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This is the 14th lecture of this course and the 3rd lecture on Carrier Transport. In this 

lecture we will be completing the discussion on this topic. In the last class we saw that for 

small electric fields the drift current is proportional to the electric field and mobility is the 

constant of proportionality coming in this particular relation between current and electric 

field. Similarly, we saw that for small concentration gradients the diffusion current is 

proportional to the concentration gradient and the constant of proportionality here which 

comes in is diffusion coefficient of course with the other terms also coming in. We also 

saw that the mu and diffusion coefficient are related by the Einstein relation. And since 

the diffusion coefficient is related to mobility if you know the behavior of mobility as the 

function of doping, temperature and so on we can also know the behavior of diffusion 

coefficient. So the mobility as a function of doping on temperature is the behavior that 

one looks for characterizing the semiconductor.  
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For this parameter mu is equal to q tauc by 2m we have seen the various scattering 

phenomenon and we showed that the mean free time between collisions for ionized 

impurity scattering decreases with increasing total doping or decrease in temperature. 

Similarly, the lattice scattering, the mean free time between collisions decreases when 

temperature increases. Then we came to carrier-carrier scattering and we said the carrier-

carrier scattering does not affect the mobility of carriers if the carriers involved are of the 

same polarity. So, scattering of electrons by electrons and scattering of holes by holes 

will not affect the mobility of electrons or holes. However, the scattering of electrons by 

holes and vice versa can affect the mobility. 

 

In a semiconductor if electrons are in a majority then the hole mobility will be affected by 

scattering with electrons. However the mu of electrons will not be affected by scattering 

with holes because holes are in a small number. The carrier-carrier scattering affects only 

the minority carrier mobility in a semiconductor. If the carriers are almost in equal 

number and their concentration is very high which can happen if the semiconductor has 

been injected with large number of extra electron hole pairs in such a case also the carrier 

scattering can affect the mu of both electrons and holes. Otherwise it affects only the mu 

of minority carriers and that happens only at very high doping levels.  

 

Taking ionized impurity scattering and lattice scattering as dominant scattering 

mechanisms we will ignore the carrier-carrier scattering in this course. We can write, 

taking these two into account, the overall mu formula. How do we do that? We can write 

the equation 1 by tauc which represents the number of scattering events per unit time 

because tauc is the mean free time between collisions. So 1 by tauc that is the total 

number of scattering events is the sum of scattering events due to ionized impurity plus 

all the scattering events due to lattice scattering. Add up these two and you will get the 

total number of scattering event. This formula you can easily translate to mu because you 

see from here that tauc is proportional to mu. We can therefore write 1 by mu is equal to 1 



by mu ionized impurity plus 1 by mu due to lattice scattering, this is the formula. So if 

you know how mui and mul individually depend on doping and temperature then you 

know how the mu depends on doping and temperature. Now it turns out that mui and mul 

individually depend on temperature as shown in this slide.  
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So mui tilde alphaT to the power 3 by 2,
 
this mobility increases with temperature because 

scattering reduces as a function of temperature. But scattering increases with doping so 

the coefficient alpha is a strong function of total doping and alpha decreases with total 

doping. For lattice scattering the formula is a constant delta into T to the power minus 3 

by 2; these powers 3 by 2 and minus 3 by 2 are derived from theory and in practice the 

powers are somewhat different. In the extrinsic range beyond 300 K the mobility is 

mostly governed by lattice scattering. So you can take these two segments of the 

mobility, and this formula shows that whichever mobility is lower will decide the overall 

mobility. 
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Whenever muI is much lower than mui the mobility is approximately muI and whenever 

mul is much less than muI the mobility is approximately mul. So whatever we have 

written the behavior as a function of temperature and doping can be shown on a graph as 

follows. This is the line, here you have mu on a log scale and temperature also on a log 

scale. We are plotting both on a log scale because mobility versus temperature is a power 

law behavior as we saw T power something. So when you plot log you will get a straight 

line. This is the straight line corresponding to the lattice scattering so this is mul which is 

proportional to T to the power minus 3 by 2 and this is the line corresponding to muI 

which is proportional to T to the power 3 by 2.  

 

Now if you want to sketch the overall mobility for any given doping as a function of 

temperature it would be muI for low temperatures and mul for high temperatures so it will 

tend to go like that and this is the behavior of mobility. If you want the mobility for a 

higher doping then we said the ionized impurity scattering increases with higher doping 

so you will get another line here corresponding to a higher doping for ionized impurity 

scattering so your mobility for higher doping will tend to go something like this so this is 

increasing doping. And the temperature of 300 K would be somewhere here. That is to 

say that this is room temperature and beyond room temperature it is almost lattice 

scattering that is dominated. This is exactly the behavior as shown here.  
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This is the practical behavior as a function of doping and temperature. If you are 

interested in knowing the mobility at 300 K then at 300 K the mobility as a function of 

doping is given by this particular graph its variation with doping mobility decreases 

doping and which can be captured in equations as shown here. 
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The mu is equal to mumax minus mumin by 1 plus total doping divided by a constant and 

this ratio is raised to the power gamma plus mumin. For electrons and holes in silicon at 

300 K the values are given in this table. So maximum mobility is 1330 for electrons and 

495 for holes, the mumin is 65.5 that is for very heavy doping levels, for electrons and 47.7 

for holes. The unit for mobility is centimeter square per volt second. Similarly the value 

of n0 and gamma are also given here. Use this formula to find out the mobility for any 

given doping conditions at 300 K. And then if you are interested in the mobility at any 

other temperature you could use the formulae that we showed earlier i.e. mu variation 

with temperature and find out what is the mobility. We will consider a solved example to 

illustrate some of these ideas. 

 

The mobility is the other important parameter that we have come across in this particular 

discussion. Earlier we had seen the parameters namely: energy gap of a semiconductor 

that was an important parameter so mu after energy gap. mu is the next important 

material parameter that affects the applications of the semiconductor.  
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Let us look at a picture of mobility in silicon and gallium arsenide and see how the values 

of mobility affect the application of these two semiconductors. If you compare the 

mobility of electrons in gallium arsenide is much higher than mobility of electrons in 

silicon. You can see that at both doping levels 10 to the power 14 and 10 to the power 19. 

This has important consequences on the application.  

 

For e.g. if you want to make devices which can carry high current or which can work 

very fast then gallium arsenide is better than silicon provided the devices are depended on 

only the movement of electrons. If you have bipolar transistors such as NPN transistors 

or you have MOSFETS or field effect transistors, we cannot say MOSFETS because it is 

difficult to make MOSFETS in gallium arsenide, so it is field affects transistors which 

depend on electrons that is n-type field effect transistors. Then these transistors in gallium 

arsenide can carry more current and will be faster than in silicon. That is the reason why 

people look for different semiconductors for making devices. So alternatives to silicon 

are being considered and gallium arsenide is one such alternative for high speed devices 

or high power devices. 

 

However, you can see here that the hole mobility in gallium arsenide is comparable to 

that of silicon and in fact it is lower at 10 to the power 14 by cm cube
 
 doping level. This 

low hole mobility coupled with a very high electron mobility creates some problems. In 

the case of gallium arsenide if you are making circuits which require both n-type and p-

type devices e.g. CMOS. If you want to make CMOS type of complementary devices in 

gallium arsenide in a circuit then there will be problem because of size of the p-type 

device will be much larger than that of the n-type device in order that the p-type device 

carries the same current as n-type device.  

 

In complementary structures, that is in circuits, based on complementary devices there 

has to be matching between the performance of the p-type and n-type devices. To achieve 



this matching the p-type device geometry in the case of gallium arsenide semiconductors 

will have to be much higher than the n-type geometry but this creates lot of problem in 

laying out. When you have a large number of n-type and p-type devices and you want to 

interconnect all of these then it creates problems. So, complementary type of circuits is 

not possible in gallium arsenide because of this problem. This is how the mobility 

behavior can affect the applications, the value of the mobility can affect the applications 

of the semiconductor.  
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Let me also just mention that the effective mass in silicon and gallium arsenide of 

electrons and holes you have to consider both types of effective mass: the conductivity 

effective mass and density of states effective mass. So what we have discussed so far in 

the context of carrier transport the conductivity effective mass is what is important 

whereas a density of states effective mass is important while estimating the carrier 

concentration namely effective density of states and so on. The differences in these two 

situations i.e. conductivity situation and density of states situation should be clear by 

now.  

 

We will take up the topic of resistivity. Resistivity depends on both carrier concentration 

and mobility. If you combine mobility and carrier concentration dependence on what 

kind of dependence we get for resistivity as a function of doping and temperature? Let us 

start with extrinsic silicon first. This is the picture.  
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Instead of resistivity we are plotting the conductivity which is nothing but the reciprocal 

of resistivity. So it is conductivity as a function of temperature where you find that the 

conductivity increases from 0 and the region 2 is the extrinsic range. Here in this range 

conductivity increases and then starts falling. And finally when it enters the intrinsic 

range it increases again. Let us explain this behavior by combining the behavior of 

mobility and carrier concentration.  
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Extrinsic silicon: Supposing you take n-type the carrier concentration if you were to 

sketch as the function of temperature, so electron concentration nn0 then this behavior on 



a linear scale is like this, the so called extrinsic range. This is the region 2. This is the 

partial ionization range and this is the intrinsic range. 

 

Now if you sketch the mobility on the same graph, this is carrier concentration and if you 

sketch the mobility it will be something like this, it will increase and then fall and 

somewhere it is in maximum. For the same doping level we are plotting the mobility, this 

is mobility mun. Then conductivity sigma is equal to qn mun plus qp mup. If you are 

taking n-type semiconductor then this n is nn0 and we are considering equilibrium 

conditions or close to equilibrium conditions and this is pn0. Now pn0 will be much less 

than nn0 because these are minority carriers so the sigma in n-type semiconductor is 

approximately equal to qnn0 into mun.  

 

We need not bother about this hole concentration and the hole mobility. So that is why 

using mun behavior and nn0 behavior all we need to do is multiply these two curves. It is 

evident that you will get a raise and then in this range a fall in conductivity because of 

fall in mobility which is happening because of lattice scattering and then because carrier 

concentration is increasing you again have a raise in mobility and this is something like 

this. So that is how one can explain this particular behavior.  
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This fall here is because of mobility behavior, lattice scattering and this raise over a small 

region in the extrinsic range is because of ionized impurity scattering. In this range the 

Carrier Concentration is constant so whatever variation you see is mainly because of 

mobility. Now let us look at intrinsic silicon sigmai.  
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In this case sigma is equal to q(mun plus mup)ni because electrons and holes are in equal 

concentration. Now the behavior of sigmai will depend on mun mup and ni. Now ni is 

increasing continuously as a function of temperature right from 0 onwards to very high 

temperatures and this change in ni with temperature is very rapid as compared to 

variation in mobility. If you combine these two: mun and mup have a power law 

depending on a temperature whereas ni has an exponential dependence in addition to the 

power law. So we can write this as q(mun plus mup) T to the power 3 by 2
 
exp(minus Eg 

by 2KT) that is the behavior into some constant A. 

 

Now, if you also include the power law behavior of mobility then this will be of the form, 

here q also you absorbed in a constant so this will turn out to be of the form BT to the 

power a exp(minus Eg by 2kt). The resistivity of intrinsic silicon is not going to be very 

much depended on a mobility behavior. It is the carrier concentration behavior because 

this is the most dominant variation with temperature as compared to the power law 

variation T to the power a
 
where a combines this 3 by 2 power as well as the power law 

because of the mobility. It turns out that ‘a’ is something like minus 1 if you combine all 

the power loss and together ‘a’ it is about minus 1. So if you sketch sigmai versus T the 

behavior will be the same as that of the carrier concentration behavior which means 

sigmai versus T is same as n i versus T behavior.  

 

In other words, if you sketch sigmai on a log scale versus 1 by T on the x-axis on the 

linear scale then you will get a behavior like this which is same as that of the intrinsic 

silicon. This will be a straight line because the mobility behavior only affects the T to the 

power a here, this term and that is why for intrinsic silicon if you sketch the measured 

resistivity as the reciprocal of temperature from the slope of that one can easily get the 

energy gap because this behavior is similar to that of the ni behavior intrinsic carrier 

behavior multiplied by some constant.  

 



If I sketch log sigmai it will go as proportional to minus Eg by 2k into 1 by T which you 

get if you take the log. So slope of this is equal to minus Eg by 2k. From the slope of the 

resistivity versus reciprocal of temperature graph for intrinsic semiconductor one can get 

the energy gap. Now it is time to consider a solved example. You listed some of the ideas 

and to also show how formulae can be used to make calculations.  
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The example is, calculate the following for phosphorous doped silicon whose resistivity 

is measured as 1 ohm-cm at 300 K. What we are supposed to calculate are the following: 

the impurity concentration, the hole diffusion coefficient at 300 K, the resistivity of the 

sample at 500 K and the resistivity of sample at 300 K on adding 1 into 10 to the power 

16 cm minus cube atoms of boron. Basically you have an n-type semiconductor whose 

resistivity is 1 ohm-cm at 300 K.  
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Let us start with the first part, what is the impurity concentration?  

Data given is 1 ohm-cm at 300 K and it is an n-type phosphorous doped so what is the 

impurity concentration?  

Now, as we have seen the conductivity of this semiconductor can be written as qnn0 into 

mun we ignore the hole component of the conductivity because only majority carrier 

concentration decides the conductivity so the resistivity is 1 by ρ that can be written as 1 

by qnno into mun. We know ρ and we need to get nno so nno is equal to 1 by q into ρ into 

mun.  

 

Now the difficulty in applying this particular equation in a straightforward manner is that 

this mun depends on the nno which we want to determine so mun depends on the doping. 

Since we do not know the doping in advance, a straightforward use of this relation is not 

possible and some involved calculation is required. The impurity concentration is nno and 

we know that Nd will be nno because we assume at 300 K complete ionization and the 

majority carrier concentration is almost equal to the doping level ignoring the thermal 

generation. One way to solve this problem is to look at a graph of doping versus 

resistivity so these kinds of graph are available where resistivity is given as a function of 

doping concentration N.  
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This is the net doping for both p-type and n-type semiconductors. Here you can see the 

resistivity of 1 ohm-cm for n-type and read out the concentration. In this particular graph 

the finer divisions are not shown so it is difficult to find out. But in graphs available in 

books you will find these smaller divisions present and one can determine the 

concentration from there. Even then from the graph an accurate determination is very 

often difficult so even tables are available for resistivity as a function of doping which 

can be used to get the resistivity for a given doping or doping for a given resistivity. 

Now, alternately if you want to do a calculation using a computer then it can be done as 

follows.  
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What we do is we assume the mobility corresponding to the low doping or maximum 

value of mobility here and find out the concentration. Then we use this concentration and 

do iteration and find out the mobility corresponding to this concentration using the 

mobility versus doping formula. Then use the new value of mobility and determine the 

concentration again. When you repeat this calculation two times normally you get a very 

good result. If you do that then the calculation proceeds as follows. So mun is equal to 

mun max is equal to 1330 cm square by v-s. If you do that then Nd is equal to 1 by q ρ 

into mun max is equal to 1.6 into 10 to the power minus 19 coulombs. You must also put 

the units simultaneously on the sides. Ρ is 1-ohm cm and this is 1330 cm square by v-s 

this is the value of doping and these are the units. As you can see this gives raise to cm 

cube
 
and coulomb per second is amperes. So ampere into ohm is equal to volt so this 

cancels and you have by cm cube
 
as a unit and this will be equal to 4.7 into 10 to the 

power 15 by cm cube. 

 

Now we use this value of doping and find out the mobility. You can write using this 

formula 1330 minus 65.5 by 1 plus (4.7 into 10 to the power 15 by 8.5 into 10 to the 

power 16) whole power 0.76 plus 65.5 cm square by v-s. This formula was shown on the 

slide earlier. So you use this formula for mobility as the function of doping at 300 K. 

Then the result will be a mobility of 1204 cm square by v-s, instead of a 1330 that we 

assumed earlier. Use this value of mobility instead of mun max and you will get the new 

doping. The new doping will be 4.7 into 10 to the power 15 into (1330 by 1204) and this 

is nothing but 5.2 into 10 to the power 15 cm cube
 
which is the value of doping or 

impurity concentration. 

 

Next you need to find out the diffusion coefficient of holes. To find out the diffusion 

coefficient of holes that is Dp you can use the Einstein relation mup into Vt (thermal 

voltage) so you need to know mup. Now mup you can find out using a formula similar to 

this because you know the doping. Like you have formula for mun, there is a formula for 

mup so mu p is equal to 495 minus 47.7 by 1 plus (5.2 into 10 to the power 15 by 6.3 into 

10 to the power 16) whole power 0.72 plus 47.7 cm square by v-s. 

 

Please note that whenever you write the magnitude you must also write the units, 

dimensions, you should not forget that, otherwise would you go wrong in your 

calculations. This mobility turns out to be equal to 431 cm square by v-s. Therefore your 

Dp is 431(0.026), it is cm square by v-s and this is volts so volts will cancel and you will 

get cm square by sec
 
as the unit and this will be 11.2 and that is the diffusion coefficient.  

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 33.52)  

 

 
 

Now part c is the resistivity of the sample at 500 K. To find out the resistivity at 500 K 

we need to check two things.  
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We need to check whether the minority carrier concentration important? The temperature 

is high so will the hole concentration be important and will it make a difference to the 

resistivity. For this purpose we need to find out the intrinsic concentration first so ni at 

500 K can be found very easily as we had done in this course earlier. We can write this in 

terms of ni (300 K) (500 by 300) to the power 3 by 2 exp [minus 1.12 by 0.052(300 by 



500 minus 1)] which is the energy gap divided by 2(kT) where T is the room temperature 

that is 0.052 into room temperature which is 300 by the temperature of interest. 

 

Make this calculation and you will get the result as (1.78 into 10 to the power 14) by cm 

cube. Now the minority carrier concentration would be pn0 is equal to ni
 
square by nn0 

which is ni square by the doping so which will be is equal to (1.78 into 10 to the power 

14) whole square by 5.2 into 10 to the power 15 doping and evidently since this is 10 to 

the power 28 and 10 to the power 15 your order of this particular result will be 10 to the 

power 13 so this is of the order 10 to the power 13 which is much less than 5.2 into 10 to 

the power 15 by cm cube. You find that pn0 is much less than nn0. So result is pn0 is much 

less than nn0. We can still continue to use the relation sigma ≈ q mun n to the power n0. 

We are neglecting any contribution of pn0 to the resistivity. So this nn0 is nothing but the 

doping which we can replace by Nd.  

 

However, the mobility at 500 K will not be the same as mobility at 300 K. We need to 

determine the mobility at 500 K and then we can easily determine the conductivity or 

resistivity. Mobility at 500 K by mobility at 300 K can be written as is equal to 500 by 

300 to the power minus 3 by 2. This is because we are using the fact that, in the extrinsic 

range above room temperature the mobility approximately goes as T to the power minus 

3 by 2 so mu is equal to some constant into T to the power minus 3 by 2 so this is the 

relation we are using. 

 

From here we find that mobility at 500 K is equal to mobility at 300 K for electrons. And 

the result at 300 K the mobility was 1204 cm square by v-s so this is equal to into 3 by 5 

to the power 3 by 2 is equal to 555.6 cm square by v-s so that is the mobility. You can 

use this mobility here and then find out the resistivity So ρ ≈ 1 by qmu Nd. And in fact we 

could directly substitute this value of mobility or alternately what we find is since the 

resistivity is depended on the mobility behavior we can write whatever we have written in 

terms of mobility directly as an equation in terms of resistivity.  

 

For example, we can write ρ500 K by ρ300 K so ρ is inversely proportional to mobility 

so this is equal to the mobility at 300 K by mobility at 500 K of electrons in this case. 

This is equal to 5 by 3 to the power 3 by 2 and the result therefore is, resistivity at 500 K 

is equal to 300 K resistivity which is 1 ohm-cm multiplied by this and the result would be 

2.15-ohm cm. So this is the way one can find out the resistivity at a higher temperature. 

You can find out the mobility at a higher temperature and find out the resistivity. But 

since we already know the resistivity at a lower temperature it is easier to write it in this 

simplified form and then get the resistivity. At a higher temperature actually the 

resistivity has increased because of the fall in mobility.  
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Now we have the final part of the example that we have to show and this is the resistivity 

of the sample at 300 K on adding 1 into 10 to the power 16 cm cube
 
atoms of boron. This 

means we have a compensated semiconductor with donor type impurity of doping 5.2 

into 10 to the power 15 cm cube. 
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And an acceptor doping of 1 into 10 to the power 16 cm cube
 
will help you find the 

resistivity. Clearly, this is a p-type semiconductor because Na is more than Nd so the 

carrier concentration of holes i.e. the majority carrier concentration in this case would be 

pp0 and it can be written as Na minus Nd. All impurities are ionized and now we can 



neglect the electron concentration because minority carrier concentration will be very 

small and this is equal to 4.8 into 10 to the power 15 by cm cube. This is the p-type 

semiconductor with this particular concentration of holes.  

 

Now the resistivity can be written as 1 by q into pp0 into mup where pp0 is given here. Now 

mup we have to determine. We cannot use the hole mobility that we determined earlier in 

this case because now we have to use total doping of this plus this. The mobility of holes 

which we have determined earlier in context of the diffusion coefficient calculation was 

only because of this particular doping so we need to recalculate the hole mobility. So we 

use the formula mup is equal to 495 minus 47.7 by 1 plus 1.52 into 10 to the power 16 by 

(6.3 into 10 to the power 16) whole power 0.72 plus 47.7 cm square by v-s is in the 

denominator ad power is 0.72. In the numerator we will have to put a sum of this Nd plus 

Na is equal to 1.52 into 10 to the power 16 and plus 47.7 cm square by v-s this is the hole 

mobility and the result is 377 cm square by v-s.  

 

Now we can substitute this pp0 that is this 4.8 into 10 to the power 15 here and 377 cm 

square by v-s here and the resistivity would be 1 by q into pp0 into mup. This is the 

resistivity and of course your unit will be ohm-cm because this is in coulombs cm cube
 

and this is cm square by v-s. We have shown that if you use these units you will get 

resistivity in ohm-cm and the result is 3.46 ohm-cm. The resistivity has actually increased 

because the sample has become p-type and hole mobility is smaller than electron mobility 

and because of combination of these factors you are getting this resistivity. This is how 

one can make calculations of resistivity at different temperatures and different doping 

conditions. This example should clarify many of the ideas that we have so far discussed.  

 

The next topic we will discuss before closing this particular Carrier Transport discussion 

will be on how do you see the mechanism of drift from the energy band point of view? 

Even diffusion can be seen from the energy band point of view but we will see how the 

drift is seen from the energy band point of view and one can work out for diffusion in the 

same manner.  
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We need to draw the energy band diagram of a semiconductor in which a drift current is 

flowing. Suppose this is a semiconductor let us assume an n-type for simplicity, we can 

use a p-type it does not matter really. In the semiconductor the electric field is in this 

direction. Now what will be the energy band diagram under this condition? We will 

assume a uniform semiconductor which means that the electric field is also going to be 

uniform. And that means that the potential will vary linearly as you move from the left 

end to the right end so this is positive and this is negative. Now how do we draw the 

energy band diagram under these conditions?  

 

Recall that the vertical axis in energy band diagram shows electronic energy. We have 

also mentioned earlier in the discussion of energy band diagram that Ec represents the 

potential energy of the free electron and Ev represents the potential energy of a hole. So if 

you want to draw the energy band diagram without an electric field it would look 

something like this where this is Ec and this is Ev. This is the potential energy of the free 

electron and this is the potential energy of the hole. And this is the first time that the 

diagram is drawn with distance as the x-axis. This is energy and this is distance along the 

sample, so this is the sample. No electric field is applied under equilibrium conditions.  

 

The Fermi-level here would be somewhere here, this is the Fermi-level, these dotted lines 

show the intrinsic level. So Ec is the potential energy of the free electron and this is 

electronic energy which means that whichever side is negative, whichever position here 

in the sample is negative there the electronic potential energy should be shown higher.  

 

Let us look at the sample now, this side is positive so here on this side your Ec will be 

lower so when you draw the energy band diagram it will be drawn as something like this. 

This is electronic energy, this is Ec potential energy of the free electron, this is lower and 

this is higher because this is more negative and as you move up you have higher and 

higher electronic energy. The valance band edge Ev will run parallel to the conduction 



band edge because when you apply voltage the energy gap does not change in the 

semiconductor. The carrier concentration is also not changing so the structure of the 

silicon is not changing. The only thing that is happening is that you are superimposing an 

electric field so energy gap cannot change with distance and that is why this edge Ec is 

parallel to Ev and this difference remains equal to energy gap. 

 

Now what is the slope of this particular diagram? Slope of this diagram is nothing but 

slope of the potential. Ec is energy and if you divide Ec by q you get the potential. Now 

your equation is electric filed E is equal to minus d phi by dx where phi is the potential of 

a positive charge. So when you write electric field equal to gradient of potential this is 

potential of a positive charge. So if you want to write in terms of a negative potential then 

this negative sign will go away. It is important to note here that the E here is electric field 

whereas the E here is the energy. I hope there will not be any confusion because we have 

been using this nomenclature throughout the earlier lectures.  

 

Therefore in terms of EcI if I want to write down replace phi by potential Ec then I can 

write the same thing as this is equal to d Ec by q because I want to convert energy into 

potential so I have to divide by charge by dx. The negative sign has been removed 

because this Ec by q is electronic potential. In other words what we find is at the electric 

field is equal to 1 by q and d Ec by d x.  

 

Clearly see that the slope of this line is positive 1 by q dEc by dx and therefore the 

electric field is in the positive direction from left to right. And the slope of this particular 

line gives you the electric field provided you take into account the charge q. So that is the 

important thing that you see for the energy band diagram when you apply an electric 

field. Now on this particular diagram how will you show the motion of an electron, 

electron will move from right to left because it will move against the electric field. This 

motion can be shown as hours.  

 

Let us say electron starts from here and after collision it has started moving in this 

direction towards the left. So it moves like this and it encounters a collision somewhere 

here. At the end of the collision the energy gain in the direction of the electric field is 

randomized. In other words, we can show this as the kinetic energy has got dropped to 0 

because this difference represents the kinetic energy of the electrons that it has gained 

from the electric field. Again it starts moving and encounters a collision and so on so this 

is the path.  

 

Now, note here carefully that this is a horizontal line. This line is not going up nor is it 

moving down it is perfectly horizontal. This is because the total energy of the electron 

between two collisions remains constant. It is losing potential energy as shown by this 

line but it is gaining kinetic energy. Loss in potential energy is exactly equal to the gain 

in kinetic energy. Total energy being constant is shown as a horizontal line. So total 

electronic energy between collisions is constant but it is gaining kinetic energy seen by 

the fact that this line here for example is above this particular line and there is a gap and 

this gap represents the kinetic energy that is gain from the electric field.  

 



One can similarly draw the movement of the hole on the energy band diagram which 

would be something like this the hole moves in this direction so this is electron and this is 

hole this is x in the sample. This is how one can look at the drift from energy band point 

of view. Note carefully that I have not shown the Fermi-level here because Fermi-level is 

strictly an equilibrium concept and under non-equilibrium conditions one can extend this 

idea but then one has to introduce what are called Quasi Fermi-levels so this aspect we 

will consider later. I am not showing the Fermi-level in this diagram. It is not necessary 

to show this level to understand the drift transport. Now let us summarize our discussion 

on Carrier Transport.  
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We covered the following topics in order. First we saw the example of various modes of 

transport such as drift, diffusion, thermo electric current and current because of tunneling, 

random thermal motion of carriers, the semi classical phenomena of drift, diffusion and 

thermo electric current are based on this particular motion. Then scattering mechanisms 

which causes the random thermal motion and then we considered the drift and diffusion 

transport and how directed motion is superimposed over random motion by application of 

potential gradient or concentration gradient. Then we discussed relation between mobility 

and diffusivity, this is the Einstein relation. Then we discussed the mobility as a function 

of doping temperature and electric field. For small fields you have a linear relation 

between velocity and electric field but for large fields the velocity is constant so mobility 

varies with field. Then we discussed resistivity as a function of temperature and doping 

and finally we discussed the drift from energy band point of view. In the next class we 

will consider the topic of Excess Carriers. 

 

 

 


