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This is the 22nd lecture of this course and the 4th lecture on PN junction.  
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So far we have completed the equilibrium analysis of the junction. With this we are ready 

to explain the static current voltage characteristics. So we will begin by explaining the 

characteristics shown on this slide.  
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So these are the forward current voltage characteristics. This is what we will try to 

explain to start with. Now the methodology adopted will be the same as that outlined in 

the device modeling procedure. Let us look at that procedure, once more, so that we 

recapitulate the steps involved in device analysis. This is shown on this slide.  
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The same set of approximations may not hold over the entire device volume, hence 

partition the device into different regions. Now, let us see equilibrium analysis: what has 

it told us about the partitioning of the device?  
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So the device is partitioned into three regions. So this Xd is the space charge region, and 

these two are the so-called neutral regions. So we are partitioning the device into space 

charge and neutral regions. So this is the first step in the analysis and this has already 

been achieved in the equilibrium analysis. What is important to see now is how this 

region the width of the regions is affected when you apply a forward bias. Let us look at 

the next step in device analysis as shown on this slide.  
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Analyze each region using a suitable set of approximations and boundary conditions to 

obtain n, p, Jn Jp and E in that region. Approximations for different regions can be 



different. So the regions that we considered, that is, the space charge and the neutral 

regions, will be analyzed using different set of approximations.  
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Now, that is why what we do here is that we create a table like this wherein we list the 

various equations: transport equation, continuity equation, and Gauss’s law, and we list 

the approximations for these equations in the space charge region and in the quasi-neutral 

region. So these approximations are likely to be different because of the different 

physical conditions in these regions. So this is the Approximations table.  
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The next step as shown on the slide is: combine the information regarding n, p, Jn, Jp and 

E obtained in different regions ensuring continuity of these parameters across the 

boundaries separating the regions to obtain the complete picture. So, that is the outline of 

the approach that we are going to adopt to derive the current voltage characteristics. Now, 

I want to emphasis the fact that first we will do the analysis with the help of the five basic 

equations without using the energy band diagram, and then after completing the analysis, 

we will discuss the energy band diagram under applied bias conditions. So let us list the 

assumptions that we are going to make, that is, the simplifying assumptions. The 

characteristics that are obtained under these set of assumptions are called the Ideal I-V 

characteristics.  
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So first we derive ideal I-V characteristics based on a large number of assumptions and 

then we discuss how some of the assumptions have to be relaxed to get the real 

characteristics, which where shown on the slide.  
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So some of the assumptions which we had already made, let me recapitulate: that the 

boundary between the space charge and neutral region as shown by these lines is abrupt, 

the junction itself is abrupt, the p and n-regions are uniformly doped, and the widths of 

these regions are much more than the diffusion links; that is, this width of the p-region is 

much greater than the diffusion length of electrons and this width of the n-region is much 

greater than the diffusion length of holes here. What are the additional assumptions we 

will make? The one important assumption we will make is that the applied forward bias 

is really very small, so that the equilibrium conditions are disturbed only to a small 

extent. This is the so-called important quasi-equilibrium approximation.  
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So this is one important approximation that we are going to make: quasi-equilibrium. 

Next the applied voltage drops across the neutral regions as well as the space charge 

region. So let us show that this different voltage drops as Vp across the p-region, Vd 

across the space charge or depletion-region, and Vn across the neutral n-region. Now 

these two regions, which are neutral under equilibrium, will continue to be approximately 

so under applied bias; that is why these two regions are referred to as quasi-neutral 

regions.  
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In our table here that is why we have listed the apian indices p and n-regions as quasi-

neutral regions.  
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So returning to the voltages here what we will do is we will neglect Vp and Vn and we 

will assume that they are much less than Vd so that this Vd is approximately equal to the 

applied voltage. So we are assuming that the entire applied voltage falls across the 

depletion layer; this is the next important assumption. These approximately equal to Vd, 

which is much greater than Vp or Vn. Now, how do we analyze the diode under these 

assumptions? So let us look at the space charge region first.  
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Let us draw the electric field in the space charge region under the applied small forward 

voltage. For this purpose, we will make the depletion approximation. We have already 



shown that the depletion approximation is valid under equilibrium conditions. We can 

easily show that it will continue to be valid under applied bias also.  
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This is because if you write the space charge equation [rho??] is given by p is equal to 

q(p minus n plus Nd minus Na).  
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We are assuming complete ionization of the impurities.  
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Under equilibrium conditions this p is equal to p0 and n is equal to n0 and in the space 

charge layer this p0 minus n0 can be neglected; that is the depletion approximation. Now 

under non-equilibrium conditions what happens is; this p0 minus n0 becomes p minus n 

which can be written as p0 plus delta p minus (n0 plus delta n). That is, under applied bias 

you have excess carriers delta p and delta n which is nothing but p0 minus n0 plus delta p 

minus delta n. Now we have already shown that this quantity can be neglected because 

under equilibrium conditions, the depletion approximation is valid. Now under applied 

bias, since delta p is approximately equal to delta n the electrons and since holes are 

generated in pairs; therefore, this quantity also will be close to zero and this can be 

neglected. That is the reason why the depletion approximation is also valid even in the 

presence of excess carriers in the space charge region.  
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So based on the depletion approximation if you plot the electric field picture then it can 

be drawn as follows: so you draw two linear segments. Now, what is the width of this 

space charge region? How do you determine the width under applied bias?  

Therefore for this purpose, note that the voltage of V (volts) is coming across the space 

charge layer. We are assuming that the V (applied voltage) falls entirely across the 

depletion layer; this is the assumption we are making. That is why the voltage comes 

across this space charge layer and you can see the electric field here because this voltage 

is in this direction, from p to n, and this electric field is super posed on the already 

existing electric field in the depletion layer. That is, the built-in electric field that is in the 

opposite direction is directed from n to p because you have positive charged donors here 

and negatively charged acceptors here which are causing the electric field. Now, this is 

the built-in electric field and this is the externally applied electric field due to the voltage.  

 

Notice that externally applied electric field has been shown by a shorter arrow as 

compared to the built in electric field. This is because we have shown that the electric 

field under equilibrium conditions is very high and we also said that we are assuming 

quasi-equilibrium conditions where in the applied voltage is very small. Now, how small 

should this applied voltage be? This will become clear by the end of the analysis. So 

super position of this over this would mean that the electric field will remain in this 

direction even under applied bias, but it will reduce in magnitude. So if you want to show 

this by an arrow, if this is the built-in electric field, and this is the external electric field, 

then this is the electric field under applied bias within the space charge layer.  

 

In other words, the electric field has reduced everywhere. This is logical because now the 

voltage drop across this space charge layer would be the built-in voltage drop, which was 

there under equilibrium conditions; that is psi0, which was directed in this way, minus the 

externally applied voltage, that is V, so the area under this picture, the field picture, is E 

versus x, this area is psi0 minus V. It was psi0 under equilibrium conditions when you 



apply an external bias, forward bias, which means the bias’s polarity is positive on p-side 

and negative on n-side. It opposes the equilibrium conditions and therefore it subtracts 

from the equilibrium voltage or the psi0. So that is the area under this curve that is the 

voltage across the space charge layer under forward bias.  

 

Now we can determine the new depletion width assuming this voltage drop and the 

depletion approximation and the formula for this will be exactly the same as that we have 

written under equilibrium conditions, except that the built-in voltage psi0 should be 

replaced by psi0 minus V. So if you do that exercise, our depletion width expression 

would be:  
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Xd is equal to square root of 2epsilon (psi0 minus V) divided by q into (1 by Na plus 1 by 

Nd). So this clearly shows that because this voltage has reduced by v, your depletion 

width has reduced. So let us list this approximation that we have made; that is, the 

depletion approximation in the space charge layer and this approximation will be listed 

against Gauss’s law.  
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So, for now we have used first the Gauss’s law of all these equations to determine the 

reduction in the space charge region width under forward bias. So here we make the entry 

depletion approximation.  
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So if we show now on this diagram the equilibrium conditions for comparison, then the 

equilibrium electric field picture can be shown by this dotted line. So that is your : from 

this end to the other end is the equilibrium depletion width and this end to the other end 

here for the solid line is the new electric field, new depletion width; , so that completes 

the analysis related to the width of the depletion-region.  



Next, let us try to plot the electron and hole concentrations under applied bias conditions. 

So since we are showing both the electron and the hole concentrations, we must show 

them on a log scale.  
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Now, to begin with, let us see how we had sketched the variations of n and p under 

equilibrium.  
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So I am first going to show for the purpose of reference the equilibrium variation of holes 

and electrons. This will be done by a dotted line. So the hole concentration is majority 



carrier here and then it becomes, it varies like this and here it is the minority carrier 

concentration. So this is Pp0 and this is Pn0. To avoid cluttering in the diagram, I am not 

showing the electron concentration variation. We will show how, starting from this kind 

of variation of the hole concentration under equilibrium conditions, we can sketch the 

variation of the hole concentration under applied forward bias and then one can do a 

similar thing for the electrons also.  
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Now, here notice that the concentrations at these two edges of the depletion layer were 

related to the potential drop between these two points by the Boltzmann relation, which 

said that the potential drop between the edges of the depletion layer, which is psi0 is equal 

to Vt into ln Pp0 (hole concentration on p-side) divided by Pn0 (that is, hole concentration 

on the n-side). This Boltzmann relation was obtained using the equilibrium condition that 

Jn is equal to 0 and Jp is equal to 0. That is the reason, the reason for this is that the drift 

and diffusion currents were in balance.  

 

Now, we have estimated the average values of diffusion currents for holes and electrons 

and we found that the values were rather large. If you look at the values that we had 

obtained from the equilibrium analysis for average diffusion current of holes, it was 

around couple of hundred amperes per centimeter square to the current density and for 

electrons the diffusion average diffusion current under equilibrium over the space charge 

region was more than fifty amperes per centimeter square so these are really very large 

currents.  

 

In practice, if you were to estimate the forward current through a diode under quasi-

equilibrium conditions, that is, for small applied voltages, then the current densities 

would be much lesser than ampere per centimeter square values.  
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Therefore, what we can say is that under applied bias Jn will continue to be approximately 

equal to zero, though not exactly equal to zero, and similarly Jp will continue to be 

approximately equal to zero. This is the statement of quasi-equilibrium. So the statement 

of equilibrium is that these are exactly equal and the statement of quasi-equilibrium is 

that these are approximately equal. Now, why is there a small difference between the drift 

and diffusion components of Jn and similar components of Jp? This is because now you 

can see that the applied bias is in this direction so the electric field is reduced as 

compared to equilibrium conditions: this is the built-in electric field and this is the field 

under applied bias; E under forward bias, for example, in this case, since this electric 

field has reduced as can be seen from here also.  

 

So this is equilibrium: the dotted line is equilibrium. Therefore, the drift components of 

the currents would have reduced as compared to equilibrium. So this is why the diffusion 

component of the currents across this space charge layer would dominate over the drift 

current; , and that is why the diffusion and drift currents are slightly in imbalance and it is 

this imbalance that gives rise to the resultant current but since this resultant current, 

which is the difference of drift and diffusion components is very very small compared to 

individual drift and diffusion components, the drift and diffusion components can be 

assumed to be approximately equal.  

 

We have explained this very clearly in the topic on device analysis procedure. So what is 

the meaning of quasi-equilibrium? When the currents drift and diffusion are very high 

and they are in approximate balance this has already been explained. So I am only 

recapitulating for your convenience. So this is the assumption, this is the very important 

assumption, that we are going to make to get the carrier concentrations for electrons and 

holes in the depletion layer under applied bias conditions. So let us list that assumption 

here.  
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So transport equations, the assumption you are making is Jn is approximately equal to 0. 

That is to say Jn drift and Jn diffusion are approximately in balance because the difference 

between these two is very very small and a similar thing follows for Jp. So you can write 

a similar thing for holes here. Therefore, Jp drift is approximately equal to Jp diffusion.  
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So using these approximations now, if Jp is equal to 0 leads to this condition, then Jp is 

approximately equal to 0 will lead to a similar condition that now the new voltage drop is 

psi0 minus V. Left-hand side is psi0 minus V under applied bias; so let us write it clearly 

forward bias Jp is approximately equal to 0, which means the left-hand side is psi0 minus 



V is approximately equal to (to the right-hand side is) Vt ln, now, Pp0 will change to Pp 

and Pn0 will change to Pn that is the non-equilibrium values.  

 

Now, what is going to happen is that since the ratio is decreasing, this Pp by Pn is 

decreasing; it definitely means that Pn is increasing. That is, holes are being injected from 

p to the power plus region to n-region because of this applied forward voltage. This is the 

polarity of the voltage as we explained in our simple qualitative analysis that the negative 

terminal will attract holes so the negative terminal will attract holes from here, from p-

region, therefore holes are being injected into n-region; therefore, the concentration of 

holes in the n-region increases. That is why Pn will increase.  

 

Now what about Pp?  

It can be shown that Pp will also increase because just as holes are injected from p to n 

because of this negative potential here, the positive potential here attracts electrons from 

n-region into p-region so electrons will be injected from n to p. This means the electron 

concentration increases on the p-region but since these two regions, which are not space 

charge regions and are quasi-neutral regions, any excess electrons should be counter 

balanced by excess holes; otherwise the neutrality will not be maintained.  
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Therefore, if you have excess electrons injected into this region from the n-side, excess 

holes will also appear here to compensate the excess electrons from the positive contact. 

So, in fact this can be shown very nicely using a flow diagram. The flow diagram will be 

that the contact injects holes so the n-region is injecting electrons; let us say the dotted 

line indicates electrons. Now, because this is a quasi-neutral region, holes are injected 

from the contact.  

 

We already said that holes are also injected into the n-region because they are attracted to 

the negative potential here. So this terminal here provides holes to compensate for excess 



electrons and also for injection into the n-side and similarly, since the excess holes here 

and this region is quasi-neutral, excess electrons will appear in this region to compensate 

for charges from the electrons from the negative contact and therefore you have electrons 

injected from the contact from this terminal. This is how you have e to the power minus 

injected here. So the terminal injects electrons to compensate for holes here and it also 

injects electrons into this region, into the p-region. This is the flow diagram. Now the net 

effect of this flow diagram is that you have excess electrons and holes in both neutral p 

and neutral n-regions so we can show this picture as follows:  
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The quasi-neutral p-region, because of injection of electrons Np0 changes to Np0 plus delta 

n. To compensate for this delta n, your Pp0 will also change to Pp0 plus delta n. So the 

hole concentration is also increasing in the p-region by the same concentration as the 

injected electrons. So this delta n injected electrons are these electrons here which are 

equal to this delta p holes.  
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Now what is happening? What does this arrow indicate here? This arrow indicates that 

the excess holes and electrons are recombining so that they are continuously being 

replenished by the contacts. When you apply a forward bias, the electrons are 

continuously injected from n to p-region, the terminal is also injecting holes to 

compensate for the electrons and the electrons and holes recombine, and of course, holes 

are also being continuously injected here and these are again compensated by the 

electrons here, and these are recombining, that is how the current is maintained.  
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So these are injected electrons and these are the concentrations of holes to compensate for 

these electrons; so though we write delta n here, it is to be understood that this indicates 

the excess carrier excess holes, which are compensating for this the magnitude of these 

excess holes is exactly delta n in this region. So in n-region, similarly, one can write Pn0: 

the minority hole concentration gets changed because of injection of holes from the p-

side to Pn0 plus delta p and to keep charge neutrality the majority electron concentration 

also changes from Nn0 to Nn0 plus and excess electron concentration, which is equal to 

this injected hole concentration.  
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Thus if you want to write this ratio Pp by Pn, we can write it as Pp by Pn is equal to Pp0 

plus delta n by Pn0 plus delta p. Now it is important to note that this Pp and Pn correspond 

to the depletion edges, so in other words, Pp is the value of hole concentration here and Pn 

is the value of hole concentration at this edge. Let us show Pn as some thing like this at 

the depletion edge. Now what about Pp? Pp is Pp0 plus delta n. Now this is where we make 

an important assumption, that is, the low injection level assumption.  
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So these are additional assumptions for the ideal I-V characteristics. According to low-

level assumption, the majority carrier concentration is not disturbed because of injection 

of electrons or holes both on the p-side as well as on the n-side. So low-level assumption 

means that Pp is equal to Pp0 plus delta n is approximately equal to Pp0 even under applied 

bias. So this delta n is much less than Pp0; this is the meaning of low level conditions. 

Similar arguments will apply also to electrons; but since we are considering holes, let us 

write here the result. This is approximately equal to Pp0 by Pn0 plus delta p, where it’s 

important to note that this delta p is a value at the depletion edge. So what we will do is 

we will use the symbol delta to indicate the values at the depletion edge. So delta p at 

depletion edge in the n-region is equal to delta p, so that we can retain delta p symbol to 

show the value of excess hole concentration at any x. Similarly, delta n at the depletion 

edge in the p-region will be delta n.  
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With this symbolism, we can replace this delta n by delta n and this by delta p and this by 

delta p. So, in other words, this difference here is delta. Now Pp0 plus delta n is 

approximately equal to Pp0; that is the consequence of low-level assumption, which 

means that even under applied bias on a log scale, the majority carrier concentration will 

not be disturbed. This particular fact, we have emphasized in our discussion on excess 

carriers that low-level conditions means that when you plot majority and minority carrier 

concentrations on a log scale, the majority carrier concentration appears undisturbed 

whereas the minority carrier concentration however is definitely disturbed.  

 

(Refer Slide Time: 37:54) 

 

 



So based on these arguments, one can plot the hole concentration under low level at 

forward bias as follows: something like this, within the depletion layer and on this side. 

So we will list the assumptions that we are making. 
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Here in the space charge region we are assuming that low-level assumption prevails. So 

let us list it here and since we will assume low-level conditions every where, strictly 

speaking, this low-level assumption should be listed in quasi-neutral region because only 

there you have high concentration of majority carriers and low concentration of minority 

carriers in the depletion layer. The carrier concentration really does not exist so we must 

list it under quasi-neutral region and not under space charge region.  
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Let us return to this particular equation: what does it tell us about the value of delta p?  
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So we write psi0 minus V is approximately equal to Vt ln Pp0 by Pn0 plus delta p. Now we 

already know that psi0 is equal to Vt ln Pp0 by Pn0. Therefore, we can subtract this equation 

from this equation and we can write V is approximately equal to Vt ln; you are subtracting 

this from this, so you get Pn0 plus delta p by Pn0. In other words, you can transform this 

equation and you will get delta p is approximately equal to Pn0 (e to the power V by Vt 

minus 1). So this is the important result that we get from the Boltzmann relation under 

applied forward bias so excess hole concentration on the n-side, this is on the n-side, that 



is excess minority carrier concentration on the n-side increases exponentially with respect 

to voltage and in fact, as we will see, it is this exponential increase of the concentration 

that is responsible for the exponential nature of the current voltage characteristics. You 

know that current is proportional to the excess carrier concentration. So if excess carrier 

concentration increases exponentially with voltage, current will also increase 

exponentially with voltage.  
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With that we have completed the analysis in the space charge region for the 

concentrations of holes and electrons; though we have not drawn for electrons, you can 

draw a similar curve for electrons yourself. Now, what is the next step in the analysis? 

Now we must move to the quasi-neutral region because you would like to know how this 

hole concentration, which we have seen up to this point, here, how this will vary in this 

region and, of course analogously, how the electron concentration would vary in the 

quasi-neutral p-region.  

 

Now to move here in this region, we need to use an approximation that has been pointed 

out earlier and that is that we assume that since we are considering minority carriers, note 

that the hole concentration on n-side here is minority carrier concentration. So these 

holes, which will move towards the contact in the n-region, they will move by the process 

of diffusion. So even though electric field may be present, the field would be really very 

small. It will not cause any significant drift current for minority carriers. So we make the 

very important diffusion approximation for minority carriers. Let us list this 

approximation here.  
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So, for transport equations in quasi-neutral region you have the diffusion approximation 

for the minority carriers and a consequence of diffusion approximation for minority 

carriers is that for the continuity equation you can use the diffusion equation, right, 

diffusion continuity equation for minority carriers and we know that the solution of the 

diffusion continuity equation is an exponential. So this part also was very clearly pointed 

out in the procedure for device analysis.  
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In other words, therefore, we can say that beyond this point the hole concentration would 

decay exponentially to the equilibrium value. Please note that we have assumed this 



region to be very long, the n-region to be very long as compared to the minority carrier 

diffusion length. Now you will appreciate why we assumed the quasi-neutral regions to 

be very long compared to the minority carrier diffusion lengths in the regions for ideal I-

V characteristics, because the minority carriers, are moving by diffusion and therefore, 

you get an exponential decay and in the exponent[ial?] you have the diffusion length of 

the minority carriers. 

 

(Refer Slide Time: 45:00) 

 

 
 

So when you show that here the exponential appears like a straight line but as it 

approaches this equilibrium concentration, the straight line will saturate. So this is the 

kind of behavior you have minus so in fact to show this clearly, this behavior here 

clearly, we must go to the linear scale. Now, on the linear scale, please note that we 

cannot show both majority carrier concentrations and minority carrier concentrations. But 

fortunately, since we know that the disturbance in majority carrier concentration is almost 

equal to the disturbance in minority carrier concentration in their quasi-neutral regions 

because quasi-neutrality has to be maintained. Therefore, we need not sketch the minority 

and majority carrier concentrations separately on a linear scale so long as we sketch the 

excess carrier concentration on the linear scale. We know how the majority carrier 

concentration would change and how the minority carrier concentration would change. 

So now we will sketch the excess carrier concentration on the linear scale.  
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So here although the contact is shown here and this width is small, we must assume that 

this is sufficiently long. So we will redraw this neatly and this is also assumed to be long 

enough so what we will call this is delta p. Since this is the n-region, we plot excess 

minority carrier concentration, excess majority carrier concentration is equal to this, this 

is an exponential decay.  

 

Note that I am not setting up any coordination system here, because that unnecessarily 

complicates matters. It is necessary to just realize that this shape is exponential, so this 

value here in this exponent exponential decay this value is delta p; that is, delta p, which 

we have shown already is given by Pn0 (e to the power V by Vt minus 1) and the rate of 

the exponential is shown by extending this line, the initial slope here. If you extend this 

then this difference distance on the x axis here is Lp, the minority carrier diffusion length 

of holes.  

 

One can similarly show excess carrier concentration on the p-side and it would be like 

this, this is another exponential. Now, notice that this excess electron concentration delta 

n at the depletion edge is shown less than the excess hole concentration delta p at this 

edge. This is because of this formula, so if you want to write here this delta n is given by 

Np0 (e to the power V by Vt minus 1).  

 

Since this is p to the power plus, that is, the doping on this side is more than the doping 

on this side, Np0 will be less than Pn0. The minority carrier concentration on heavy dope 

side is less as compared to the light dope side; that is why this is shown less as compared 

to this. Now, with this we have completed the variation of the electron and hole 

concentrations with distance. Next what is left is the current densities of electrons and 

holes. In fact these current densities can now be very readily obtained from the variations 

of the minority carrier concentrations.  
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So since we assume the diffusion approximations, we can sketch the concentrations of 

minority, we can sketch the current densities because of minority carriers from these two 

graphs. The current density for holes for example in the n-region is simply the slope of 

this and the current density of electrons in this region is simply given by the slope of this 

shape of the curve. So let us draw that here. So this is the zero line, now the gradient is 

zero here and it goes on increasing. So Jp will also be an exponential shape because a 

gradient of an exponential is an exponential; so this is Jp in the n-region. Similarly, Jn, the 

electron current, will be shown by a dotted line; this is Jn in the p-region that we have 

used. 
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Please note the diffusion approximation for minority carriers, which we have already 

listed here. Now, how do we complete this picture?  
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If you want to get the total current you know that J is equal to Jn plus Jp. So if I want to 

get the total current density then at any point any x if I know Jp and Jn I can get the total 

current. Unfortunately, with the picture that we have drawn I do not know Jn in this 

region and I do not know Jp in this region and I do not know either of them as of now in 

this region. So how do we proceed further?  

 

Now, at this point I must tell you that since this is a steady state condition J is constant 

with x. This we have shown as a consequence of steady state assumption in the procedure 

for device analysis, how the total current because of Jn and Jp is constant with x. That is 

why if you determine the total current at any x, we can determine the current injected at 

the contacts because J will be drawn as a constant line here. 
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It will be something like this, a constant line. Right now I do not know exactly where to 

draw. So to draw that we will make an additional assumption and that is that there is no 

change in the hole or electron currents in the depletion layer, which means there is no 

recombination of electrons and holes in the depletion layer. This is because the depletion 

layer is rather thin, we have seen it is only about a micron, so we can assume the 

recombination to be negligible as an idealization.  
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So this is equivalent to putting here the fact that dJp by dx and dJn by dx the rate of 

change of the current densities with x is zero is equivalent to saying there is no 



recombination in the space charge region. So now we draw two constant lines showing 

the variations of Jp and Jn in this space charge layer.  
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Now, the moment we have done that, you see that we obtain Jn and Jp both at this 

depletion edge as well as Jp and Jn both at this depletion edge because of extending these 

lines; and now, therefore, we know the total current. So I must add this and this to get the 

total current so that is shown here; that will be the total current J everywhere. So this is 

how I have determined the total current J. I can easily write an expression for J, based on 

this, because I know what is Jp here and I know what is Jn here. This Jp is, if you write in 

the terms of this, the diffusion current at this edge.  

 

Please note that these two graphs are on the linear scale that is why we are able to show 

exponential variation as this shape. So this is qDp delta p by Lp the diffusion current at the 

depletion edge that is obtained from this slope and the factor of diffusion approximation. 

Similarly this current of electrons is qDn delta n by ln. 

 

Therefore, obtain the equation for J as q (Dp delta p by Lp plus Dn delta n by ln) where 

delta p is already written in terms of this formula. So if you simplify, that is, you 

substitute this, it is very clearly seen that J is given by q into Dp Pn0 by Lp plus Dn Np0 by 

ln (e to the power V by Vt minus 1). So this is the relation for the current, clearly showing 

the ideal current voltage characteristics given by J is equal to constant (e to the power V 

by Vt minus 1).  

 

With this we come to the end of the present lecture wherein we have used the five basic 

equations and stated the various approximations that need to be made in the space charge 

and neutral regions to arrive at the exponential ideal current voltage characteristics or the 

ideal current voltage characteristics which are exponential in nature. We will continue 

with this analysis in the next class.  


