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This is the 11th lecture of this course and the last lecture on the topic of Equilibrium 

Carrier Concentration.  
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In yesterday’s class, I explained the behavior of concentration in an extrinsic 

semiconductor as a function of reciprocal of temperature that is the majority carrier 

concentration.  
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So we have explained this particular slide. More specifically we have explained how in 

the different regions here for example, this is extrinsic range, this is the partial ionization 

range and this is the intrinsic range. How in these three ranges the concentration behaves? 

We have shown, for example, in the intrinsic range, this range here, your concentration is 

the same as intrinsic concentration given as square root of Nc Nv e power x
 
minus (Eg by 

2KT).  
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Please note that this formula will hold good in the range where the concentration is 

exactly equal to the intrinsic concentration. Somewhere near the border obviously this 



formula will not be valid, we will have to make a more accurate estimation. Similarly, 

analogous to this range in the partial ionization range which is this particular range the 

formula is 1 square root of Nc Nd(e power x) minus (Eion by 2KT) where Eion is 

ionization energy. We have shown this result by considering the band diagram and the 

analogy between the situation here and the situation in the intrinsic range. Then in the 

extrinsic range which is a range of interest to us from the point of view of device 

operation the concentration is equal to the doping level. This is when considering an n-

type semiconductor.  

 

Now note that the concentration here is on a log scale and this is on a reciprocal of 

temperature scale. Today we will see how to calculate the intrinsic temperature and how 

to calculate the Fermi-level and then we will have a solved example to illustrate how 

Fermi-level and concentrations can be calculated for specific situations. Let us look at the 

intrinsic temperature Ti. This particular temperature depends on the border between 

extrinsic range and the intrinsic range. So how do you define the intrinsic temperature? 

We can define the intrinsic range temperature using the linear plot of concentration 

versus temperature.  
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On the linear plot the definition of the intrinsic concentration will be seen much more 

easily, so this plot is something like this where this is the intrinsic concentration ni and 

this is the total contribution because of the thermal generation as well as impurity 

ionization. I will remove this portion and show only the contribution because of impurity 

ionization Nd. This is the curve representing contribution of the impurity and this is the 

term representing the effect of thermal generation and more specifically this is intrinsic 

concentration. Now this is the point where the intrinsic concentration becomes equal to 

the doping Ti, this point is defined as the intrinsic point.  

 



So you define intrinsic point in terms of the doping level and intrinsic concentration 

where Nd is equal to ni.. The formula therefore would be Nd is equal to ni at Ti is equal to 

square root of Nc Nv e to the power x(minus Eg by 2KTi) and when you transform you 

get Ti is equal to Eg by 2K into ln square root of Nc Nv by Nd. This is obtained from this 

equation by transformation. Whenever we derive a formula of this type we must check 

qualitatively whether the formula is correct and whether all these terms are in the correct 

position. Two important physical parameters on which Ti the intrinsic temperature 

depends is the energy gap Eg and doping level Nd. According to this formula Ti should 

increase with energy gap. This is physically correct because if your energy gap is large 

you must go to higher temperatures to generate the ni corresponding to the doping level.  

 

Similarly, according to this formula again if your Nd is large the denominator is small and 

therefore this is large which means that Ti is large. This is also correct because if Nd is 

large you have to go to higher temperatures to generate ni. So qualitatively it appears that 

the formula is correct. In terms of this formula one can calculate the intrinsic 

temperatures. Let us see what kind of values result.  
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Here the intrinsic temperature has been shown for gallium arsenide and silicon. It is 

because gallium arsenide has higher energy gap of 1.4 electron volts it has higher 

intrinsic temperature as compared to silicon whose energy gap is 1.1 electron volts.  

 

Let us look at some values at 10 power 13 by
 
cm cube doping level where the intrinsic 

temperature for silicon is around 450K roughly whereas that of gallium arsenide is about 

650K. The gallium arsenide intrinsic temperature is higher by about 200K. You come to 

about 2(10 power 15) by cm cube
 
doping level, the gallium arsenide intrinsic temperature 

is 1200K whereas that of silicon is about 700K. That is how the intrinsic temperature 

depends on the energy gap of the semiconductor and doping level. The intrinsic 

temperature is important in deciding the extrinsic range. So, if you want to use a device at 



higher temperatures or for some reason if the device is going to dissipate large amount of 

power like a power device and therefore its temperature is likely to rise then it is clear 

that semiconductors with higher energy gap are more suitable for such applications than 

semiconductors with lower energy gap. This is the importance of intrinsic temperature. 
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Now let us consider how to estimate the Fermi-level? We know that n0, the equilibrium 

concentration on electrons is given by Nc exp(minus Ec minus Ef minus by KT). So from 

here I can get the relation Ef given by Ec minus KT ln Nc by n0. Here n0 is equal to Nd if 

there is complete ionization. We are talking of the extrinsic range but more generally this 

is the relation. So this is how the Fermi-level can be located in terms of the electron 

concentration. You could locate the Fermi-level in terms of the whole concentration. For 

that instead of n0 you will use the formula for p0 where p0 is equal to Nv exponential of 

minus Ef minus Ev by KT which results in Ef is equal to Ev plus KT ln Nv by P0.  

 

So the Fermi-level is located above Ev by this much value in terms of the whole 

concentration. Here this formula looks at the Fermi-level with respect to the band edges 

Ec and Ev. One can also locate the Fermi-level with respect to the intrinsic level of the 

Fermi-level in a pure or intrinsic semiconductor. This is important because you know that 

intrinsic semiconductor wwhole concentration is equal to electron concentration and 

Fermi-level is at the middle of the energy gap.  

 

In a doped semiconductor the concentration will deviate from the concentration in an 

intrinsic semiconductor depending on the doping and therefore the Fermi-level is 

deviating. So how much does a Fermi-level deviate from the position in the intrinsic 

semiconductor because of doping? We can relate Ef to Ei, how we do that? Look at this 

relation n0 is equal to Nc exponential minus Ec minus Ef by KT. In addition, we can write 

the relation ni is equal to Nc exp of Ec minus Ei by KT it is a negative sign and now we 

can take the ratio of n0 and ni.  
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If you take the ratio of n0 and ni then you will find that your relationship will be Ef is 

equal to Ei plus KT ln n0 by ni. So if it is an n-type semiconductor then n0 greater than ni. 

The Fermi-level is above Ei; One can similarly do the exercise in terms of whole 

concentration and you will get Ef is equal to Ei minus KT ln p0 by pi. So the Fermi-level 

in a p-type semiconductor when p0 greater than pi is below Ei. This is how we can locate 

the Fermi-level in terms of the electron whole concentrations. Let us show this on an 

energy band diagram.  
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This is Ec, this is Ev and this is Ei suppose it is n-type semiconductor then this will be Ef 

and it is above Ei. So this difference Ef minus Ei is given by KT ln(n0 by ni) is this 

formula, so Ef minus Ei is equal to KT ln (n0 by ni). So alternately you can locate Ef from 

the conduction band edge and this is given by KT ln(Nc by n0) which is this particular 

formula. So Ec minus Ef you shift Ef this side it is KT ln(Nc by n0), this is n-type. Now 

you can similarly write relations for Fermi-level in a p-type semiconductor. This is n-

type.  

 

Now, using this formula if you estimate the Fermi-levels in silicon for various boron 

doped and phosphorus doped crystals in the extrinsic range what kind of crystals you will 

have? So in the extrinsic level you can replace Nn0 by Nd for phosphorous doped silicon 

which is the doping level. So this is under the assumption of complete ionization of the 

impurity and neglect of the thermal generation.  

 

Here n0 is approximately equal to Nd in an n-type semi conductor in the extrinsic range. 

So we are interested in estimating Fermi-level in the extrinsic range because that is the 

range in which the devices operate. Therefore our relations would be Ef is equal to Ec 

minus kT ln Nc by Nd or alternately Ef is equal to Ev plus KT ln Nv by Na and this will be 

in a p-type semiconductor, so this is the n-type, the Fermi-level in extrinsic range and this 

is for p-type. 
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Now you could also use the formula Ef is equal to Ei plus KT ln n0 by ni so here n0 will be 

replaced by Nd for n-type and here p0 will be replaced by Na and pi is nothing but ni so we 

could write pi or ni it does not make a difference. This is again n-type and this is p-type so 

you could use any of this formulae for n-type. When you make an estimation using this at 

room temperature the calculation looks something like this as shown in the slide here.  

 

 



(Refer Slide Time: 18:03)  

 

 
 

So this is the Fermi-level plotted within the extrinsic range. So you find at higher 

temperatures this is Fermi-level plotted with respect to Ei so Ef minus Ei this is for n-type 

silicon and this is for p-type silicon and the x-axis is temperature. So you have a behavior 

both as a function of temperature and doping. You find that in high temperatures the 

Fermi-level tends to the intrinsic level both for n-type as well as for p-type. The intrinsic 

temperature is higher for higher doping and that is why this particular Fermi-level here 

for 10 to the power 17 per cm cube doping has not yet reached the intrinsic level because 

the doping is higher. At the other end the Fermi-level for all doping levels tends to be at 

the middle of the region between the conduction band edge Ec and the donor level for the 

n-type semi conductor. Let us understand this in terms of the diagram below. 
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Qualitatively we located the Fermi-level in an n-type semiconductor as per this diagram. 

So, for T is equal to 0 the Fermi-level is at middle of Ec and Ed, it is at the midpoint of 

this difference here irrespective of the doping level. Now we did not derive this relation 

exactly but we showed that the Fermi-level in a n-type semi conductor at T is equal to 0 

has to be above Ed but below Ec. Now if you make exact calculations using formulae and 

so on you will get it at the mid point here. So that is what is being shown here in the 

slide. Here these lines are tending towards that point.  

 

Now, similarly for p-type silicon they will tend towards these lines, these Fermi-levels 

will tend towards the middle of the accepted level and the valence band edge. Now, to 

complete the understanding of this diagram, note that the Ec and Ev have also been shown 

to vary with temperature. So Ec minus Ev is the difference between Ec and Ev that is the 

energy gap seems to reduce with temperature. This is true for many semiconductors that 

the energy gap reduces with temperature.  

 

So what is shown in this slide is the variation for silicon because of the reduction in 

energy gap the intrinsic concentration that you calculate from the formula square root of 

Nc Nv e power x
 
(minus Eg by 2KT) will be slightly higher than that you estimate 

assuming a constant energy gap of 1.12v. Hence that energy gap 1.1v is at 300k and for 

any other temperature if you want the energy gap you have to use this behavior which is 

there in some sort of a formula which you are not going to do derive in this course. After 

considering the Fermi-level now let us look at the topic of compensated semiconductors.  
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Compensated semiconductors: In one of the previous classes in response to a question I 

had explained how we can predict the behavior of semiconductors in which you have 

both p-type and n-type impurities using the bond model. That is both phosphorous and 

boron doping. Now we want to look at the behavior from the energy band point of view. 

So specifically we had mentioned in that context that for compensated semiconductors 

your charge balance equation can be written as no plus Na
 
to the power minus is equal to 

po plus Nd power plus, here n0 is electron concentration, p0 is whole concentration, Na 

power minus is the ionized acceptor concentration, Nd plus is the ionized donor 

concentration. So, according to this formula supposing you start with n-type semi 

conductor and you introduce acceptor impurities, so you start with a phosphorous doped 

semiconductor and you increase the concentration of boron impurity from 0 onwards, 

now what the behavior is like? You can predict that behavior using this formula no is 

equal to po plus Nd to the power plus Na
 
power minus.

 
 

 

I am rewriting this balance equation like this which we have done in the context of the 

discussion on compensate semiconductors earlier. This clearly shows that your electron 

concentration starts reducing as you start raising Na to the power minus from 0 onwards. 

Let us understand this particular behavior from the energy band point of view. So what is 

happening? You have this Ec Ev and these are the donors in an n-type semi conductor. 
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Let us say we are talking of the extrinsic range or we are working around room 

temperature and these donors are phosphorous so all of them are ionized. So Nd power 

plus is actually Nd this is shown here by these arrows here. Therefore each of these 

donors have given away an electron which has gone to the conduction band. Now there is 

another process that is the process of thermal generation which will be shown as an arrow 

going from valence band to conduction band and this is thermal generation and this is 

also present but we know that the contribution of this to the concentration around room 

temperature is very small so we will not bother about this but concentrate only on the 

impurity ionization.  

 

Supposing you add acceptor impurities what is going to happen? Here the number of 

positive signs in some way indicates the concentration of donor impurities. Thus smaller 

number of negative signs shows that Na less than Nd. Now let us say that we have added 

these acceptor atoms and what is going to happen? Now, while discussing the energy 

band model we said that one of the postulates is that electrons occupy the lowest energy 

states available to them.  

 

The moment you have introduced the acceptor impurities you have introduced allowed 

states for the electrons here below this donor level. What is going to happen is the 

electrons from these donor levels instead of jumping up to conduction band they would 

find it more convenient to jump down on to this acceptor level. So each acceptor level is 

going to accept an electron from the donor impurity and so these electrons from donor 

impurity instead of becoming free will get trapped at the acceptors side. This is how the 

acceptor atoms are reducing the concentration of electrons in the n-type semiconductor.  

 

Now one can extend this logic and show that if Na becomes more than Nd which means 

this will correspond to the picture like this. I will explain this line here to show that Na 

has become more than Nd. So this is Ec, Ev, Ed and this is Ea the acceptor level. Now what 



is going to happen is all these arrows will go away so electrons will jump down on to the 

acceptor side instead of jumping up from the impurity the donor level. So all these 

impurities have been totally compensated by the acceptor atoms and now these acceptor 

atoms are there which will accept an electron from the valence band edge and as a result 

will give raise to holes. Now the semiconductor has changed polarity and it has become 

p-type rather than n-type because it has now got holes. This is how one can look at the 

behavior of compensated semiconductors from the energy band point of view and 

understand the particular phenomenon of compensation.  

 

If your n-type doping is more than p-type doping you get an n-type semiconductor if your 

p-type doping is more than n-type doping you get a p-type semiconductor. After this we 

will solve a problem, a numerical example which will show us how carrier concentration 

is estimated and how the Fermi-level is located.  
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Now we shall illustrate some of the ideas related to Fermi-level and carrier concentration 

with the help of a numerical example. The example is the following: What are the 

majority and minority carrier concentrations in silicon doped with 10 to the power 16 cm 

cube atoms of boron and 5 into 10 to the power 15 cm cube atoms of phosphorous, at 

300K and 600K? Check the assumptions made in the calculation. So basically we want to 

estimate carrier concentration in a compensated semiconductor at two different 

temperatures by checking the assumptions which have been made. Let us see the 

assumptions which we make.  
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The assumptions that we make normally while estimating carrier concentration are: 

complete impurity ionization, negligible thermal generation and Boltzmann 

approximation. Let us see where these approximations or assumptions are made for 

simplifying the calculation. Let us start with the carrier concentration at 300K.  
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First we need to estimate the majority carrier concentration and for this we use the charge 

balance equation. We note that since the boron concentration of 10 to the power 16 cm 

cube is more than the phosphorous concentration of 5 into 10 to the power 15 it is a p-

type semiconductor. We write the charge balance equation as pp0 which is the hole 



concentration in the p-type semiconductor which is equal to Na minus the ionized 

acceptor concentration minus the ionized donor concentration plus the concentration of 

thermally generated carriers which is also the minority carrier concentration (pp0 is equal 

to (Na minus Nd to the power plus)plus np0.  

 

When you make the assumption of complete impurity ionization this minus and plus 

signs drop out so that is a simplification. Further when you make the assumption of 

neglecting the thermal generation that is this particular term np0 is much less than this 

term Na minus Nd that is the meaning of neglecting thermal generation so we remove this 

term also. This is how your equation gets simplified for the majority carrier concentration 

and so the result is equal to 10 to the power 16
 
minus 5 into 10 to the power 15 which is 

equal to 5 minus 10 to the power 15 cm cube so that is the hole concentration. Now the 

electron concentration np0 is equal to ni square by pp0. Now ni at 300K is 1.5 into 10 to the 

power 10 cm cube so (1.5 into 10 to the power 10) whole square by 5 into 10 to the 

power 15 and the result is 4.5 into 10 to the power 4 by
 
cm cube which is the minority 

carrier concentration. Having obtained these concentrations now we must check the 

assumptions.  

 

For example, supposing we want to check the assumption of negligible thermal 

generation what does it mean? We need to check whether np0 as obtained here is much 

less than Na minus Nd which is obtained here so this is indeed the case. So since np0 is 

equal to 44.5 into 10 to the power 4 less than Na minus Nd is equal to 5 into 10 to the 

power 15 cm cube. Here also the unit is per cm cube hence thermal generation is 

negligible. We have to check the assumption of negligible thermal generation at 300K. 

Now how will you check the assumption of impurity ionization? Is Na to the power minus
 

is equal to Na? Is Nd to the power plus is equal to Nd? To check that we will have to 

locate the Fermi-level because we know the fraction Na to the power minus by Na is the 

number of occupied states at the energy level Ea. 
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So this fraction is given by 1 by 1 plus exp (Ea minus Ef by KT). Similarly Nd to the 

power plus by Nd is the number of unoccupied states at the energy level Ed. This is 1 

minus 1 by 1 plus exp (Ed minus Ef by KT). Ed is the donor level corresponding to Nd, Ea 

is an acceptor level corresponding to Na. If you know the location of Fermi-level then we 

can find out these fractions and check whether Na to the power minus by Na is equal to 1 

and whether Nd to the power plus by Nd is either equal to or close to 1. Let us look at the 

energy band diagram.  
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That is something like this, this is Ec and this is Ev and this is Ed donor level, this is 

acceptor level corresponding to boron so this is Ea. Since it is a p-type semiconductor 

Fermi-level Ef will be close to the valence band edge than conduction band edge that is 

away from the intrinsic level and this is Ei. So let us say the Fermi-level is somewhere 

here, we do not know exactly where it is but we will now locate it shortly, it will be 

below Ei. Since this is a p-type semiconductor it will be useful to locate the Fermi-level 

either with respect to the valence band edge or with respect to Ei but not with respect to 

conduction band edge. So let us locate with respect to valence band edge that is we want 

to know what is this difference?  

 

From the formula we know that this difference is KT ln Nv by pp0. This is where we are 

using the Boltzmann approximation now to estimate the location of the Fermi-level. 

Incidentally the Boltzmann approximation was also used when we estimated the minority 

carrier concentration from ni square
 
by majority carrier concentration formula and this is 

because minority carrier concentration into majority carrier concentration is equal to Na 

square
 
or p to the power n

 
is equal to Na square where this particular relation comes only 

after we make a Boltzmann approximation.  

 

Coming back here the location of the Fermi-level with respect to Ev can be obtained by 

using this formula KT ln Nv by pp0. Once we know that we can make the calculation of 



the ionized impurities because we know these distances Ea minus Ev is equal to 0.045 

volt. Similarly this difference is also 0.045 volts. So if you want Ed minus Ef then it will 

be this difference and if you want Ea minus Ef it will correspond to this difference. These 

are the two differences we want. Once we know this difference we can estimate the other 

two. Now what is the value of this KT ln Nv by pp0? pp0 we have estimated to be 5 into 10 

to the power 15 by
 
cm cube

 
under our assumptions and Nv is 10 to the power 19 divided 

by
 
cm cube and this KT is equal to 0.026 volts.  

 

So if you substitute all these values and then estimate this particular difference it will turn 

out to be equal to 0.198 electron volts which is the difference. So as a result this 

difference is 0.153 electron volts. Now we can try to estimate this relation Na to the 

power minus by Na which will be is equal to 1 by 1 plus exp (Ea minus Ef by KT). This 

will be 1 by 1 plus exponential minus 0.153 by 0.026 and this works out to 1 minus 2.78 

into 10 to the power minus 3.
 
So this 2.78 into 10 to the power minus 3 is very small 

compared to 1 so Na to the power minus by Na is approximately equal to 1 and complete 

ionization of acceptor impurities is justified.  

 

Now one can similarly do an estimation of Nd to the power plus by Nd. However we need 

not do a calculation again to check whether this is indeed close to 1 because you see Ed 

minus Ef by KT where Ed minus Ef is this difference which is definitely much larger than 

Ef minus Ea which means that this term here Ed minus Ef would be much greater than 

0.153 and therefore this term again would be much less than 2.78 into 10 to the power 

minus 3.  

 

So as a result we can definitely say if the acceptor impurities in a p-type semiconductor 

like boron doped semiconductor are ionized then definitely the donor impurities present 

in the p-type semiconductor will also be completely ionized. So we need not do a 

calculation again for the phosphorus atoms or donor impurities. With that we have 

checked and justified the assumption of complete ionization. Now is Boltzmann 

approximation justified because that is a third assumption we have made so that can also 

be seen very easily as Ef minus Ev is 0.198 electron volts should be three times greater 

than KT. Now 3KT in this case at room temperature is 0.078 electron volts.  

 

Since 0.198 electron volts is greater than 0.078 electron volts the Boltzmann 

approximation is justified and is valid. If the boron doping was higher slowly you can see 

from here that this Ef will start moving close to Ev and then there is a likelihood of the 

Boltzmann approximation getting violated. But as it is you see that Boltzmann 

approximation is justified. Now even before actually making accurate calculation of this 

particular fraction Na to the power minus by Na once we have located the Fermi-level here 

we can get a feel for the fact that the acceptor impurities and the donor impurities are 

fully ionized because Ef is above Ea, and using the Fermi-Dirac fraction we know that 

most of the levels below Ef will be occupied and most of the levels which are far away 

from Ef on the top will be unoccupied. That is how donor impurities are fully ionized and 

acceptor impurities also are fully ionized once we locate the Fermi-level and even 

without making a numerical estimation.  

 



Now one can repeat the same procedure for 600 Kelvin. However one thing you must 

note that we need not check again whether complete ionization will be justified at 600K 

by calculation because we know that at 300K if the impurities are ionized at 600K they 

will definitely be ionized. Similarly, even for the Boltzmann approximation one need not 

check again because you know that as the temperature increases the Fermi-level is likely 

to move closer and closer to Ei. So this difference between Ef and Ev is likely to increase. 

Basically the assumption that is likely to be violated is the neglect of thermal generation 

which is the important assumption that we will have to check.  
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Let us do the calculations that 600K. At 600K again neglecting thermal generation and 

assuming complete impurity ionization you will get ppo as same as at 300K and that is 5 

into 10 to the power 15 by cm cube. Now, when you want to estimate the npo that is 

electron concentration you will have to estimate ni at 600K and that is what we do not 

know. To estimate this we must estimate ni so let us estimate ni at 600K.  
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Here ni at 600K we can estimate in terms of ni at 300K as follows. So ni(600K) by 

ni(300K) is equal to (600 by 300) power 1.5 exp(minus Eg by 2K) into (1 by 600 minus 1 

by 300) where we take the 300 out so that 2K(T) corresponding to 300 we know is 0.026 

eV. We can write this part as exp minus Eg by 2 into 0.026 ((300 by 600) minus 1). This 

is the way you must rewrite the term because now this part can be calculated easily 

instead of calculating this particular term from Boltzmann constant and the temperature 

of 300K or simply calculating this term by energy gap and Boltzmann constant and then 

multiplying by this term, you bring that 300K of room temperature out so that 2KT can 

be written as 0.026.  

 

Now you simplify this and the result would be 2 into 10 to the power 15 by cm cube. 

Note that we have substituted this particular term Eg as 1.12eV and when you substitute 

this as 1.12eV you get 2 into 10 to the power 15 by cm cube. In practice however ni at 

600K will be more than this and the actual value will be about 5 into 10 to the power 15 

by cm cube if you include the reduction in Eg with temperature so this is a more realistic 

value. However, we will not use this value but let us continue to use this value where we 

assume energy gap is 1.12eV. Once you obtain ni now you can estimate npo as 2(10 to the 

power 15) whole square by 5 into 10 to the power 15 and the result is 8 into 10 to the 

power 14 by cm cube.  

 

Now you see that in this case that the npo is not really very small compared to Na minus 

Nd. In other words, this is definitely more than 1 by 10th of this and thermal generation is 

not really negligible. In other words we must take into account thermal generation while 

estimating the majority carrier concentration. In fact as we have said 2 into 10 to the 

power 15 is an approximate value which neglects the reduction in energy gap at higher 

temperature. If you take the energy gap reduction in account then ni will be 5 into 10 to 

the power 15 and then your minority carrier concentration npo will also turn out to be the 

same as majority carrier concentration therefore it is almost an intrinsic semiconductor. 



So, in that case how do you take thermal generation into account? Here we write npo is 

not much less Na minus Nd hence thermal generation should be taken into account.  
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So if you want to take that into account then you have to use the quadratic formula that is 

Na minus Nd plus here you will have the npo while calculating ppo and that quadratic 

formula is Na minus Nd by 2(1 plus square root of 1 plus 4ni square by (Na minus Nd) 

whole square. So we have written down this particular relation in a slightly different form 

earlier. If you substitute the various terms the value will turn out to be 5.7 into 10 to the 

power 15 by cm cube and then if you calculate npo using this value you will get 7 into 10 

to the power 15 by cm cube. So here we have used ni as 2 into 10 to the power 15 by cm 

cube. This is how one can estimate the carrier concentrations at 600K.  

 

As we have said earlier complete impurity ionization is already justified and we need not 

check Boltzmann approximation because it will be valid. So this is how one can estimate 

the Fermi-level and the concentration and derive the information that we want about the 

semiconductor. Now, before we close this topic it is useful to know that all impurities do 

not behave like boron and phosphorous. Their ionization energies are not so small as 

0.045eV. Let us see the different kinds of ionization energies of other impurities in 

silicon.  
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Here the impurity levels corresponding to different impurities are shown. The impurities 

shown here are antimony, phosphorous, arsenic, carbon, gold, boron, aluminum and 

gallium. The positive sign indicates donor impurity or donor level and negative sign is 

the acceptor level. Further the number here indicates the distance of this particular level 

from the nearest band edge. So, for example this 0.25 here would mean the distance of 

this particular carbon level from Ec. On the other hand 0.29 here would mean the distance 

of this particular level associated with gold from Ev.  

 

Now what you see from this diagram is that some impurities have small ionization 

energies like antimony, phosphorous, arsenic, boron, aluminum and gallium. So it is 

donor level close to conduction band edge or acceptor level close to valence band edge. 

These kinds of impurities can be very useful in changing the carrier concentration 

because they get ionized very easily and they are used to change the concentration or 

resistivity of silicon and such impurities are called shallow impurities.  

 

On the other hand, you have what are called deep impurities. These are the impurities 

such as carbon where ionization energy is large. The word “deep” implies that the 

impurity is located much inside as compared to the relevant band edge and shallow 

means it is close to the relevant band edge. So what you see from here is that it is not 

necessary that donor level should always be close to the conduction band edge. You can 

have donor level far away from the conduction band edge as it is happening in carbon. 

And similarly, as it is happening in gold the acceptor impurity is far away from the 

valence band edge so these are deep impurities. Now what you see further here is that it is 

not necessary that impurity should give rise to only one level. Here you have carbon 

which gives rise to two donor levels at two different locations in the energy gap.  

 

Finally it is not necessary that an impurity should be only donor type or only acceptor 

type. Gold introduces both donor level as well as an acceptor level. So impurities which 



have both types of levels donor and acceptor are called amphoteric impurities. So deep 

impurities like gold and many others are useful in altering the transient response of the 

semiconductor and we will see this in our discussion on excess carriers that cannot 

change the resistivity because their ionization energy is large but they can change the 

transient response. Now let us quickly summarize the topics we have discussed in these 

nine lectures on Equilibrium Carrier Concentration.  
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First we covered some basic concepts such as types of semiconductors, then the concept 

of thermal equilibrium and steady state and the idea of wave particle duality. Then we 

went on to discuss intrinsic semiconductor wherein we did the bond and band models, 

generation and recombination phenomena, then the positively charged carrier or the hole 

concept, what is the effective mass of a carrier, the Fermi-Dirac statistics and Fermi-

level.  
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Now this discussion for the intrinsic semiconductor was repeated in a similar manner for 

extrinsic semiconductors. We discussed the majority and minority carriers, the bond and 

the band models and the Fermi-Dirac statistics and the Fermi-level.  

 

(Refer Slide Time: 55:48) 

 

 
 

Now it also useful to see some of the properties of semiconductors that we must 

remember namely the group of the semiconductor, the atomic number, the valence 

electrons number, the atomic concentration 5 into 10 to the power 22 by cm cube is a 

very important number, the crystal structure of a semiconductor, the lattice constant and 

the bond energy.  
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Further the band gap, the electron affinity, the intrinsic concentration at room 

temperature, effective density of states in conduction valence bands, the dielectric 

constant and finally the effective masses of electrons and holes under conductivity and 

density of states situations.  
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Let us also see some constants that we have used and which we must remember. How 

much is 1 Angstrom in terms of centimeters? How much is a micron in terms of 

Angstroms? Then what is KT at 300K? How much is 1 electron volt in terms of joules? 

What is the effective mass of an electron, the permittivity of free space, the velocity of 

light c the wave length lambda corresponding to 1 electron volt quantum that is 1.24 mm 

etc. Let us also see the value of the Plank’s constant and finally the ionization energy of 

shallow donors such as phosphorous and boron which are commonly used for doping 

silicon. The next topic for discussion would be Carrier Transport. 


