; this is the approach that is used to get the 

energy gap form the measured concentration. Now, we have got a model for the behavior. 

The final step is, we will find write down the formula for Ef. So from n i and pi I can get 

Ef. I just have to equate ni to pi. I will write down the result is Ec plus Ev by 2, that is 

middle of the energy gap, minus KT into ln square root of(Nc by Nv) that is the location 

of Ef. So now you know that Nc and Nv are not very different particularly if you are going 

to take the log of this quantity, this quantity is not going to be really significant. So it is 

almost Ec plus Ev by 2. And this quantity here this term depends on temperature. But 

again this dependence on temperature is negligible because this quantity is again small.  

 

If you take silicon for example the Nc value was 2.8 and Nv is 1. So square root of 2.8 and 

you take log of that it is really going to be very small. So Ef is approximately equal to Ec 
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plus Ev by 2. With this we have completed the discussion on intrinsic carrier 

concentration of the semiconductor. Next we will take up the model of the extrinsic 

semiconductor or the dope semiconductor and try to explain the carrier concentration 

versus temperature behavior. So let us see if there are any questions now.  

 

(Refer Slide Time: 51:39 – 51:54) 

 

 
 

Sir, according to the formula derived for the Fermi-level in intrinsic semiconductor, the 

Fermi-level is a function of temperature. Then, how is it that the slide showing Fermi-

Dirac function at various temperatures appears to have a Fermi-level independent of 

temperature?  

 

(Refer Slide Time: 51:55)  
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Let us look at the slide. If you note carefully the y axis is E minus Ef and not E. We are 

plotting the energy as with reference to the Fermi-level and not the absolute energy. So 

when you take E minus Ef on the y axis then any variations in Ef need not be shown on 

the graph .If however you plot the function as shown on this diagram where we are 

plotting the electronic energy on the y axis, and the Fermi-Dirac function as a function of 

the electronic energy. Here the picture would be something like this variation of Fermi-

level with temperature will be seen. Now, this is the line which represents the Fermi-

Dirac function for the temperature T1. For a higher temperature T2 if I were to show the 

function it will be shown by this line.  

 

Notice that the Fermi-level for T2 which is here, this is the line showing the Fermi-level 

for T2 is lower than the line shown for Fermi-level corresponding to T1 which is this one. 

So Ef2 is below Ef1 for T2 greater than T1. This is because according to the formula we 

derived here that is Ef is equal to Ec plus Ev by 2 minus k T into ln of square root of Nc by 

Nv we can see that as temperature increases because of this term the Fermi-level moves 

down. So when you plot the Fermi-Dirac function as a function of absolute energy the 

variation in Fermi-level with temperature will be seen whereas if you plot the Fermi-

Dirac function with respect to E minus Ef as shown in this slide, in that case the variation 

in Fermi-level with temperature will not be seen.  

 

(Refer Slide Time: 54:10)  

 

 
 

Sir, you have given several analogies to explain the concept of holes, splitting of energy 

levels, density of states function and Fermi-Dirac function. Is there any analogy to 

explain the fact that electronic energy can only vary in discrete intervals and not 

continuously? Yes, there are several analogies to explain this fact. A simple analogy is as 

follows:  
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Suppose there is a stair case like this and there is a ball. Now the question is, at what 

heights can the ball exist on this stair case? So you know that the ball can either exist at 

this particular stair case that is this region or this or this or this region. It cannot exist, for 

example, in these vertical portions of the stair case, you cannot have a ball existing 

somewhere here, it cannot rest there. So, you can see here that the ball can only exist at 

discrete heights. There is another example which is much more interesting. Suppose there 

is a street, and this street has signals at regular intervals; let us say the distance between 

two consecutive signals is d; the signals turn green at interval of T minutes.  

 

Imagine that there is a car which wants to pass through this street uninterrupted even 

when you have the signals turning red or green. What are the speeds in which the car can 

move so that it will not be interrupted by the signals? This is the question. Now it can be 

shown that the speed of the car is given by d by nT where n is an integer. Let us see why 

this is so? The speed of the car can only vary in discrete steps. So the car is only allowed 

in these particular speeds. Let us take n is equal to 1. What does it indicate? Now the car 

is moving that the signal here as turned green, it has passed this signal. After a time T 

minutes it is right here when this signal is turning green. So it has crossed a distance d in 

time T. Since the signal has just turned green it can move uninterrupted and go to the next 

signal and this will continue. So you see the speed of d by T that is, at n is equal to 1 the 

car moves uninterrupted.  

 

Now another speed that is allowed is n is equal to 2 that is, the speed is equal to d by 2t. 

Now you see what is happening in this case? The speed is half of the speed for n is equal 

to 1. That is, the car has passed this signal when it is in green, and next time the signals 

turns green the car is exactly half way here. When it comes here the signal turns green for 

the second time, and then again the car moves uninterrupted. This is the way the car can 

continue moving. It can be shown in a similar manner that for n is equal to 3 also the car 

will move uninterrupted. So you are allowed speeds given by d by t, d by 2t, d by 3t and 
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so on. So the car’s speed can only change in discrete intervals, discrete steps in this 

particular situation. Like this there are many situations where the parameters can only 

assume discrete values. With this we have come to the end of the discussion on intrinsic 

semiconductors.   


