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This is the 10th lecture of this course and the 8th lecture on equilibrium carrier 

concentration. In the last class we considered the bond model of the extrinsic 

semiconductor and we showed that we can write a charge balance equation relating the 

carriers in the semiconductor, concentrations of these carriers.  
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So, equations for n and p-type are shown here. This equation shows that majority 

concentration can be written as the ionized impurity concentration plus the thermally 

generated concentration or the minority carrier concentration. The behavior of these 

concentrations as a function of temperature is as shown in this graph. We have explained 

this particular graph which says; as the temperature increases from 0 the carrier 

concentration starts rising.  

 

We are plotting the majority carrier concentration here in this line, this concentration 

starts rising because of increase in the extent of impurity ionization and ultimately by this 

temperature all the impurities are ionized and the majority carrier concentration just 

saturates. Then at very high temperatures the majority carrier concentration starts 

increasing because even though the impurities which are ionized have saturated, i.e. the 

impurities have completely ionized, the minority carrier concentration has started 

increasing with temperature which was very low in this temperature range. And so you 

have the three ranges; the partial ionization range, then the extrinsic range here and the 



intrinsic range. The approximate values of the concentrations in these three ranges are 

written here.  

 

For an n-type semiconductor, the majority carrier concentration is approximately equal to 

the ionized impurity concentration in partial ionization range which is this range. Then in 

the extrinsic range, the majority carrier concentration is approximately equal to the 

impurity concentration itself because impurities are fully ionized. In the intrinsic range, 

the concentrations of electrons and holes both tend towards ni. So this is what we saw in 

the last class. The bond model however has weaknesses.  

 

Another important thing to know from the point of view of the operation of the 

semiconductor devices is, finding out the minority carrier concentration at any 

temperature that we are not able to calculate using the bond model. Also the majority 

carrier concentration at any general temperature is difficult to find out.  

 

For example, if you want to know majority carrier concentration here, you must know the 

extent of impurities ionization which will not be provided by the bond model. Similarly, 

if you want to know when the intrinsic range starts, even this cannot be told by the bond 

model and also it cannot give you the concentration here when both the minority carrier 

concentration and the majority carrier concentration are becoming comparable at higher 

temperatures. So for these reasons one needs to go to the energy band model for an 

accurate calculation of the concentration, either of majority carriers or of minority 

carriers at any temperature and doping. So this is the topic in this particular lecture, that 

is, the Band model of the extrinsic semiconductor.  
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We proceed in the same way as we did for the intrinsic semiconductor. We basically need 

to see three aspects; the allowed energy levels, then the density of states function and the 



fraction of occupied states function. And then we need to put these three aspects together 

to get the concentration. Let us start with allowed energy levels.  

 

Supposing we consider an n-type semiconductor to begin with, we make the dilution 

approximation, this dilution approximation was discussed earlier. That is, we assume that 

the impurities do not affect the crystal structure and secondly the concentration of 

impurities is so small that one impurity atom does not interact with another impurity 

atom. So, the consequences of these two approximations can be shown on the energy 

band as follows; Since the crystal structure is unaffected by impurity concentration, the 

difference between conduction band edge and valance band edge which is the energy gap 

does not change with doping. Even after you have added any impurities the energy gap of 

the semiconductor is the same as that of an intrinsic semiconductor provided that doping 

is moderate so long as the dilution approximation is valid, this is Eg.  

 

Now, the impurity atoms do not interact with each other. This means the energy level 

corresponding to the electrons occupying the impurity sides for all the different atoms 

will be the same because the impurity atoms are not interacting with each other. So you 

do not have an energy band corresponding to the impurity atoms, you only have a single 

level.  

 

Now, where do we show the single level on this energy band diagram?  

Supposing you take phosphorous impurity, this is n-type we are drawing. The 

phosphorous impurity has ionization energy of 0.045 electron volts. This means that an 

electron which is occupying a donor impurity gets 0.05 electron volts of energy it will get 

into the conduction band. This means you can locate the energy level corresponding to a 

phosphorous impurity somewhere here above which is located at a distance of 0.045 

electron volts below the conduction band edge. This is nothing but the ionization energy 

of the impurity, Eion.  

 

So, because of a dilution approximation it is a single level corresponding to all the 

impurity atoms and this energy level is located at a distance equal to ionization energy 

below the conduction band edge. This means that introduction of impurities result in 

extra allowed energy levels within the energy gap of a semiconductor. So that is the 

consequence of introduction of impurities in a semiconductor on the energy band 

diagram. This particular level is represented e suffix d and it is called the donor level, this 

d stands for donors.  

 

On this diagram if you want to show the processes that contribute to carriers in the 

semiconductor, they can be shown as follows; the impurity ionization can be shown as an 

arrow like this where an electron jumps from the impurity site or the impurity level to the 

conduction band edge so this is impurity ionization so I will call it II.  

 

Incidentally the positive sign here indicates that this is a donor level because a donor is 

positively charged when it releases as an electron, so a positive sign means it is a donor 

level. As we will see if for an acceptor impurity you have a negative sign to show the 

acceptor like nature of the impurity. The other process of thermal generation involves an 



electron jumping from the valance band to conduction band so this is the process of 

thermal generation; these two together contribute to majority carriers.  

 

So, in an n-type semiconductor electrons will be contributed by the impurity and as well 

as by thermal generation, the sum of these two processes. On the other hand the holes 

will only be due to thermal generation. One can similarly draw the allowed energy level 

diagram for an accepted type impurity, so these are Ec and Ev.  

 

Supposing the acceptor impurity is boron the boron has ionization energy of 0.045 

electron volts, this means that when a boron impurity accepts an electron from the 

valence band and in the process creating the hole, the electron from the valence band has 

to gain energy of 0.045 electron volts to get into the impurity side. This means you can 

show the acceptor impurity at a distance of 0.045 electron volts from the valence band 

edge. So this is Ea the acceptor level.  

 

The negative sign here indicates that this is an acceptor level i.e. this particular level 

where if an electron jumps into this level it becomes negatively charged and that is why it 

is acceptor time. So this distance again equal to the ionization energy of the acceptor 

impurity which is 0.045 electron volts. Now note that, if we are talking of silicon the 

energy gap is 1.1 electron volts so this is really very small compared to this distance. 

What we have shown is not drawn on to scale, this must be remembered.  

 

Now in this particular diagram if you want to show the processes contributing to the 

carriers the impurity ionization process can be shown using this arrow and electrons 

jumping from valence band to the impurity level leaving behind a hole. This is impurity 

ionization and you also have a process of a thermal generation, an electron jumping from 

valence band to conduction band this also leaves behind a hole. So holes are in majority 

in p-type semiconductor, they are contributed by impurity ionization as well as thermal 

generation whereas electrons are minority and are only contributed by thermal 

generation.  

 

I would like to emphasize here that you have a single level corresponding to all the 

impurity atoms because of the dilution approximation which says that acceptor impurities 

do not interact with each other. So this is the allowed level picture for an extrinsic 

semiconductor n or p-type. In this particular case we have shown this picture for 

phosphorus and boron. If you have other impurities depending on the ionization energy of 

those impurities, the particular impurity level will be located in a different location.  

 

It is not necessary that for example donor level should be close to the conduction band 

edge. You may have some impurity for which donor level is here because the ionization 

energy is very large. It could be closer to the valence band edge, it could be somewhere 

in the middle and the same thing applies to an acceptor level. Similarly you can have an 

impurity which gives both donor and acceptor levels this is also possible. Or it gives raise 

to two donor levels and two acceptor levels.  

 



Towards the end of the discussion on the energy band model we will see examples of 

other impurities which have different levels within the energy gap. The next topic that we 

need to discuss is the density of states function. In an extrinsic semiconductor how is the 

density of states function look like?  
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You start with a picture for an intrinsic semiconductor, if this is Ec and this is Ev then you 

know that the density of states function is close to parabolic near the edge of Ec and 

similarly near the edge of Ev, so this is the density of states function in an intrinsic 

semiconductor. Now, by adding impurities what we have done is that we have created an 

allowed level somewhere here as shown for n-type semiconductor so all the states are 

corresponding to those impurities.  

 

Supposing the impurity concentration is N suffix d in this case then there will be N suffix 

d states one because of each impurity and location of these states will be at the donor 

level, so we can show this picture as follows. It is something like a delta function, all the 

Nd states are at the energy level Ed. So this is Nd per centimeter cube so this is an n-type 

semiconductor. So introduction of impurities has created Nd per centimeter cube states at 

the energy level Ed in an n-type semiconductor.  
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If you introduce acceptor type impurities, for example, boron then you will have an 

additional number of states at energy level Ea, so this is Na. Now notice that if I show 

both the types of impurities here in a single semiconductor it means this is the 

semiconductor in which both the n-type dopant as well as p-type dopant, this is not 

necessary. You may have the semiconductor in which n-type dopant is there in which 

case this Ea picture will not be there. On the other hand, if it is p-type semiconductor, 

since I am writing here n-type may be I will show this on a separate diagram, the p-type 

impurities. This is p-type this is Ea and this is Na per centimeter cube. This is the density 

of states picture, in p-type in which only acceptor impurities are present.  

 

Now, if you have a semiconductor in which both impurities are present as I had shown 

earlier, you can have Ed as well as Ea and that semiconductor could be either n-type or p-

type, it depends on the relative magnitude of Nd and n. We will not discuss this point 

further because we have discussed compensated semiconductor to some extent earlier.  
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Now this is the actual picture of the density of states, we can also draw an effective 

picture. For example, for n-type semiconductor an effective picture would be, at Ec you 

have Nc states per centimeter cube and you have Nd states per centimeter cube at Ed and 

you have Nv states per centimeter cube at Ev. This is an effective picture, a simplified 

diagram. So we have discussed the effective density of states picture for intrinsic 

semiconductor. The only addition here is the impurity states corresponding to this Nd, 

donor impurities. I leave it as an exercise for you to draw the effective picture for p-type 

semiconductor. This is an actual picture and that is an effective picture. So that is the 

density of states picture for an extrinsic semiconductor.  

 

These pictures have been drawn under the dilution approximation as we have said, it is a 

single impurity level and the energy gap of the semiconductor is equal to that for intrinsic 

semiconductor. If the dilution approximation is violated which happens when your 

doping is very heavy then these conditions will not hold, so what will be the picture 

under that case, let us see.  
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This is heavy doping effects, in fact here these diagrams were for dilution approximation 

to be valid or moderate doping. Similarly, this is also valid only for moderate doping or 

dilution approximation. Now we are talking of heavy doping effects, when dilution 

approximation fails what happens? Let us plot, supposing we take an n-type 

semiconductor, as a function of Nd what is the allowed levels picture? So allowed levels 

picture would be something like this.  

 

The valence band edge will start moving closer to the conduction band edge, so this is Ev. 

And similarly conduction band edge also starts moving close to the valence band edge 

meaning that energy gap of the semiconductor decreases for heavy doping.  

 

Now what about the impurities? Now the impurity starts interacting when the doping is 

heavy because the distance between the impurities starts reducing. As a result a single 

level corresponding to the impurity will spread into a band which can be shown here. 

Supposing it was a donor impurity for low doping, this is doping zero and for low doping 

it is a single level and for high doping it spreads into a band. So this is Ed, the impurity 

band.  

 

This is the picture, these are the heavy doping effects, this is the band gap and what you 

find is, it is reducing as you increase the doping. So this is called band gap narrowing and 

this is called impurity band, spreading of the impurity level in to impurity band, these are 

the two effects. Supposing somewhere for this doping we want to show the density of 

states picture then it would be something like this. So Nc is coming here the delta 

function and Nv is also delta function but for Nd you now have a band. So Nd will look 

like this, it is an impurity band so Nd states are now distributed over energy, so it will not 

be a delta function. This is the density of states picture for heavy doping effects.  

 



We will not discuss the topic of heavy doping effects any further because in this course 

we will consider semiconductors in which doping is moderate. Having discussed the 

allowed levels and the density of states picture we have to now look at the fraction of 

occupied states function and then we have to put together these three aspects; density of 

states, allowed levels and the fraction of occupied states function to get the carrier 

concentration.  
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Fraction of occupied states:  

We had said that in the intrinsic semiconductor the fraction of occupied states under 

equilibrium conditions at any temperature is given by the Fermi-Dirac function; let me 

write that function here. Fermi-Dirac function is a function of energy and temperature, it 

is given by; f(EjT) is equal to 1 by 1 plus exp(Ei minus Ef by KT). 

 

Now, the same function will describe the fraction of valence band or conduction band 

states occupied in an extrinsic semiconductor. However, when you want to find out the 

fraction of occupied states at any impurity level which is present within the energy gap 

the function is slightly different. So it turns out, I will write suffix EI, for an impurity 

level: f(EiT) is equal to 1 by 1 plus (1g)exp(Ei minus Ef by KT). If you want to know the 

fraction of occupied states then this function is given by the same Fermi-Dirac function 

with a constant introduced here with the exponential factor 1 by g where g is called the 

degeneracy factor. This particular g is different for different impurities.  

 

For donor and acceptor impurities they can be different. In this course however we will 

ignore the degeneracy factor and continue to use the Fermi-Dirac function to describe the 

fraction of states occupied even at the impurity level. So, impurity level means we are 

talking of this level Ed or Ea; the levels introduced by impurity within the energy gap. So, 

for us we assume g is equal to 1. Now how do you put together the information that we 



have so far to calculate the concentration of electrons and holes which is the next aspect 

that we want to discuss.  
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Now we take up the charge balance equation to do this calculation. For an n-type 

semiconductor your charge balance equation is: nn0 is equal to Nd
 
to the power plus plus 

pn0. We will assume only one type of impurity that is donor impurity and this is the 

charge balance equation. Now, in this equation the various terms can be expressed as 

follows nn0 is the electron concentration in the conduction band. So from the energy band 

model we can write this concentration as integral nn0 is equal to ET integral Ec to N(e) 

f(EiT)d so Ec to Et N(e) that is density of states into fraction of states function into d 

integrated over the conduction band. That gives you the electron concentration. And 

similarly if you want to know the hole concentration it is given by integral Eb that is 

bottom of the valence band to top of the valence band that is Pn0 is equal to Ev integral Eb 

N(E) [1 minus f(E, T)]dE.  

 

So you know this term and this term, and this is the way to estimate. Now what about this 

term Nd
 
to the power plus? I will shift this charge balance to the top. Now I write it as nn0 

is equal to Nd
 
to the power plus plus pn0. Now I can write Nd

 
to the power plus is given as 

Nd into the fraction, here Nd
 
to the power plus is the number of states which have lost 

electrons. In other words, number of unoccupied states so this is Nd
 
to the power plus is 

equal to Nd[1 minus f(Ed, T)] where this represents the fraction of states occupied at Ed 

corresponding to Nd, this is the function. So we have for all the three terms of this 

equation these are the equations.  

 

How do you proceed further from here?  

We need to write down a close form equation that results from this and this to start with. 

Now if you follow the same approximation we did for the intrinsic semiconductor 

namely, the term Ne is given by the parabolic density of states approximation then the 



term f(E, T) the Fermi-Dirac function is approximated by the Boltzmann approximation 

and Et is made to tend to infinity, replace Et by infinity. These are the three assumptions 

we had made to simplify this particular function for intrinsic semiconductor. We can 

make the same assumptions in this case.  

 

Of course we will have to check whether the assumptions will be valid. But if you make 

these three assumptions namely parabolic density of states, Boltzmann approximation 

and Et turning to infinity then this formula for nn0 reduces to with the negative sign.  
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Hence nn0 is equal to Nc exp minus (Ec minus Ef by KT) is the result of this particular 

integration after making approximation. One can similarly make approximations for this 

pn0, same approximation and then you will get relation pn0 is equal to Nv exp minus (Ef 

minus Ev by KT) with a negative sign. Note that I am just writing the same equations that 

I have derived earlier for the intrinsic semiconductor because this Mathematics is the 

same. Then one may get a doubt, after doping the carrier concentration has changed the 

electron concentration.  

 

For example, the electron concentration is much more than the hole concentration in n-

type semiconductor, then how is that the equation is same? The equation is same but the 

Fermi-level is not the same as in the intrinsic semiconductor so this Ef is different. The Ef 

has changed, equations have not changed. We will shortly see the location of Ef in an 

extrinsic semiconductor. Now, having discussed this we can also write this particular 

term Nd to the power plus in terms of the various parameters. So, replace this by its 

Fermi-Dirac fraction, the equation that is given here, this particular function.  

 

We will assume g is equal to 1 as we have said. If you do that then I can write Nd to the 

power plus is equal to Nd[1 minus 1 by 1 plus exp(Ed minus Ef by KT)]. Now, using this 



charge balance inequality and these equations we can solve for the concentration. Of 

course it is not a simple affair but at least we have moved one step closer to the solution.  

 

I will write the charge balance equation again over this so that all the equations are 

available in one place. So this is valid under Boltzmann approximation and parabolic 

density of states approximation. I am not listing the approximation of making the top of 

the conduction band tending to infinity or e b tending to minus infinity. That 

approximation will be more or less hole so I am not listing it separately, it is not a 

significant approximation.  

 

How do we proceed from here to find out the carrier concentration? One thing that strikes 

us is that if you take these two equations then you find that pn0 into nn0 is equal to, 

multiply these two and you will get Nc and Nv and what will happen is, this Ef will get 

cancelled and you will get exponential Ec minus Ev upon KT with the negative sign. But 

Ec minus Ev is nothing but the energy gap. So I can write this as minus Eg by KT. And 

you know that this is nothing but ni square 2 of the intrinsic concentration. This is a very 

interesting relation we get under equilibrium conditions: Pn
 
to the power 0 nn

 
to the power 

0 is equal to NcNv exp to the power minus
 
(Eg by KT) is equal to ni square 2. The product 

of the hole concentrations and electron concentrations in any semiconductor is equal to 

the square of the intrinsic concentration, so pn is equal to ni square is a very important 

relation.  

 

What we have done for n-type we can also do for p-type and you will get the same 

relation because these formulae are not going to be any different for holes and electrons 

in p-type semiconductor. This particular relation is called the law of mass action that the 

pn product is only a function of temperature in any semiconductor. So, if you change the 

doping and as a result you try to change one concentration, you increase one 

concentration then other concentration decreases that is what it shows in a way in which 

the product of concentrations remains the same as an intrinsic semiconductor, the square 

of that. It is important to note that this formula has been derived under Boltzmann 

approximation so this approximation has been listed here, the Boltzmann approximation 

is very important. So this is valid when Boltzmann approximation holds.  

 

As we will see the Boltzmann approximation may fail if the doping is heavy because the 

Fermi-level will move close to either conduction band or valance band. Therefore in 

moderate doping level conditions this is valid and this is the meaning. In other words, 

when dilution approximation is valid this formula will hold. There is an interesting 

analogy to this formula. In dilute solutions in chemistry you might have come across the 

concept of solubility product.  

 

The concept of solubility product says that the product of the positive ions and the 

negative ions of any particular species is a constant in dilute solutions. It is something 

similar here. This can be regarded as positive ions and this can be regard as negative ions 

and their product is a constant. Let us now see the Fermi-level location in a 

semiconductor because these formulas are valid only when Boltzmann approximation 

holds and Boltzmann approximation whether it holds or not if you want to check you 



must know where is the Fermi-level. Let us now discuss the location of Fermi-level at a 

qualitative plane in the semiconductor. How does it change when you change the 

temperature or when you change the impurity concentration? And after discussing that, 

we will come back to this problem of this derivation of the concentrations in the doped 

semiconductor.  
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Fermi-level versus temperature and doping: Let us assume n-type semiconductor, you can 

do a similar exercise for p-type semiconductor. Let us first discuss Fermi-level versus 

doping. So this is the Ec and this is Ev and let us say we are varying the doping from 0 

onwards so this access is doping and this is doping equal to 0. How will the Fermi-level 

change? Let us also show the donor level. When the doping is 0 you know that the Fermi-

level will coincide with the intrinsic level. The Fermi-level in intrinsic semiconductor and 

this is Ei. We start from here.  

 

As you increase the doping now we have to check whether the Fermi-level will move up 

or will it move down. That can be easily seen from this formula. When you increase the 

donor doping your majority carrier concentration will go on increasing. So the left hand 

side of this equation is increasing which means the right hand side the difference Ec 

minus Ef should decrease. Ec minus Ef is positive quantity and this positive quantity 

should decrease for left hand side to increase. This means the Ef is moving closer to Ec as 

you increase the doping. This is the way your Ef is going to change so this is Ef as a 

function of doping. So we are talking at room temperature.  

 

Obviously you have to fix the temperature when you are discussing the Fermi-level 

versus doping. What we see is the Fermi level can move close to the conduction band and 

in fact it can even get into the conduction band if you go on increasing the doping this 

Fermi-level will be going up. When this happens there is a chance of Boltzmann 

approximation failing if the doping is very high, if the distance between Ec and Ef 



becomes lesser than 3 into KT because as we know the Fermi-Dirac function can be 

approximated by the Boltzmann approximation which is given here i.e. 1 is neglected, if 

this is much more than this then this term can neglected and you get the Boltzmann 

approximation. This is valid for e minus Ef greater than or is equal to 3(KT).  

 

If your Ef becomes close to Ec, if this difference becomes lesser than 3(KT) then for 

calculating the electron concentration for the conduction band we cannot use the 

Boltzmann approximation. So at room temperature for heavy doping the Boltzmann 

approximation may fail depending on the doping level and location of the Fermi-level.  

 

Now let us look at Fermi-level as a function of temperature and see how it changes. Now, 

in this case we have to fix the doping. Let us say we fix the value of doping 

corresponding to something like this, this is the doping so this is the location of the 

Fermi-level. Here we are plotting as a function of temperature and let us say this 

corresponds to room temperature, this is room temperature so this is Ei, I take this same 

distance here and place it here, that is the location of the Fermi-level at 300 k 

corresponding to this particular doping level and we are fixing the doping level.  

 

Supposing this is something Nd to the power star, so I am assuming here Nd is equal to Nd 

to the power star some value that is fixed. Now the question is, as you increase the 

temperature what happens to Fermi-level, in which way does it move? Does it move up 

from here or does it move down now? This can be very easily understood that when you 

go to very high temperatures the semiconductor becomes close to intrinsic because of 

thermal generation increasing the hole and electron concentration tend to become equal 

therefore the Fermi-level will tend towards the intrinsic level for very high temperatures. 

So this is the way the Fermi-level will move. Obviously this means that you can extent 

backwards, extrapolate and the Fermi-level is going to move up as you reduce the 

temperature.  

 

Now the question is at T is equal to 0 where is the Fermi-level going to be? So let us 

locate the donor level also here and now we can locate the Fermi-level by simple logical 

arguments as follows. At t is equal to 0 there are no free electrons or holes which means 

the entire donor levels should be occupied at t is equal to 0.  

 

If the donor levels should be occupied then the Fermi-level cannot get below Ed because 

by definition of the Fermi-level at t is equal to 0 all states above Fermi-level are 

unoccupied and all states below Fermi-level are occupied. So, if the Fermi-level is 

located below Ed then all the states would be unoccupied which is wrong because all the 

states are occupied so Fermi-level is not below Ed.  

 

Similarly, Fermi-level cannot be above Ec because if it is above Ec then some conduction 

band states would be occupied at t is equal to 0 by definition of Fermi-level. That means 

there are free electrons at t is equal to 0 so that is also not possible. So Ef has to lie 

between Ec and Ed. It turns out that if you do a rigorous analysis it lies exactly in the 

middle of this particular difference Ec and Ed so this is the way your Fermi-level moves 



as a function of temperature. So this is the variation of Fermi-level with temperature and 

doping.  

 

What is important to note from here is at around room temperature or in extrinsic range 

for heavy doping the Boltzmann approximation may fail. And in that case these two 

equations and this particular law of mass action will not be valid. So moderate in doping 

levels will work. Now having discussed the Fermi-level we can come back to this and 

discuss how you estimate the carrier concentration.  
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We could draw the distribution of carriers as follows: For an n-type semiconductor at 

300k the picture would be like this: This is Ec, this is Ev and if you take the function 

N(E)f(E, T) then that function would be; the n(E) goes like this but f(E, T) when you 

multiply you get the separation of the function and this is the function N(E)f(E, T). This 

is Ei in an n-type semiconductor the Fermi level is above somewhere here, so this is Ef, 

this is your Ec, and this is Ev.  

 

Now since Fermi-level is above Ei this function N(E)f(E, T) will be something like this 

and for valence band it will be something like this. This is N(E)[1 minus f(E, T)] the 

unoccupied states. And if the Fermi-level is above Ei then here these two areas represent 

the electron and hole concentrations. This area will be more than this area because the 

electrons are majority carriers. So this is your nn
 
to the power 0 and this is your pn to the 

power 0.
 
We have the two areas which are being estimated using these two formulae 

under the Boltzmann approximation. Let us proceed further and write down simplified 

expressions for the concentrations.  
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Let us look at the slide which shows the concentration behavior let us start from first 

expression for a concentration the extrinsic range. You can see here in this formula. 

 

(Refer Slide Time: 49.59) 

 

 
 

In the extrinsic range for phosphorus impurity all the donors will be ionized so Nd to the 

power star would be approximately equal to Nd and the minority carrier concentration, 

thermal generation will be very small. Notice from here that you can find out now the 

minority carrier concentration using the law of mass action if you know the majority 

carrier concentration.  
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Then here it is Pn0 is equal to ni square 2 by nn0. This is the way to find out the minority 

carrier concentration. The majority carrier concentration is given by this particular 

equation and Nd plus is approximately is equal to Nd and naturally that will be much 

greater than the minority carrier concentration. So you have n0 approximately equal to Nd 

this is an extrinsic range so this is approximately equal to ni square 2 by Nd. So clearly ni 

square 2 by Nd will be much lesser than Nd, nn0 will be much greater than pn0. We really 

do not have to use this equation and the other equations to find out the concentration. It is 

a very simple situation for extrinsic range when complete impurity ionization is present.  

 

Now let us move to this particular region, the intrinsic range is of very high temperature. 

At very high temperature the concentration is given by ni is equal to square root of NcNv 

exp(minus Eg by 2KT). That is the intrinsic range which gives you this particular linear 

segment here. Now what happens if you are somewhere here where the majority carrier 

concentration and minority carrier concentrations are comparable?  

 

In other words, in this formula your Nd
 
to the power plus is Nd because complete 

ionization is there. But the pn0 also is becoming comparable to n0 this is because your ni 

is increasing. So in such a case you can write a formula, the charge balance equation can 

be written as: Nn0 is equal to Nd plus ni square 2 by nn0. You can use a complete quadratic 

equation because you do not want to neglect the thermal generation, you do not want to 

neglect this pn to the power 0 which were neglected in extrinsic range and this will be a 

quadratic equation in nn to the power 0 and the solution for this is: Nn to the power 0 is 

equal to Nd by 2 [1 plus square root of 1 plus 4ni square 2 by nd square 2]. So you can do 

it as an exercise and show this. If your temperature is high and your ni is high you can use 

a quadratic formula to get an accurate estimate of the concentration.  

 

Now let us come to the low temperature range here. Here we find it is again a linear 

segment.  



Actually the derivation of the formula for this temperature range should be done from all 

these three equations where you solve these three equations, you substitute these three 

equations into this charge balance equations and then you will have only an unknown Ef 

Fermi-level as all other things are known. You can solve for the Fermi-level then you can 

get the Fermi-level and substitute in these equations to get back the nn
 
to the power 0 and 

pn
 
to the power 0. That is the way to solve for the concentrations rigorously. But we can 

simplify this particular calculation using an analogy.  
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Now, the situation in an intrinsic semiconductor at any temperature t is analogous to the 

situation between an extrinsic semiconductor at low temperatures in some sense.  

 

What is the analogy or similarity?  

It is as follows: In an intrinsic semiconductor at any temperature the electron jumps from 

the valence band to conduction band and that is how the electron hole pairs are created or 

electrons are created. So electrons are jumping from Nv available states to Nc available 

states. The distance between these two states is Eg, the formula in such a situation for the 

electron concentration is given by; ni is equal to square root of NcNv exp(minus Eg by 

2KT) where Eg is the difference between the energy levels corresponding to Nc and Nv.  

 

Now come to the extrinsic semiconductor at low temperature in this case the electrons we 

have considering an n-type semiconductor the electrons in the conduction band come 

from the donor level because of ionization. This is the process shown here by this arrow 

which give rise to free electrons, there is also thermal generation process but that is very 

negligible as compared to this. Here you have electrons jumping from Nd states at Ed to 

Nc states available at Ec this difference is ionization energy. Now we can write down in a 

formula for nn0 that is this electrons as follows. You replace the Nv by Nd and you replace 

the energy gap by the ionization energy and then you get the relation nn to the power 0 is 

equal to square root of NcNd exp(minus Eion by 2KT), it is very clear that the Nv here is 



replaced by Nd and Eg is replaced by Eion. So this is the formula for electrons in an n-type 

semiconductor and this is this behavior here that is shown.  

 

So log of nn to the power 0 is linear, a state line function as a function of reciprocal of 

temperature just as in the intrinsic range you also have a linear segment. So with this we 

have shown how energy band diagram can be used to find out the carrier concentrations 

at various temperatures such as low temperature high temperature and the extrinsic range. 

So for low temperature it is this relation and extrinsic range it is this relation, minority 

carrier concentration is obtained from ni square 2 by majority carrier concentration.  

 

Majority carrier concentration is the impurity concentration and high temperature is this 

quadratic equation which can be simplified to Ni if the temperature is really very high. At 

any temperature if you want to find out the concentration in a rigorous manner you can 

simultaneously solve these equations, at any temperature that is not covered under these 

formulae that I discussed right now. From here we will proceed further in the next class.  


