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Solid State Devices 

Dr. S. Karmalkar 

Department of Electronics and Communication Engineering 

Indian Institute of Technology, Madras 

Lecture - 6 

Equilibrium Carrier Concentration (Contd…) 

 

Today is the 6th lecture of this course and the 4th lecture on the topic of Equilibrium 

Carrier Concentration. What we did in the last class was we tried to give a qualitative 

model for this particular data we had shown in the beginning of the discussion on this 

topic. 
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What we did yesterday can be written in the form of an equation: 

ni is equal to Np to the power E by kT where ‘N’ is the atomic concentration in silicon, 

‘p’ is the probability that an atom is hit by a particle, ‘E’ is the bond strength and ‘kT’ is 

the average energy of the particle at temperature ‘T’ under equilibrium conditions. So E 

by kT represents the number of particles that must converge onto an atom so as to 

provide energy E equal to bond strength. So the entire discussion that we did can be 

summarized in the form of this equation. Here the probability p is lesser than 1, so if we 

were to write this equation using 1 by p here so that we get a quantity is greater than 1 

then we can correlate this equation very well to the behavior that we have shown.  
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So the same thing written in terms of 1 by P would look something like this. Now it is 

very clear that if I take the log of ni, I will get ni is equal to log N minus E by kT log (1 by 

p), here 1 by p is greater than 1 so log of this quantity would be positive. So, according to 

this log ni α minus E by kT. Therefore if you plot ni on a log scale and (1 by T) a 

reciprocal of temperature on the other axis that is the x axis so log ni is plotted on the y 

axis and 1 by temperature is plotted on the x axis then I will get a straight line. This is 

exactly what this slide shows.  

 

Here the differences between the straight lines associated with silicon, germanium, and 

gallium arsenide can readily be associated with the changes in E for these three materials 

where E is the bond strength E 1.1eV for silicon, for gallium arsenide it is 1.42 eVs and 

so on. Thus the qualitative model is quite good in predicting the behavior. The problem 

here is that we do not really know what this p is? We have no way of calculating p in the 

model. What we can get is a broad behavior.  

 

We cannot make accurate calculations but we can definitely show or rather we have 

shown using this model that ni on a log scale varies as reciprocal of temperature and the 

behavior is linear when we plot log ni vs 1 by T which is not a small achievement at all. 

To get a more accurate description where we can make calculations at any temperature 

we must go to the Band Model which is the topic of discussion today.  
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Actually the band model means the energy band model. Many times the word energy is 

dropped. The energy band model tries to analyze the electron population in terms of the 

energies possessed by electrons. So more specifically what we are trying to do in this is, 

to see how the electrons are distributed over a range of energies at any given temperature. 

If we have some way of finding out this distribution then we can very easily separate that 

part of this electron population which is free and that part which is bound at any 

temperature.  

 

The basic tenets of this model are three: The first one refers to the allowed energy states 

for electrons. Electrons are only allowed certain energy states. They are not allowed all 

energy states. This is the first important principle of quantum mechanics. Secondly, of the 

allowed states the electrons always tend to occupy the ones with lowest energy which are 

available. Electrons occupy the lowest energy states available.  
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Third is the policy exclusion principle, it says that no two electrons can occupy the same 

energy state. This is the first important tenet of this energy band model, the allowed 

energy states. Next is, how many states are there and how these allowed states are 

distributed over energy?  

Distribution of allowed states over energy:  

This distribution is represented using a function N(E) which means N is a function of E. 

This is to say that all the states which are available for electrons to occupy are not 

necessarily distributed uniformly over energy. So we will have to see what is the exact 

distribution, what is the function in N(E).  

 

Now the third and the last important tenet has to do with what fraction of the allowed 

states are occupied at any temperature, the fraction of states that are occupied at any 

temperature and energy. So electrons will not occupy all the states, only a fraction of the 

states will be occupied which obviously means the allowed states are very large in 

number much larger than the number of electrons so that is why the question arises as 

how are these states occupied?  
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Only a fraction of allowed states are occupied. This fraction is written as F(E,T). This 

fraction is a function of energy and function of temperature. This is normally called the 

Fermi-Dirac function. This function is derived from statistical mechanics. While the 

function N(E) the distribution of allowed states over energy is obtained from quantum 

mechanics and the first principle of allowed states also is a statement of quantum 

mechanics the last tenet or statement is related to statistical mechanics. The energy band 

model combines results from statistical mechanics and quantum mechanics and tries to 

put them together in a cogent coherent form.  

 

Now let us take up each of these three tenets one by one. What are the allowed states for 

electrons in a crystal? What is the distribution of these allowed states over energy? What 

is the fraction of these states that are occupied?  
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What are the allowed states? If we start with the picture associated with an isolated atom 

we will take silicon as an example. In isolated silicon atom what are the allowed energy 

states? Then you put together n atoms all regularly arranged and then you start reducing 

the inter atomic distance between the n atoms and bring it down to the distance that we 

have in the crystal. That is the way you try to see how the allowed energy states picture 

from an isolated atom progressively gets modified and then we get the picture for 

electrons in a crystal.  

 

So, if you were to follow this approach, if I were to sketch on a diagram like this where 

the x-axis denotes atomic separation and y-axis denotes available energies or electron 

energies how will this picture look like? Let me build up this picture, we are trying to plot 

it for an n atom system where all n atoms are regularly arranged. You start with a very 

large or infinite separation. When the separation is infinite each atom is isolated, although 

it is still an n atom system but still in effect one atom is isolated from the other atom. 

Therefore we are starting with the picture for isolated atom at this right extreme. You 

know that silicon’s atomic number is 14. 
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The distribution of these 14 electrons is written as 1S square 2S square
 
2p to the power 6

 

3S square
 
3p square

 
in terms of the various orbital. Now you plot energies corresponding 

to this. So 1S square that is the energy of electron very close to the one S orbital is very 

close to the atom and progressively these correspond to energy states of electrons away 

from the atom. In this particular diagram the lower energies will correspond to electrons 

close to the atom and the higher energies will correspond to electrons away from the 

atom. If I were to show this it would look something like this for an isolated atom. We 

are not taking an n atom system you take an isolated atom then it would be something 

like this. 

 

(Refer Slide Time: 19:12) 

 

 



 9 

The highest is 3p, then below that you have 3s, then you have 2p, and 1s. Here I must 

mention that in this diagram the distance between various energies is not necessarily to 

scale. So 1s there are 2 available states, if you strictly use the polis athruzen principle, 

those two states of 1S orbital should be shown separately.  

 

Similarly, for example if you take this 2p orbital there are 6 states and all the 6 states 

should be shown separately. But then if you do that the diagram becomes complicated so 

we use some simplification. What we assume is that, for simplicity both the states of 1s 

orbital are at the same level. I can show that by using two circles here the circle 

corresponds to a state and I will cross this circle to indicate that this state is occupied so 

1S square
 
then comes 2S square so you have two states available and both are occupied. 

Then comes 2P to the power 6 so there are 6 states and all 6 are occupied. There are 6 

states but only two of them are occupied. Look at this 3p, only 2 electrons are there in 

this although there are 6 states available. In a 3p orbital there are 6 states. I will cross two 

of them to show only these two are occupied. So this would be the distribution of the 14 

electrons in an isolated silicon atom over various energies.  

 

Here, I have shown a line which means that over a range of atomic separation we are 

assuming these holes. Again this is strictly not correct because you are slowly bringing 

the atoms closer so we are assuming very high separation. So, in order to have some 

simplification in the diagram we can assume that for very high separations the picture is 

the same. This is the picture for isolated atom. If you have n atom system the only 

modification that will take place here is, for every atom there are 2 electrons and since 

each atom is isolated from the other atom the 2 electrons of all the n atoms in the 1S state 

would be at the same energy.  

 

So, instead of 2 electrons now the picture here is 2N electrons. If you proceed like this 

here for this 3p state there are 6N states available for an n atom system. All the 6N states 

are at the same energy in our simplified model because the atoms are isolated. However 

out of this only 2N states are occupied. You just multiply this number by n so this is 2N 

states and 2N electrons. You can go on writing for this, but I will write for this end and 

for the other end.  
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Here you have 6N states but only 2N electrons. Now let us see what is going to happen as 

you bring the atoms close. As you bring the atoms close the coupling starts between the 

various atoms. And now you again apply the polis athruzen principle, it says since no two 

electrons can have the same state each energy state is going to split into n states. When 

they are far apart this issue does not arise because there is no interaction between them 

but once the atom starts coming closer there is coupling and no two electrons in any 

system can have the same energy so there will be small changes in energy of each 

particular state. So as a result what happens is as you bring the atoms closer this 3S states 

will tend to spread into a range of energies. That is what is shown here by spreading of a 

single level into a band. Strictly speaking, in this band there are 2N states and 2N 

energies so I should show 2N lines that are separate and which is something like this.  

 

But since the N is very large, for example in silicon we know that 5 into 10 to the power 

22 atoms by cm cube is a very large number, so these various levels will be so close to 

each other and we can almost regard them as forming a continuous band. We do not show 

them as levels as discreet in this, it is as though they are spreading into a band, and 

similarly the same thing happens here. It tends to spread into a band. What is important to 

note is that the energy levels corresponding to electrons which are very close to the atom, 

for them the effect of the other atoms will come about only for very low atomic 

separations because they are shielded by the other electrons.  

 

In terms of our energy band diagram what it means is that even though these outer levels 

are getting influenced by other atoms and therefore they are spreading into a band the 

inner levels here will not spread into a band so easily by this atomic separation. So you 

can simply so this as a discreet level at this stage. Now, if you proceed further, reduce the 

atomic separation further it turns in out that calculations indicate that these two bands 

merge for some atomic separation and if you go down further you have a single 

continuous band and you reduce the atomic separation this continuous band spreads into 
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exactly two  different bands. This is how the picture looks like for lower and lower 

atomic separation. For this particular 2P level the spreading begins only here and for 1S 

level it is even later.  

 

Let us concentrate on these two because those are of interest to us. In fact the 4 valence 

electrons that we talk about are these 4 electrons in the 3p orbital. So in this case, there 

are not 4 but 4N electrons. How many states are involved if you take this particular level 

3p and 3S together? The total number of states involved there are 6 plus 2 is equal to 8. 

What it means is the 6N states here are spreading and the 2N states here are spreading 

and they are merging together over this region. In this region, that is over this atomic 

separation you have 8N states but only 4N electrons because out of this 6N states only 2N 

are occupied. Out of this 2N states all 2N are occupied but here they merge so there are 

only 4N electrons.  

 

(Refer Slide Time: 31: 10) 

 

 
 

Now what will happen is, out of 8N states 4N electrons will occupy the lower states 

available. In other words, if you were to do a similar exercise for a metal you will find 

that the metal crystallizes in this atomic separation range. What we have drawn is for 

silicon, you can draw a similar diagram for a metal. Then for that metal also you will get 

similar behavior where you will find the atomic separation in the crystal will be in this 

range. That is why you have a continuous band of which only a part of energies are 

occupied. But for semiconductors for example in silicon it turns out that in the crystal the 

atomic separation is here.  

 

What decides the atomic separation in a crystal? What should be the inter atomic distance 

in a crystal? This is decided by the fact that all the attractive and repulsive forces should 

cancel the lowest possible energy the total energy. If you use that criterion and find out 

the atomic separation it will turn over to be somewhere here for silicon. Now, this shows 

why at this atomic separation in the crystal you have one band separated by another band 
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so this is the gap. These energy levels are not allowed. Further, calculations indicate that 

the number of states in this band is exactly 4N and the number of states in this band is 

also exactly 4N.  So 4N states and here in this band also 4N states. But total number of 

electrons we know is 4N in this 8N states. So all 4N electrons will occupy these lower 

energies available so the upper band will be empty at kT is equal to 0K if there is no 

energy provided to the electrons.  

 

So here you have 4N states and 4N electrons. Here 4N states but no electrons. This band 

is the so called valence band because all the valance electrons are occupying this energy 

band. And this band is the so called conduction band because when you provide energies 

to the electrons the electrons jump from the valance band to conduction band and when 

they jump the electrons which are in the upper band are free to move so therefore they are 

called conduction electrons.  

 

Now, what is of interest to us in analysis of semiconductors is just the band picture at this 

atomic separation. Here let us write that this is the atomic separation in a crystal. What 

we are interested in is only the band picture along this line. So we can just draw that part 

of the picture and it would look something like this.  

 

(Refer Slide Time: 33:11) 

 

 
 

So on this axis you have electron energy and now you do not have to show anything on 

this axis because we bothered only about the band picture at the particular atomic 

separation. This is a band picture, the particular atomic separation, so this is one band of 

allowed energies then the energies are not allowed in this band then again you have 

another band of allowed energies then you really have a very small width of a band or 

almost a point. This point corresponds to 1S, this to 2S, this is 2p, this is a band 

corresponding to 3S and 3p which are merged and again separated. This is also a band 

corresponding to 3S and 3p which are merged in separated. This is the conduction band 

and this is the valance band.  
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We have not yet explained why the electrons which are in this band can participate in 

conduction that is something we will do later. Now I just want to tell you the name 

assigned to this band. This allowed band is conduction band, and this allowed band is 

valance band and this difference is the energy gap.  

 

Now it turns out that the lower energies are not of interest to us because most of the 

properties of the semiconductor can be understood in terms of these two bands. Therefore 

one does not show these lower energies. Further it is of interest to note on this diagram 

which is the energy corresponding to an electron at infinity and this is totally separated 

from the crystal, that energy is somewhere here. Note that this entire range of electron 

energy indicates that range which corresponds to electrons within a crystal.  

 

To have a reference, what is the energy of electron which is removed from a crystal and 

which is moved totally away from the influence of atoms? That will be somewhere here. 

This level is normally referred to as vacuum level or vacuum energy level. In practice 

now it is somewhat difficult to work with a diagram like this wherein the ends of this 

band are indicated as points. What one does is, for simplicity instead of a point you draw 

a line.  

 

The representation that we will use for explanations would be something like this so 

vacuum level will be drawn as a line. At this level, the symbol used is E0 so this is the 

vacuum level. And then the conduction band will be shown using two lines. The lower 

level of this will be represented by the symbol Ec where ‘c’ stands for conduction. The 

valance band will be shown below this and the top of this band is denoted Ev wherein ‘v’ 

stands for valance and this gap is Eg which is the energy gap.  

 

As we will see, this represents the bond strength of the bond model, energy 

corresponding to the covalent bond. This gap between E0 and EC the difference between 

E0 and EC is called electron affinity usually denoted by the symbol chi. a Greek letter or 

alphabet. Please note that when the levels are drawn in this manner the x axis here does 

not indicate distance. You should not think that this indicates distance because as we 

have said strictly speaking this is the correct diagram because you are drawing the 

allowed energies at a particular separation. So here you should only have a point. But as I 

said it is difficult to work with this diagram so you are just drawing it like this. Instead of 

saying that the level is a point it is very difficult to show a point you draw a line so this is 

electronic energies ‘e’ stands for electronic energies.  

 

Before we leave this topic of allowed levels let us try to understand why is it that when 

the atoms come closer the energy level of an isolated atom splits into different energies. 

When you have coupling between various atoms then the energy levels corresponding to 

the various atoms split and they are not the same. This is a very important point that one 

must note, it comes up at several places in Sciences, the splitting of energy level because 

of coupling between the systems or elements of the systems. We will illustrate this with 

example of an analogy.  
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What is shown here is a spring mass oscillator. We will first have a discussion related to 

this oscillator and then I will indicate to you how the situation here is analogous to the 

situation we discussed for electrons in a system. Supposing I was to set this oscillator into 

oscillation it will have some frequency of oscillation which is given by 1 by 2pi square 

root k by m; k is the spring constant and ‘m’ is the mass. Now these three oscillators are 

independent and there is no coupling in this case. And what will happen is if I try to set 

the movement of oscillation it will have the same frequency as first oscillator. I can set 3 

into oscillation and it will have the same frequency.   
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Suppose I was to couple these oscillators by a coupling spring as shown in this black 

board then we introduce a coupling spring as something like this so that the oscillators 

are coupled. Now what will be the frequency of oscillation of this system? Let us look at 

the frequencies of oscillation for this three oscillator system when they are coupled. One 

particular mode in which the three oscillator system coupled together can oscillate is this 

mode where all the three masses are oscillating in Unisom. In this case the coupling 

really has no effect, these frequencies are same as the frequency of an isolated oscillator. 

But now this is not the only mode in which the system can oscillate. For example, it can 

oscillate as follows: the central mass is stationary and the left and the right mass are 

oscillating in opposition.  

 

The frequency of oscillation is now more than the frequency of oscillation when all the 

three were oscillating in Unisom. It is because now the effect of the coupling spring is 

also coming into picture. Effectively the spring constant ‘k’ has increased so the 

frequency is more and now you compare it with this oscillation, this is slower, so this is 

the second mode of oscillation. There is a third mode in which this particular system can 

oscillate. That is the centre mass is oscillating in opposition to the outer two masses and 

outer two masses are oscillating in Unisom, this frequency is even higher than the 

previous frequency where the center mass was stationary.  

 

Let me play the three modes again. This is one mode of oscillation, this is another mode 

of oscillation the higher frequency and this is another mode of oscillation an even higher 

frequency. The three oscillator system has three different modes of oscillation or 

frequencies of oscillation when the three oscillators are coupled. One can easily extend 

this argument logically and if you put an ‘n’ oscillator system you can show that it will 

have ‘n’ different modes of oscillation and ‘n’ different frequencies.  
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Now let us come back to our discussion. In the oscillator analogy the oscillator is 

analogous to atom with a single allowed energy level. Further the natural frequency of 

oscillation of the oscillator is analogous to the allowed energy level which is the value of 

the allowed energy level.  

 

Finally the coupling spring is analogous to inter atomic forces, the forces between one 

atom of silicon and the other atom of silicon. If you look at the analogy in this particular 

way then we will easily understand how a single energy level splits into more energy 

levels and equal in number to the number of atoms which are getting coupled. We will 

also understand that if in the oscillator for example if this coupling spring is very strong if 

you increase the strength of the spring or the spring constant ‘k’ then the separation 

between these three different frequencies that is F0, F1, and F3 for the three modes of 

oscillation of this particular system will go on increasing.  

 

Now you have F3 is the maximum frequency, then you have F1 and then you have F0 and 

if you go on increasing the coupling between two oscillators or the strength of each of 

these individual springs then the difference between F0, F1, and F3 will go on increasing, 

the separation between F0, F1 and F3 will increase.  

 

Similarly, if you bring the various atoms close together in a system then the coupling 

between the atoms increases or inter atomic forces increase and in that case the separation 

between the various levels which have arisen from a single level that is the single level 

splitting into ‘n’ different levels for ‘n’ atom system the separation between these levels 

will also increase if the atoms are brought closer. In other words, if all these levels are 

very close then the separation of the single level into energy band the width of the band 

will go on increasing as you decrease the inter atomic separation. This is what we saw in 

our allowed energy level versus atomic separation diagram. Now let us summarize our 

energy band diagram.  

 

We come back to this diagram that we have drawn. You know this energy level called the 

vacuum level, Ec is the lower edge of the conduction band, Ev is the higher edge of the 

valance band and this Eg difference between Ec and Ev is the energy gap this is equal to 

1.1 eV for silicon and this chi, which is electron affinity the difference between E0 and Ec 

is equal to 4.05eVs. Actually if you draw this band diagram to scale and try to show the 

conduction band and valence band then it would look like this.  
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This is E0, this is Ec and this is Ev. For silicon this is about 4.05 eVs, this is the electron 

affinity this is the energy gap and this is 1.1 eV. Now if you try to show the bands the 

valance band would be about 5eV 5 times this so your valance band would be this much. 

Similarly you will also have a wide conduction band. The energy gap is really small as 

compared to the width of the band, this is how the diagram looks when you draw it to 

scale so it is wide allowed energy bands separated by very narrow energy gap. It is 

always good to look at a diagram to scale because then we know the relative magnitudes 

of various parameters.  
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Let us see the correspondence between the band model and the bond model. The various 

events which are taking place in the bond models such as generations and recombination, 

how do they look like on the band model? An electron breaking the bond and becoming 

free to move about within the crystal undergoes a change in energy as shown in the band 

model.  

 

(Refer Slide Time: 52:58) 

 

 
 

This is the process of generation in the band model. On the other hand, the recombination 

process that is a free electron jumping into the vacancy and getting annulated and 

establishing a bond, this is recombination and on the band model it will look something 

like this, the dot represents electron and the circle is hole, the electron has jumped into 

the hole so this is recombination where the electron jumps from conduction band to 

valance band.  

 

Now what about a free electron gaining more kinetic energy? Its velocity is increasing, it 

is remaining within the crystal. This is equivalent to an electron jumping up in the 

conduction band, it is gaining energy. On the other hand, a vacancy or a hole gaining in 

energy, how will it look like? A hole getting in energy is the same as the valence 

electrons or bonded electrons which are moving through the vacancies gaining in energy. 

So this is equivalent to the valence electrons gaining energy or electron moving up in the 

valence band. You can also show this process as a hole moving down. Either an electron 

moving up in the valence band or the hole moving down because when an electron jumps 

up in the valence band the hole which was there comes down. This is hole gaining kinetic 

energy and this is electron gaining kinetic energy.  

 

Finally let us look at another important transition, an electron jumping up from valence 

band to E0. What does this event shown on the band model represent? This is equivalent 

to a electron remaining within the crystal but taking part in a bonding process such as 

this. So this is a bond, there are two electrons where one is associated with this atom and 



 19 

the other associated with this atom and they are participating in a covalent bond. Now if 

this bond breaks and an electron is set free but moved out of the crystal, so the electron is 

coming out of the crystal then its energy transition would be represented as shown here as 

electron jumping from valence band to the vacuum level.  

 

It is important to note that whether the electron is on the surface here or far away from 

the silicon crystal. Then energy of these electrons are the same because both these 

electrons are out of the influence of the atoms. This is true only if the silicon piece is 

uniform. Therefore the question arises that where is the electron which is at the vacuum 

level? Is it here or is it here? In our semiconductor Physics normally we take the electron 

to be on the surface.  

 

There is a reason for this which will become clear when we discuss non-uniform silicon 

blocks or PN junctions and so on. This transition here represents an electron moved out 

of the crystal but the electron is localized on the surface of the crystal. That is why this 

inert is referred to as the local vacuum level. If the electron was a free electron then the 

transition would be something like this. So, free electron moved out of the crystal is 

equivalent to this transition. In the next class we shall discuss the remaining two tenets of 

the band diagram namely the density of states function, how the allowed states are 

distributed over energy and then what is the fraction of these states that are occupied at 

any given temperature and energy that is the Fermi-Dirac distribution function or the 

Fermi-Dirac fraction.  


