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Solid State Devices 

Dr. S. Karmalkar 

Department of Electronics and Communication Engineering 

Indian Institute of Technology, Madras 

Lecture - 7 

Equilibrium Carrier Concentration (Contd…) 

 

Today this is the 7th lecture of the course and the 5th lecture on Equilibrium Carrier 

Concentration.  

 

(Refer Slide Time: 01:16 - 01:25) 

 

 
 

Yesterday we have started on the energy band diagram or energy band model of the 

semiconductor which will give us an accurate formula for estimating the carrier 

concentration at any temperature in an intrinsic semiconductor. Specifically we have 

discussed the first tenet of this Band Model. That is, what are the allowed states for 

electrons in a crystal? So the allowed picture is something like this.  
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You have a conduction band separated by a valance band. The bottom of the conduction 

band is EC and the top of the valance band is EV, and here for reference you have the 

vacuum level. This difference, EC minus EV is the energy gap. So electrons are allowed. 

energy is in this conduction band, energies in this valance band and then below you have 

other bands.  

 

Now the question is what is the distribution of the available states over these allowed 

energies? Now, you know what the allowed energies are. So, how the allowed states 

distributed over energy? What is their number? When we look at the valance band and 

the conduction band, the electrons which are coming here, in these bands, are basically 

coming from the four valance electrons of each of the atoms in the crystal. In other 

words, the total number of states corresponding to valance band would be minus 5 into 10 

to the power 22 by cm cube into 4 valance electrons corresponding to each of the atoms.  
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These are the number of allowed states for electrons. So many states per centimeter cube 

(states by cm cube).  

 

(Refer Slide Time: 03:38) 

 

 
 

Now, we want to see how these are distributed over allowed energies, distribution of 

allowed states over energy. We will just state the result from Quantum Mechanics. The 

allowed states are distributed as follows: if we take this y axis to indicate the allowed 

energies and the x axis to indicate the distribution of the states over energy, N(E), let us 

say this is EC and this is EV. Let us say, the bottom of the valance band is called EB. Let 

us assume the top of the conduction band is called ET. So EB to EV this is one allowed 
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band. These 4 into 5 into 10 to the power 22 electrons are equal number of states. It is 

found that they are distributed as follows: the distribution function looks something like 

this. What does it mean? This means that if I have to take an energy interval dE, 

somewhere here, energy interval dE at some energy E, then the number of states I will 

find in this energy interval would be given by this shaded area.  

 

If I integrate this particular function over this interval which means if I take this total area 

under this particular function, then that area will be equal to 4 into 5 into 10 to the power 

22. So you have a small number of states near the edges of the band. As you move 

towards the middle of the band you will have a larger number of states within an energy 

interval. So the area here, this total area is 4 into 5 into 10 to the power 22 by cm cube. If 

I take one centimeter cube of silicon and I try to see the total number of states they will 

be this many. And for these states, if I try to see their energy distribution then I will find 

that this is the energy distribution. So what is the unit of N(E)? If integral N(E) dE, this is 

N(E) and this is E so you are integrating along this. So if integral N(E) dE has a unit of 

centimeter per cube (cm cube), it means that N(E) has the unit of per cm cube per eV per 

energy. This point is very important to note. So the available states are not uniformly 

distributed over energy, is what we find. Often, when we plot functions, we plot the 

independent variable on the x axis and the dependent variable on the y axis.  

 

That is, if I were to plot N(E) as a function of E, I would do something like this: N(E) 

here and E on this axis, which is the normal procedure that we adopt in which case the 

function would look something like this. This is EB and this is EV and this is the area that 

you are talking about. But here we have plotted the energy on the y axis and N(E) on the 

x axis.  

 

There are some reasons for following this convention in semiconductor Physics. One is, 

like you start from here the allowed energy picture, you have shown the energy on the 

vertical axis, it is useful to align all other diagrams to this diagram. This is one reason 

why we always choose energy on the vertical axis while plotting N(E). And we will later 

on see when we plot the Fermi-Dirac Function also we will plot that function on the x 

axis and energy on the y axis.  

 

Now there are strong reasons for plotting energy on the y axis. This is because intuitively, 

for us, if you talk of potential energy for example: a body which is at a greater height has 

higher potential energy so somehow we are used to this kind of a convention when we are 

talking of energy. So energy is a physical quantity. We are not simply talking of some 

mathematical entity, it has a physical significance. Higher the location of the body more 

the potential energy and therefore it makes sense to plot the energy on the y axis.  

 

Location means higher and higher energy. This is the reason why you want to align other 

diagrams with this allowed energy band diagram and therefore the energy is plotted on 

the y axis. Let us understand this particular Density of States Function - N(E). What is the 

meaning of this function? Now, we can take a simple analogy to understand this. 

Supposing you consider a bucket of water which is something like this and let us also 

assume that the shape of the bucket is like this. 
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I am assuming a two dimensional situation. Supposing there is a bucket which is like this 

and you are filling it with water up to some height, now supposing somebody asks you 

what is the amount of water at any height h, this is height h, supposing I want to know the 

amount of water at that height, it is easy for us to see that it makes no sense. What is 

amount of water at any height makes no sense. What makes sense is, what is the amount 

of water within a interval dh at any h and then it is this, then the amount of water would 

be that.  

 

Similarly, it makes no sense to ask how many states are available at any energy E. It 

makes no sense because the states are distributed over energy. This is the approach that is 

adopted normally, and then we have a large number of states to deal with or a large 

population. So supposing you have millions of people and you want to talk about their 

height distribution then it will be very difficult for you to tell at a given height h how 

many people are there, that is how many people have exactly height h. It is very difficult 

if you are talking of millions of people. Instead what you would talk about is, within 5 

feet and 5 feet 1 inch height interval how many people are there? That is what makes 

sense.  

 

So, similarly here this is the water in bucket analogy. It makes sense only to talk about 

water at any height h within an interval dh. So, similarly number of states within an 

energy interval dE at an energy E. So you take the energy interval dE, around E, only 

then it makes sense. That is why the unit of N(E) is per centimeter cube per electron volt 

(by cm cube by eV). I want to emphasize this point because invariably the students forget 

the electron volt part of this unit and which means they have not understood the physical 

significance of this function.  

 

We have shown the shape of the function and so on. What is the equation? It is important 

for us to know the equation. It turns out that you cannot have a single equation for this 
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function. The shape is such that you cannot represent this function accurately with one 

equation. It turns out that in practice what is of interest is only the function near the edge 

of the band. So, if you can approximate the shape of the function somewhere here 

between Ev and EB that is sufficient for us. And it turns out that a simple parabolic 

relationship is sufficient for representing the function near the edge of the band.  

 

(Refer Slide Time: 14:48) 

 

 
 

Therefore we can write that function as, I will redraw that portion here, so this is E, this is 

EV, this is EB. If I am interested in this segment, this segment is parabolic, and can be 

written as N(E) is equal to square root of EV minus E that is the function.  

 

We will write the function “a” in terms of various physical parameters later on. Let us 

comeback to the conduction band, the situation in conduction band is similar to that in 

valance band. I will not plot the exact shape of the conduction band here because that 

shape is not as simple as this. But again as we have said what is of interest to us is only 

the function near the band edge and we will see the reason to it later. So if I take the 

function near the band edge and remaining part I am showing by dotted line, I am not 

completing it because that shape is not really simple; this part of the function again is a 

parabolic function.  

 

So I can write this function as constant a into square root of E minus EC. It turns out that 

the constant “a” is slightly different for the conduction band than the valance band. So 

what we will do is, we use a1 to represent the constant for the conduction band and here 

a2 represents the constant associated with the valance band. The constants a1 and a2 is 

equal to (8 square root of 2pi mp
 
cube by 2) by h cube. So mp is the effective mass of 

holes. Therefore for the valance band, the constant a2 depends on the effective mass of 

the hole, h is the Planck’s constant and the constant a1 is equal to 8 square root of 2pi mp 

is replaced by mn the effective mass of electrons. For the conduction band the constant 
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depends on effective mass of electrons (mn). So that is the slight difference between a1 

and a2: the effective mass of electrons and effective mass of holes.  

 

Now we know how the available states are distributed over energy. Now the final 

question to be answered before we can estimate the concentration of electrons, free 

electrons or holes and so on is: if so many states are available what fraction of these 

states are occupied at any temperature. Once we have that information also then we can 

put everything together and get a formula.  

 

(Refer Slide Time: 19:24) 

 

 
 

We come to the third tenet: that is fraction of available states occupied at any energy and 

temperature. Remember that whenever we talk of available state at any energy E, it is 

understood that it is within an interval dE so states available within an energy interval dE 

at E. Normally within an energy interval dE this phrase is dropped but it is to be always 

remembered. Supposing there is a state available at any energy interval what fraction is 

occupied? This is the Fermi-Dirac fraction and this is given by the function f(E, T) is 

given by 1 by (1 plus exponential (E minus Ef by KT)). 

 

It is extremely important to note that this function or this fraction is derived under 

equilibrium conditions. What does it mean? It means that you have assumed, while 

deriving this fraction that if some electrons have been transferred form energy level E1 to 

E2 at some rate then electrons are being transferred from E2 to E1 at the same rate; that is 

a meaning of equilibrium. So using these ideas this fraction has been arrived at.  

 

There are some additional constrains also like: in quantum mechanical system so that no 

two electrons can be present in any energy and so on. But where is the equilibrium 

coming from is what I am trying to tell you using this function. Now here this particular 

symbol Ef stands for Fermi-level, so this is a Fermi-Dirac fraction f(E, T) is equal to [1 

by 1 plus exponential (E minus Ef by KT)]. It is useful to see how this fraction looks like 
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when you plot it. So again when we plot, we will choose the energy on the y axis and the 

function on the x axis.  

 

(Refer Slide Time: 22:39)  

 

 
 

So this is energy (E) and this is the function (f). So the function would look something 

like this. If this is Ef for very high energies for E tending to infinity the fraction goes to 0 

and let us assume T greater than 0. For E is equal to Ef, this is the exponential of 0, this is 

1. The fraction is equal to 1 by 2. So for E very large the fraction is 0. I start from 0 here 

and as I come down in energy, by the time I come to Ef this value is 1 by 2.  

 

If I proceed further as I go to E minus infinity, this term will go to 0 and the fraction will 

go to 1. So the maximum value of the fraction is 1. I will get an exactly symmetric 

segment for any one temperature. This is how the function looks like for any one 

temperature. How does the function look like for different temperatures? Let us look at it 

on a graph.  
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So you can see here that for higher and higher temperatures, here the curves have been 

plotted for intervals of 100k starting from 0k. At T is equal to 0 what is happening? Until 

you come equal to Ef the fraction is 0. That is because, you see here that, if E is greater 

than Ef and T is equal to 0. T → 0; this is infinite. No matter of what your E is so long as 

it is more than Ef. On the other hand, for E is lesser than Ef, for T is equal to 0 it is always 

minus infinity, so this term is 0. There is an abrupt change so that is what you find here. 

The function comes down and at Ef it is a constant and then it comes down again for E is 

lesser than Ef. So you can see that what is being plotted here is E minus Ef. So E minus Ef 

is equal to 0 so these are Fermi-level location. Then when you increase the temperature in 

steps of 100k you progressively find the function shifting up.  

 

Now what does this function indicate? What does this kind of shape indicate? It is very 

simple. It means if I have to plot for T is equal to 0k and compare, all that this function 

says is that electrons from lower energies are moving to higher energies as you increase 

the temperature.  

 

So, for example, here if you see below Ef, at T is equal to 0 there were electrons and 

above Ef there were no electrons because even if they were available states, according to 

this the fraction occupied is 0 which means no electrons are there in those states; the 

states are unoccupied. When you increase the temperature you can see that the fraction 

which was 0 now has become non-zero. Whereas here the fraction which was occupied, 

fraction was 1, it has slightly reduced to less than 1. This means electrons from lower 

energies are moving to higher energies, that is all what this function shows.  

 

If your function temperature increases further you will have further distortion in this. So, 

more electrons are moving from lower energies to higher energies. It is important to note 

that this function does not necessarily say that you have an allowed energy at E. Whether 
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there is an allowed energy state at an energy E is decided by the density of states function 

and allowed energy levels.  

 

If there is an allowed state and there are states within an energy interval dE around that 

point then what fraction of this states are occupied is what is given by this function, f(E, 

T) is equal to [1 by 1 plus exp (E minus Ef by KT)] at any temperature T. So to 

understand the shape of this function, one can actually again consider an analogy. Again 

you have water in beaker analogy for this.  

 

(Refer Slide Time: 28:50) 

 

 
 

Let us say you have a beaker which is filled with water. Supposing you agitate this 

beaker and now try to see how the surface of the water in the beaker is, so there is an 

animation to show this.  
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Here the top of the water surface is calm, so there is no agitation. Now when you agitate 

the beaker you find a disturbance and what is happening there is some amount of water 

from below the surface is going above the surface in some place, and some other place 

there is a void from where the water is transferred. You increase the agitation, there is 

more likelihood and we will find water above the top surface corresponding to the calm 

situation. And we increase this agitation even more, let me show you the mean surface 

here and this is the agitated function.  

 

So what we are saying here is, if this is the picture when no agitation is present, when 

agitation is present it would be something like this; so water from here has gone here. 

Now when we increase the agitation it could be something like this. If I were to now plot, 

I replace this energy by height, and instead of the Fermi-level I have called this as Mean 

Top Surface of water. And what I am plotting here is the fraction of the beaker volume 

occupied as a function of height and agitation.  

 

Let us say height first because there was E first so E is analogous to height; f stands for 

fraction of beaker volume occupied. Then in fact you will have a picture as something 

like this where there is increasing agitation and your plot would look something like this. 

So this is for zero agitation (the red line is for zero agitation). When there is zero 

agitation the water surface is like this. Let us say this is height h0, so above h0 we have no 

water and below h0 the entire beaker volume is occupied with water. So the fraction of 

beaker volume occupied is 1 below h0 and above h0 it is zero. So there is no agitation, the 

red line is no agitation and that is the difference.  

 

As we increase agitation you find some water above that surface and therefore the 

fraction of water present is non-zero above the surface. But when you go higher and 

higher in height the probability of finding water is going to be lesser. If we increase 

agitation we are likely to find more water above height h. This is an analogy where the 
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water in the beaker is analogous to electrons; the beaker volume is analogous to the 

allowed energies; the height is analogous to the energy; agitation is analogues to 

temperature; the fraction of beaker volume is analogous to the fraction of occupied states.  

 

Finally, what is very important is, this mean top surface of water is analogous to the 

Fermi-level. These kinds of analogies help us to appreciate the physical significance of 

these ideas which are sometimes very abstract. Now let us focus on this Ef a little bit 

more. How do we interpret Ef? There are two ways of interpreting Ef. One is in terms of 

the behavior at T is equal to 0.  

 

(Refer Slide Time: 35:31) 

 

 
 

In terms of the behavior at T is equal to 0 we can say Physical Significance of Ef. In terms 

of the T is equal to 0 behavior we can say that it is that level above which no allowed 

level is occupied and below which all allowed levels are occupied. It is that energy below 

which all allowed levels are occupied. And I can replace “below” by “above” here and 

here “occupied” by “unoccupied”. So it is an energy above which all allowed levels are 

unoccupied or none of the allowed levels is occupied. This is one way of interpreting Ef. 

What is the meaning of Ef at T is equal to 0? This is very important. This interpretation is 

valid for T is equal to 0.  

 

Let us look at that function. At T is equal to 0, we can see that the function is 0 until you 

come to Ef and suddenly it changes to 1. Alternately you can interpret in terms of the 

behavior for T greater than 0. At T greater than 0 if there is an allowed level at E is equal 

to Ef then exactly half of the number of states which are available will be occupied at E is 

equal to Ef at T greater than 0. So it is energy at which exactly half of the available states 

are occupied at T greater than 0.  

 

Now, we will see when we take up of PN junctions, the Fermi-level has other physical 

significance also. So it is a very important parameter in the analysis of electronic systems 
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under equilibrium conditions. Now we can put our information together namely the 

allowed energy states, the fraction of states occupied at any energy E, and the density of 

states function and we can try to derive an equation for the carrier concentration, the 

intrinsic concentration. Now when we do that or rather before we do that let us discuss 

one approximation of this function that is often used to derive simple formula and that is 

called a Boltzmann approximation of this function.  

 

(Refer Slide Time: 39:49)  

 

 
 

Boltzmann approximation: This is valid for E minus Ef by KT is greater than 3 or is 

lesser than minus 3. E minus Ef by KT is either is greater than 3 or less than minus 3. 

That is E is above Ef by more than 3KT or E is below Ef by more than 3KT. In such a 

case, this approximation holds. Now, what happens for this case: if E minus Ef by KT is 

more than 3 then this term [exponential
 
(E minus Ef by KT)] is much larger than 1 and 

therefore you can neglect 1, and your function will become f(E,T) is approximately equal 

to exponential
 
minus (E minus Ef by KT) for E minus Ef is greater than 3KT.  

 

Alternately for E minus Ef is lesser than minus 3 KT, if E is greater than Ef by more than 

3 KT then this is exponential of minus 3 or exponential of minus of a quantity more than 

3 then this quantity becomes much less than 1. If that is a case, you know that 1 by 1 plus 

x, where x is much less than 1 is (1 minus x).  
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It is 1 by 1 plus x is approximately equal to 1 minus x, for x much less than 1. Using the 

same approximation we can write f (E, T) is approximately equal to 1 minus exponential 

(E minus Ef by KT); where, E minus Ef is lesser than minus 3KT that is important. So if 

you want to compare the Fermi-Dirac function and the Boltzmann distribution function, 

then how will they look like? It would be something like this. Let us do it for any one 

temperature, so this is Ef; this is E and this is f, the function f. If this is the Fermi-Dirac 

function, this is 0 and this is 1, this is 1 by 2.  

 

Now, if you were going to sketch the Boltzmann approximation it would be something 

like this. It will almost be the same as this function until you come to 3KT above Ef and 

there it will deviate and it will go like this. The lower segment will be again something 

like this, so let us mark the interval this is Ef and this is 3KT below Ef, these two intervals 

are 3KT.  

 

The Fermi-Dirac function and Boltzmann function will almost be the same. It turns out 

many times or most of the times when we use this function, Fermi-Dirac function, we use 

it in the range where the Boltzmann approximation is valid. Now one might ask that these 

are such simple approximations so why does it need Boltzmann to tell you that you can 

use this. The point is, what we have discussed is, the mathematical method of deriving 

the Boltzmann function. Now what is the physical significance of that? What exactly has 

changed? Which assumptions have been modified? There are some assumptions which 

have been used to derive the Fermi-Dirac function. Which of these functions is modified 

to derive the Boltzmann function? It turns out that the particular assumption modified is 

that the Fermi-Dirac function derivation assumes that no two electrons can occupy the 

same energy whereas Boltzmann derivation assumes that any number of electrons can 

occupy the same energy. So this is the physical difference between the two.  
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Now let us discuss the estimation of the concentration. Formula for Ni: We can write Ni 

as the number of electrons in the conduction band at any temperature.  

 

(Refer Slide Time: 47:09) 

 

 
 

This means Ni is equal to integral EC to ET. So EC is this level, bottom of the conduction 

band and ET is the top of the conduction band. How many electrons are there? Integral, 

the available states function. Within energy interval dE at E the number of states 

available is N(E) into dE. Out of this, f(E, T) is occupied. So you integrate this over the 

conduction band and you should get the intrinsic concentration. 

 

(Refer Slide Time: 48:06) 
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So graphically if we want to represent this it would be something like this (Refer Slide 

Time 48:09). So this is the N(E) function. This is N(E) into dE. A fraction of this is 

occupied because you have a Fermi-Dirac fraction as something like that, so this is f(E). 

As of now, if I want to sketch this function I should know where the Fermi-level is. I do 

not know, so I will assume it is somewhere; but I just want to show the fraction function. 

So here all the three aspects have been shown in this diagram the allowed energy levels, 

the distribution of available states over energy, and the fraction of state.  

 

These are the available states, multiply this by this fraction which means what is shown 

in this red portion is the number of electrons in the energy interval dE. So, that shaded 

area here shows how many electrons are there within energy interval dE because ratio of 

this area red area to this white area over this interval dE is actually the fraction that is 

occupied. So it is this term N(E)dE f(E, T) and now you integrate you will get the total 

number of electrons. How does this function look like N(E) into f(E)? The function N(E) 

into f(E) looks something like this. It looks something like this and that area is the 

integral. The boundary of this red, this is N(E) into f(E, T) at any temperature. 

 

(Refer Slide Time: 50:22) 

 

 
 

This area is ni, Fermi-level is somewhere below, this is EC. Right now we do not know 

where exactly it is, we have to estimate. You can substitute the various terms and your 

function will look as something like this, this is equal to integral EC to ET, so N(E) is of 

the form a1 square root of E minus EC, f(E) is 1 by 1 plus exponential (E minus Ef by KT) 

dE. You have to perform this integration. There is no way you can get a simple closed 

form equation for these general limits EC and ET so one uses some approximations.  

 

First thing is the Boltzmann approximation. We use the Boltzmann approximation to this 

Fermi-Dirac function because one can show that your Ef will be below EC by more than 

3KT. Now you do not know this in advance but from intuitive reasoning one can know 

this. Normally the way to check such approximations is you make the approximation, 
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derive the result, and from the result you try to see whether your Ef has turned out to be 

below EC by more than 3KT. If that is so then your approximation is valid. So you make 

an approximation, derive the result, then cross check whether the result is in conformity 

with the assumption or does it contradict the assumption. So the first approximation is the 

Boltzmann approximation. The next approximation is, you replace ET by infinity (replace 

ET the top of the conduction band by infinity). Why does this work? This works because 

this function f(ET) rapidly drops to 0 much before you reach the top of the conduction 

band. The top of the conduction band will be somewhere here.  

 

So it does not matter whether you are taking the limit up to ET or to infinity. The area 

under this is not going to change; it has already dropped to 0 much before you reach ET. 

Let us write the two approximations: First ET turns into infinity; second Boltzmann 

approximation; third is this formula that we have written already, that is also an 

approximation that has been used, the Parabolic Density of States Approximation. The 

actual density of states function is more complex. We are using a parabolic density of 

states approximation. Under these three approximations you can get a very simple result 

of this and it looks like this.  
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It is ni is equal to 2[2pi mn KT by h square] whole cube by 2 into exponential of minus 

(EC minus Ef by KT) with a negative sign. You are basically substituting for a1 and of 

course you are making some substitutions for evaluating the integral. For example, you 

make a substitution E minus EC some variable, then your lower limit will become 0, 

upper limit is already infinity. So how the integral looks like under these approximations? 

You do it as an exercise. Evaluation of the integral will involve some higher level of 

Mathematics but at least you can write within the simplest possible form under these 

approximations integral EC to ET a1 square root of E minus EC by 1 plus exp (E minus Ef 

by KT) dE, and then one will find that this is the relation, ni is equal to 2[2pi m n KT by h 

square] whole cube by 2 the exponential of minus
 
(EC minus Ef by KT). In the next class 
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we shall interpret this formula for ni physically. We will derive a similar formula for the 

hole concentration that is pi and then using the fact that ni is equal to pi we will derive an 

equation for the Fermi-level. 


