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This is 2nd lecture on the PN junction and 20th lecture of this course.  
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In this lecture, we will continue with the analysis of the PN junction. In the last 

lecture we have outlined the characteristics we seek to explain. Then we saw how a 

PN junction is fabricated and what the real device structure is. Then we have also 

shown what are the approximations we make in arriving at the idealist structure based 

on which the analysis is to be carried out. We also gave a very simple qualitative 

explanation for the rectifying nature of the current voltage characteristics.  

 

Now, we take up the analysis of the junction in detail. So, as we explained, in our 

introduction on the PN junction we start with the analysis of the PN junction without 

any applied bias and that is the starting point. That is, we start with the analysis of the 

PN junction under equilibrium conditions.  
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So this is the structure, a P plus N junction. P plus N means the doping on p-side is 

more than doping on n-side. The widths of this P and N regions are Wp and Wn. We 

assume that these widths are sufficiently long, that is much more than the diffusion 

length of minority carriers in the respective regions. Then we have made the abrupt 

junction approximation which means that the doping changes abruptly from the p-side 

to the n-side. Then we have assumed that these two regions are uniformly doped so 

the doping is constant in these two regions. So the first step in the analysis will be to 

get the concentration of electrons and holes as a function of distance. We have said 

that the purpose of device analysis is to get n, p, Jn, Jp and E as the function of x 

within the device. Once you have this information you can always get terminal 

characteristics which are of interest to you. So let us start with n and p that is 

concentration of electrons and holes.  
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The concentration of holes will be more on the p-side than in the n-side. So let us call 

this as pp and since we are considering equilibrium conditions this is pp0. And this 

will be similarly pn0. Analogously, this is the concentration of electrons on the n-side 

so this is nn0 and this is np0. Notice that these concentrations correspond to the regions 

which are far away from the junction. This is because we expect some variation in the 

concentration around the junction because the doping is changing abruptly the 

concentrations of holes and electrons have to change.  

 

So, far away from the junction however the conditions in the regions are the same 

which would have been so if these two regions are isolated that is, if the junction was 

not present. Now, we know that though the doping changes abruptly at the junction 

the concentration of free electrons and holes cannot change abruptly. This is because 

if the concentration were to change abruptly for electrons and holes which are free 

carriers then that would result in infinite diffusion current and this is not physical. So 

the concentration has to change gradually. So, from pp0 to pn0 you have a gradual 

change in concentration. This line should be continuous because any discontinuity 

would mean infinite diffusion current at the point of discontinuity. Here I want to 

mention is that we have shown the extent of this region over which the variations 

occurs on the n-side to be more than on the p-side. The reason for this will become 

clear as we proceed further.  

 

Similarly, we need to sketch the electron concentration variation from nn0 to np0. 

When we do that we should note that this concentration line should pass through this 

point. Now what is that point? This is called the intrinsic point. This is because under 

equilibrium conditions the concentration of electrons and holes the product of these 

two is ni square. So when you plot it on a log scale as we are doing, this is log, 

concentration on the scale. We are plotting a concentration on the log scale because 

we want to show both the majority and minority carrier concentrations. So when we 

are doing that as pointed out in an earlier lecture, the ni point will be exactly in the 

middle of these two, so this is ni.  

 

On a log scale since nn0 into pn0 is equal to ni square the ni is midway between nn0 and 

pn0. Therefore, this point the concentration of the holes is equal to ni. So this is called 

the intrinsic point. Since the device is under equilibrium, the product of electron and 

hole concentration should be everywhere equal to ni square even if they are varying. 

Since pn is equal to ni square this nn0 to np0 the line describing this variation should 

pass through this point. So let us draw that. Now what we will explain shortly is that 

the intrinsic point lies on the lightly doped side. And this statement is related to the 

fact that the extent of variation is more on the n-side than on the p-side.  

 

Now, if you have to sketch the same variation of holes and electrons on the linear 

scale, let us see what it would look like. Let us take a typical example, let us say the 

doping on this side is 10 to the power 16 so Na is 10 to the power 16.  
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Nd is 10 to the power 15
 
cm cube then this line is about 10 to the power 16

 
because we 

will assume complete ionization and neglect thermal generation and majority carrier 

concentration is almost equal to the doping level. So this 10 to the power 16
 
cm cube 

and this is 10 to the power 15 cm cube. So since ni is of the order of 10 to the power 

10
 
cm cube, the exact value of ni is 1.5 into 10 to the power 10 but just we are 

interested in the order here. So that being the case, the pn0 will be of the order of 10 to 

the power 5 cm cube
 
and this np0 will be of the order of 10 to the power 4 cm cube 

because 10 to the power 4 into 10 to the power 16 is equal to 10 to the power 20 

which is square of 10 to the power 10. So you see that 10 to the power 4 to 10 to the 

power 16
 
there is 10 to the power 12 variation. That is, there are twelve orders of 

magnitude from this point to this point. So if you divide this interval into twelve equal 

parts then 1 by 12 of this would correspond to the variation in the hole concentration 

by a factor of 10 which means if you divide this into a six equal parts, these are not 



equal right now but we assume that they are equal then 1 by 6th of this would 

correspond to a factor of 10. If this is 10 to the power 16 this point is 10 to the power 

15 close to that as shown here. This is not exactly to scale.  

 

So, if you plot this on a linear scale it would look something like this. By this point 

when it has come down to 1 by 10th of the value it could be 1 by 10th. We are 

plotting this on a linear scale. So, to avoid confusion I will now remove these 

numbers, this is linear. Let us do the same exercise on the other side 1 by 10th of 

variation will occur somewhere over this region. So, if I were to show the same thing 

on a linear scale then it would be something like this. So this is 10 to the power 15 cm 

cube and 1 by 10th of this is somewhere here 10 to the power 14. So on the linear 

scale the variation is much more rapid than on a log scale. I will remove this number 

to avoid confusion and this is nn0. And similarly on this side this is pp0. We cannot 

show pn0 and np0 on the linear scale. Further we have used a different scale on these 

two sides.  

 

Please note that pp0 is 10 to the power 16, nn0 is 10 to the power 15 in our example. So 

10 to the power 15 would be 1 by 10th of this. So strictly speaking this side should be 

shown 1 by 10th of this so this interval should be 1 by 10th of this. But then it will not 

be very clear so again we are not drawing with this to scale. So the scale on this is 

different from scale on this. Now, what this particular plot on the linear scale shows is 

that these two regions seem to be almost totally depleted of any carriers. You see that 

the carrier concentration is dropping to almost 0 on a linear scale. That is why the 

region next to the junction on either side here is referred to as the depletion layer 

because in this region free carriers are totally missing. That is how we come to the 

concept of depletion layer.  

 

The width of the depletion layer is this width is Xp, this is on the p-side and on this 

side this width in Xn. Depletion layer width is Xd is equal to Xp plus Xn. This whole 

distance is Xd, the depletion layer width. Now what is the consequence of the 

depletion of free carriers on either side? The consequence is that you will have space 

charge because the space charge rho is equal to q into p minus n plus Nd assuming 

complete ionization of dopends, this is on the n-side. On the p-side the corresponding 

equation is q into (p minus n minus Na). This is the equation for space charge in an n 

region and in a p region.  

 

In a depletion region, p and n are almost negligible; it is zero in this region. There is a 

rapid fall in n and rapid fall in p. You cannot show n here because their minority 

carriers are very small and minority carriers here are also very small in number. So, 

the space charge equation is p and n which we can neglect, so on the n-side this means 

you have a positive charge of q into Nd. And on the p-side, similarly, because we are 

talking of depletion region, in the depletion region you will have a negative charge q x 

minus Na. Here we are going to show rho vs x, x is this direction. Then it will look 

something like this where this is q into Nd and this is minus q into Na. So this is the 

space charge picture; rho vs x.  

 

Normally what we do is we make what is called a depletion approximation. That is, 

we assume that this entire region is totally depleted of free carriers though actually it 

is this region that is depleted of free carriers and there is a region over which the 

variation occurs gradually. So the space charge is changing to zero gradually here 



towards the end. But we will ignore this small distance and for simplicity we make the 

approximation that is called complete depletion approximation. In this approximation 

the space charge will be shown like this and like this on this other side. This is the so 

called depletion approximation, complete depletion. So the same applies to this line. 

This is done to simplify the analysis.  

 

Please note, assumption of a space charge picture like this is equivalent to assuming 

that the electron concentration changes abruptly at this point to 0 and hole 

concentration changes abruptly at this point which is obviously not true because if 

you were to show this on a log scale, if I were to show the complete depletion 

approximation in a log scale then it would mean that I must assume nn changes from 

nn0 to np0. That is, electron concentration n changes from nn0 to np0 abruptly here 

something like this and pp0 also changes abruptly.  

 

Obviously it would look like a gross approximation if shown on the log scale. That is 

why it is important to note that both log and linear scales are necessary. You must 

show the information on both the log scale and the linear scale to get a complete 

picture. The log scale distorts the real picture;, the linear scale shows the correct 

picture about the variations. But then we have to use the log scale when our analysis 

has to show both majority and minority carrier concentrations. So log scale is useful 

linear scale is also useful and we must use both. But you must use the pictures drawn 

on these scales judiciously in the given situation. So, to explain the validity of the 

depletion approximation it is more useful to see the linear scale.  

 

And in fact the log scale may give a wrong picture; it may try to give an idea that the 

depletion approximation is very crude. But when you see the linear scale then you 

will know that the depletion approximation is actually quite good. There is another 

point, sometimes the students have difficulty, that if you use the depletion 

approximation you are assuming that the free carrier concentrations are changing 

abruptly at the edge of the space charge layer. How can that be justified because that 

would imply infinite diffusion currents.  

 

At this point, it is necessary to note that the approximation is used only for a 

particular situation. You should not try to derive the information from this 

approximation for other situations. So, in this case the depletion approximation is 

used to determine this space charge picture and as we will see shortly the electric field 

based on this space charge. So only for space charge and electric field calculations the 

depletion approximation has to be used. You cannot use the depletion approximation 

in trying to find diffusion currents and so on. Depletion approximation makes it easy 

for us to derive the electric field picture and some of the other parameters under 

equilibrium conditions. Now let us see, what is the field picture for this particular 

space charge picture? Now, the field picture is obtained using the Gauss’s law. The 

Gauss’s law says that de by dx is equal to rho by epsilon.  
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That is qNa by epsilon with a negative sign approximately equal because this is the 

depletion approximation we are using. So de by dx is approximately equal to minus 

qNa by epsilon on the p-side for this space charge. On this side you have de by dx is 

approximately equal to qNd by epsilon that is for this picture. This means if I want to 

sketch E vs x I know from here that since qNd by epsilon is constant over this 

distance, de by dx is constant that means I should have a straight line for electric field 

as a function of x. So this straight line has a positive slope. This is the way one can 

draw the straight line on this side. On this side the slope is negative minus qNa by 

epsilon so it is something like this.  

 

Notice that I have to start from zero electric field at this depletion edge because the 

field does not exist beyond the depletion region. All the field lines start from the 

positive charge on the n-side of the depletion layer and terminate on the p-side of the 

depletion layer where there is a negative space charge.  

 

You have field line starting here and terminating here. So the total positive charge 

here, the area under this curve is equal to the total negative charge that is the area 

under this curve. That is why we are starting from zero electric field at this edge and 

returning to a zero electric field at this edge here. This is the statement of charge 

neutrality. Therefore entirely the device is charge neutral. So this de by dx is equal to 

qNd by epsilon and this de by dx minus qNa by epsilon. Now because of this charge 

neutrality you have qNd that is this height into this width that is Xn is equal to qNa that 

is this height into this width that is Xp qNa Xp is equal to qNd Xn is equal to Xp by Xn 

is equal to Nd by Na. This clearly explains why Xp is less than Xn if Nd is less than Na.  

 

In fact Xp and Xn are in the same ratio as the doping levels. So if you take for example 

Na is 10 to the power 16 and Nd is the 10 to the power 15 then Xp would be ten times 

smaller than Xn. That is why we have shown the extent of Xp less than Xn here. This 

diagram is again not to scale because if we had to draw it to scale we should have 

shown this as ten times this width.  
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So in fact that is the reason why in this diagram also, here this is much more than this. 

So most of the variation in the carrier concentration is occurring on the n-side that is 

the lightly doped side where the width of the depletion region is more. And that is 

why the in fact the intrinsic point lies on the lightly doped side. This point is on the 

lightly doped side but most of the variation is taking place here.  
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Now returning to this picture of the electric field we can now sketch the potential 

variation based on this. The potential variation will be integral of the electric field. So 

I have a reference potential here which is 0 and then the potential is more positive as 

you move towards the right. This is because the electric field is in this direction which 

means this is more positive than this in terms of potential. So the potential will be 

shown more positive on this side. If you integrate these straight line portions you will 



get a parabola like curve like this and like this and then the potential is again constant. 

So this is psi potential vs x. Now this is the built-in potential variation.  

 

Notice that most of the potential drop occurs on the lightly doped side or the n-side so 

this is the potential drop on the p-side and this is the potential drop on the n-side. This 

is psip and that is psin and this total potential drop across the depletion layer will refer 

to as psi0. This is the built-in potential across the PN junction. Now, though there is a 

potential variation within the device from p to n region please do not think that this 

potential variation is causing any current.  

 

Students have difficulty understanding this because they feel if there is a potential 

variation should there not be any current? Now there is a contradiction here. The 

device is under equilibrium which means there cannot be any net current flow because 

equilibrium means for every process there is an inverse process going on at the same 

rate.  
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So obviously there cannot be a current flow and also you can look at this structure 

here there are no terminals connected to any battery. Therefore there cannot be a 

current flow so the current at every point is 0 either for electrons or for holes. Then 

how can there be a potential variation within the device?  
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Now, one way to understand this is as follows. This is the device PN junction and 

there is a build in potential here. The direction of this potential is this, this is positive, 

this is negative and this is psi0. If you were to join the p and n regions with the wire 

no current will flow. For example, we use some metal M for connecting this region to 

the other region a current does not flow because between any two dissimilar regions 

there will be a built-in potential. Just like we explained how there is a built-in 

potential between p and n regions using similar arguments we can explain that there 

will be a built-in potential between metal and p region and between metal and n 

region. The directions of these built-in potentials will be opposite to that of psi0. The 

built-in potentials across this contact and this contact, the sum of these two will cancel 

the psi0. Therefore using Kirchoff’s law if you go around you get a 0 change in 

potential and therefore no current can flow. Now, how is it that there is 0 net current? 

How can you explain this using this diagram?  
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We can explain it as follows: 

We have seen how because of this space charge there is an electric field. We can call 

this as the built-in electric field. Whatever fields, potentials and charges exist under 

equilibrium they are called built-in potentials charges or electric fields. So because of 

the built-in space charge there is a built-in electric field and that field is directed in 

this way from n to p. You have two types of currents drift and diffusion currents. 

Now, if you take this point there is a gradient of electrons therefore the electrons will 

tend to move in this direction because of diffusion. I am not showing the current but I 

am showing the direction of flow of charges.  

 

Electrons move in this direction because of diffusion but then you have an electric 

field which is this direction. So this electric field will drive the electrons in this 

direction so you have the drift flow in this direction. Thus the diffusion tendency 

cancels the drift tendency and because of exact cancellation of drift and diffusion 

tendencies in the depletion layer you do not have any current flowing which is how it 

should be because this is the equilibrium condition and it is Jn is equal to 0 

everywhere and Jp is equal to 0 everywhere.  

 

Similarly one can show the current flow for holes. At this point the holes tend to 

move in this direction because of diffusion and this electric field drives them in the 

opposite direction. Therefore these two tendencies cancel. In fact based on this 

discussion one can think of a third experiment to explain the formation of the 

depletion layer.  
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This third experiment is as follows: 

You take a p-type silicon and n-type silicon and you join them. At the instant you join 

the hole concentration is much more on this side than on the other side because holes 

are minority carriers here and majority carriers here. Therefore that is the diffusion 

tendency. This causes movement of holes from left to right. Similarly, because of the 

diffusion tendency of electrons there is a movement of electrons from right to left 

from n to p region. But this movement causes the build up of an electric field. If p 



region loses holes it becomes negatively charged. Also it is gaining electrons which 

are another reason it is becoming negatively charged.  

 

Similarly, the n region is gaining holes and losing electrons so it becomes positively 

charged and an electric field is set up in this direction. This electric field opposes the 

tendency of hole movement and it also opposes the tendency of electron movement. 

So, once sufficient electric field builds up then these tendencies are opposed exactly 

or cancellation takes place then this movement stops. That is how the width of the 

depletion layer will be decided by this condition when the transfer of charges has 

created an electric field that can exactly cancel the tendency for movement. Let us 

return to the analysis. Our analysis so far has given qualitative information about the 

five parameters namely n, p, Jn, Jp and E. So n and p variation is sketched here in 

these two graphs.  
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Then Jn and Jp are 0 because for the devices under equilibrium everywhere Jn is 0 and 

Jp is 0 so we do not have sketch a graph to show this. Then finally we have sketched 

the electric field E vs X. So the qualitative analysis is complete. Now we need to 

make a quantitative analysis and get values of the various parameters namely the 

width of the depletion layer on the p and n-side Xp and Xn and therefore Xd, then we 

would also like to know the value of the peak electric field that is this, the maximum 

electric field which occurs at the junction.  
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Notice that the maximum electric field occurs at the junction because this is where 

you have a change from the positive charge to the negative charge. So we need to 

derive an expression for Em maximum electric field and then we also want to know 

the built-in potentials psi0 and the potential psin and psip on n and p-side. So the 

parameters to be derived are Xd, Xn and Xp, psi0, psin and psip and Em that is the peak 

electric field. Now as we have pointed out earlier, analysis of any device is based on 

the five basic equations. There is nothing beyond the five basic equations.  
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At least in the first course all these analyses for any device are based on the five basic 

differential equations as follows: the continuity equations, the transport equations, and 

Gauss’s law these are the five basic equations. So, let us see how using these five 

equations we get the mathematical expressions for the quantities of interest. Let us 

start with the transport equations Jn is equal to 0 and Jp is equal to 0 because of 



equilibrium. What information can be derived from here? Let us write the equation for 

Jp so Jp is drift and diffusion so minus q Dp dp by dx is diffusion plus qp mup into E is 

equal to 0.  
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So Jp is given by this formula and this is equal to 0. We will show that we can use this 

expression and get the built-in potential psi0 which is this value. Let us rearrange this 

equation. We use the fact that mup into Vt is equal to Dp this is the Einstein relation. If 

you use this fact then you can rewrite this expression as follows: The electric field is 

given by Vt by p dp by dx. So the q is canceling here and you can cancel Dp with mup 

and you can write Dp as mup into Vt so here you w ill be left with Vt when you cancel. 

That is how Vt into dp by dx is coming here and then you have p which comes in the 

denominator. So Jp is equal to 0 translates to this particular equation.  

 

Notice that dimensionally this is correct, this is concentration and this is also 

concentration so this cancels, this is voltage and this is length so V by M that is the 

electric field. Now you know that the potential psi0 is nothing but the integral of this 

electric field with respect to dx and the integration should be carried out from the p-

side to the n-side. There should be a negative sign. The potential is integral of electric 

field with the negative sign but since psi0 is a magnitude it is a positive value.  

 

Notice, that psi0 is simply the magnitude of the built-in potential. Therefore what we 

need to take is the magnitude of this result. If you do that here integration would look 

something like this, this is Vt into dp by p. So this dx and when you multiply E dx this 

dx they will cancel and you are left with Vt into dp by p and you are integrating from 

p-side to n-side and you have to take a magnitude. So integral dp by p is equal to lnp. 

So if you take p on the p-side it is pp0 and you take p on the n-side it is pn0.  

 

Therefore the result is, this is equal to Vt ln pp0 by pn0 is equal to psi0. Here pp0 is 

greater than pn0 therefore this is positive. So this is the formula for psi0. This relation 

is also called the Boltzmann relation which relates the concentration at any two points 



to the potential difference between the two points under equilibrium conditions. So, in 

general you can write this equation as follows. So this is the Boltzmann relation.  
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It says psi12 the potential difference between 1 and 2 can be related to the 

concentration difference between the two points; psi12 is Vt ln p1 by p2 under 

equilibrium. Let us check whether we need a negative or a positive sign here. If this is 

point 1 and this is point 2 and if p1 is more than p2 then there will be a tendency for 

holes to move from left to right. This is the tendency for hole movement, it has to be 

balanced by drift tendency. This is diffusion tendency of holes; it has to be balanced 

by the drift tendency because this is under equilibrium.  

 

An electric field is created so the electric field should be in this direction which means 

point 2 should be positive as compared to point 1. If you write psi12 as psi1 minus psi2 

then point 1 is negative and point 2 is positive. But since p1 is greater than p2 this 

quantity is positive so you should put a negative sign here. Now one can similarly 

write Boltzmann relation for electrons. For electrons the relation would be same psi12 

is equal to Vt ln n1 by n2. Here there will not be a negative sign, the negative sign will 

be removed. Now this Boltzmann relation is obtained by considering the equation Jn is 

equal to 0 instead of Jp is equal to 0. 
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You will proceed in the same way. You will write Jn in terms of drift and diffusion 

then write the electric field in terms of Vtn and dn by dx so you will get the result as E 

minus Vt by n dn by dx. You will get a negative sign here in this case. Then you can 

integrate this equation to get the Boltzmann relation. And that being the case you have 

not just one equation for built-in potential. You could calculate the built-in potential 

either from the hole concentrations or you could calculate also from the electron 

concentrations. So I can write the same thing also as Vt ln nn0 by np0. So Jp is equal to 

0 and Jn is equal to 0 has given us the built-in potential of the PN junction. Next we 

need to determine the depletion width. Once we know psi0 how we can determine the 

depletion width and the peak electric field. For this purpose we need to go to the 

electric field vs x diagram.  
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So let us look at this diagram. Area under this electric field picture is the built-in 

potential psi0. This width is Xn and this width is Xp and this is Em the magnitude. So 

we can write, area under the electric field is given by 1 by 2 Em (Xp plus Xn) and this 

is psi0 for which we have already obtained an expression.  
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Now we know that Xp by Xn is equal to Nd by Na because of charge neutrality as 

shown earlier because this area is equal to that area, the positive charge is equal to 

negative charge. 
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Using this we can replace one of these Xp or Xn in terms of the other. So let us write 

Xp is equal to Nd by Na into Xn in this formula then we get 1 by 2 of Em (Nd by Na 

plus 1) Xn is equal to psi0. Now, we have reduced these two widths to one width. Now 

we need to reduce one more unknown here because you have two Em and Xn. How do 

we do that? Again using Gauss’s law if I take this slope here then I can write Em by 

Xn that is the slope of this line; so this is Em, this is Xn and by Gauss’s law this is de 

by dx that is qNd by epsilon. Therefore using this we can replace Xn in terms of Em so 

that this equation will be only a function of Em. Alternately we could also replace Em 

in terms of Xn in which case you will get the value for Xn. Let us determine Em.  

 

(Refer Slide Time: 51:11) 

 

 
 

We can write Xn is equal to epsilon Em by qNd so we will replace this in this formula 

and the result would be 1 by 2 epsilon Em square by qNd (Nd by Na plus 1) is equal to 

psi0. Now if you put this Nd inside then you will get a much better looking expression 



1 by 2 epsilon Em square by 2q (1 by Na plus 1 by Nd) is equal to psi0. So Em is equal 

to square root of 2q psi0 by epsilon (1 by Na plus 1 by Nd). So this is the formula for 

Em. Now let us get a formula for Xd. Now this formula can be easily obtained using 

the equation psi0 is equal to 1 by 2 Em into Xd that is psi0 is nothing but the area under 

the electric field picture.  
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This distance is Xd and this is the triangle. So using this you obtain Xd is equal to 

2psi0 by Em. But Em is already available here so from these two you get Xd is equal to 

square root of 2 epsilon psi0 by q (1 by Na plus 1 by Nd) where psi0 we have already 

determined is equal to Vt ln pp0 by pn0 or you could write in terms of nn0 by np0. Now 

let us simplify this and get it in terms of doping because everything we want is in 

terms of doping level in the junction. So pp0 is nothing but approximately equal to Na 

assuming complete ionization and neglecting thermal generation pn0 is ni square by Nd 

minority carrier concentration on the n-side.  
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Therefore if you put this you will get the result as; Na Nd by ni square which is the 

formula for psi0.  
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So if you want the parameters namely Xp and Xn once you know Xd you can very 

easily get these parameters because you know Xp by Xn is equal to Nd by Na. And 

using the same result you can also get psip and psin if you like. Let us summarize the 

results of our equilibrium analysis.  

 

 

 

 

 

 



(Refer Slide Time: 54:51) 

 

 
 

Our analysis has shown that a PN junction like this can be separated into neutral and 

space charge regions. The width of a space charge region is Xd and of this Xd Xp is on 

the p-side and Xn is on the n-side where Xn is related to Xp by the formula Xn is equal 

to Na by Nd into Xp. So this is the neutral region. These are the two neutral regions 

and this is the space charge region. Further our analysis has also shown that this space 

charge region can be assumed to be completely depleted of free carriers and therefore 

a positively charged region here has a space charge given by the ionized donor atoms, 

and here the space charge is due to ionized acceptor atoms.  

 

Now, based on the depletion approximation which is a very important approximation 

for equilibrium analysis we have shown that you can sketch the built-in electric field 

distribution as something like this. The area under this built-in field distribution is the 

potential psi0 the built-in potential psi0 is given by a Vt ln (Na Nd by ni square).This 

formula was obtained by using Jn is equal to 0 or the Jp is equal to 0 the transport 

equations under equilibrium. Then we obtained the width of the depletion region 

using the Gauss’s law square root of 2 epsilon psi0 by q (1 by Na plus 1 by Nd) and 

using psi0 and Xd one can obtain the peak electric field as minus 2psi0 by Xd. So this 

is how starting with the basic equations of transport and continuity and Gauss’s law 

we have derived all the information.  

 

Note that continuity equation was not used because it is trivial in this case because 

every term of the continuity equation on the left hand side and on the right hand side 

is 0. There is no rate of change of carrier concentration, there are no excess carriers 

and there are no currents. Therefore continuity equation was not necessary or not 

useful at all in this analysis.  

  

 

 


