
Digital Circuits and Systems
Prof. S. Srinivasan

 Department of Electronics and Communication Engineering
Indian Institute of Technology Madras

Lecture - 38
System Design Example (Contd..)

(Refer Slide Time: 00:01:05)

(Refer Slide Time: 00:01:09)

(Refer Slide Time: 00:01:25)

(Refer Slide Time: 00:01:33)

(Refer Slide Time: 00:01:48)

So we were discussing the traffic light controller design, the design of a traffic light controller as
an example of a system design. We have earlier seen how to design and implement
combinational logic and sequential logic and even circuits that contain both combinational and
sequential logic using building blocks such as gates, then multiplexers and decoders, PROM
Programmable Logic Arrays, Programmable Logic Devices and likewise in sequential circuits
flip-flops, registers, shift registers, [c….2:35] etc. But when you have a digital system to be
designed you need to go through a design process starting from specifications to the
implementations.

As I have repeatedly said in this course, understanding these specifications clearly and coming
up with a requirement in terms of signals and hardware it is the most important step, from then
on it is a question of procedure, systematic methods are available. If you want simplification
there are steps available and if you do not want simplification there are procedures available
depending on the type of hardware you want to use or procedures available.

So the implementation, hardware, putting it together, testing, all those are important, I will not
say anything is less important unless the system works there is no use, the design has no meaning
unless you can put in the field and test it. But from a designer’s point of view, from a design
engineer’s point of view it is the question of understanding the design specifications and coming
up with a blue print of what to do, that is the state graph, the type of examples you have seen.
There are other techniques. This one is called state machines, algorithmic state machines, charts
and all those.

So with that in mind we discuss the requirements, specifications and requirements of a traffic
light controller, I will not repeat those things we have seen in the last lecture. Finally we ended
up with this state graph you remember.

(Refer Slide Time: 4:24)

There are 6 states, state in which the main light is green, side light and turn light are red then it
goes to a main light the yellow phase then the turn light green, main light continues to be green
from left to right, from here (Refer Slide Time: 4:50) we go to the phase where the turn signal
turn light is yellow and then we go the phase where the side light is green in this case we halt the
flow of the main road from left to right as well as right to left and then we have the yellow phase
and after the yellow phase it goes back to the first state.

So we said that there are 4 lights M1 M2 these are the two main street lights, this is for left to
right traffic, this is for right to left traffic (Refer Slide Time: 5:30), turn light side light, turning is
for this turning and side light is for this turning and each one of them can be a red, yellow and
green and all those conditions under which this happens we have already discussed in detail
based on which we arrive at the state graph. Now the question is to implement this state graph.
So we discussed the inputs and outputs. I forgot to mention one important input. What are the
inputs and what are the outputs available for this system?

What are the inputs available in the system? What are the outputs expected in this system? The
outputs are the lights, the signal which activate the light, of course the digital signal is 0 to 5
volts, 0 volts or 5 volts signal that you get out of the digital gate may be two week in terms of
current to drive a light a huge light in the traffic light controller, the traffic light junction. But
you can always use drivers. So we are not worried about all those hardware features where how
this signal from the traffic light controller IC or a digital circuit is converted into a signal which
is strong enough to activate the lights, switch on and switch off so you need to, if required
amplify it or you need to boost it either in voltage level or current level depending on the type of
the lights you are given. We will not talk about that point.

So, when you see here these signals red, green, yellow are all the outputs of a digital circuit that
is one thing, of course that is understood. What I was referring to, I said, I forgot to mention
something is, when you enter a state you have to watch the period. We discussed the periods. we

said T stands for the time, MG stands for the main green so there are four time intervals of
importance in this TMG where duration for which main is green, t main green, TTG is the
duration for which turn signal is green, TSG is the duration for which side light is green, this,
this and this (Refer Slide Time: 8:19) and then TY - the duration for which the light is yellow,
yellow light, lights are yellow.

(Refer Slide Time: 8:29)

So yellow lights in all the cases, we did not distinguish between yellow for the main and yellow
for the side, just to make the problem simple. Of course there are lots of features you can
introduce as I said. You can have different timings, you can have pedestrian switches and all
those things, and we can have 4-way traffic, 6-way traffic, there are four ways in the sense it is a
2-way street on both sides and then on both sides there can be a left turn and right turn and all
those things, make it as practical and interesting as possible.

What I meant was, when you say you are monitoring these timings there must be hardware in the
system then hardware has to be monitored for the duration of the time, when the time has elapsed
the state has to change. For example, when the circuit is in this state this will remain in this state
as long as TMG is not completed, the duration TMG is not completed. When TMG is completed
it goes to this state. from here (Refer Slide Time: 9:32) it stays in this state as long as TY is not
completed, during TY it is here and at the end of TY it goes here.

So there is a provision for monitoring the signal. These are the inputs to the system; TMG TTG
TSG TY the time intervals for which different lights are defined to be green as well as yellow are
the inputs to the system. How are you going to get those time? Who is going to give you those
timings? So there must be a hardware timer, we will not go into the details, you know how to do
this. I will tell you how to do this in a simple way. So I will call this as a simple timer. So you
can define the timed intervals, like for example, as I said TMG can be 2 minutes or 1 minute may
be, this can be 30 seconds, this can be 30 seconds or this can be 20 seconds, this can be 30

seconds or whatever depending on the traffic, may be 30 and 20 and then this may be again
another 20.

(Refer Slide Time: 10:36)

How are you going to measure those? You have a timer which is nothing but a counter, you
know how to get time intervals from a counter. The number flip-flops have to be decided. I have
to give a clock to this, the clock is a system clock, it need not be related to any of these, need not
be any of these timings, it can be an independent timing. For example, I can have a clock which
is much faster than any of these periods and then I have to count a definite number of these clock
periods in order to get each of these signals, is it not.

For example, 2000 counts may be this. That is an example. 1000 counts, 2000 counts for this,
500 counts for this, 400 counts for this, (Refer Slide Time: 11:28) 400 counts for this, something
like that you can define, it depends on the duration. It depends on the duration you want for these
different lights to be green or yellow and the period of the clock signals you are feeding into the
systems.

The same clock will be the clock you will be using in your flip-flops then only there will be
synchronism between the state changes and the timer change. But then there is a counter which
keeps running all the time with the clock and I have to know which time corresponds to which.
Fortunately these are non-overlapping intervals. I want only one time at a particular operation in
the sequence. If I am interested in monitoring TMG I don’t have to worry about these things
because in this state (Refer Slide Time: 12:22) only TMG is important. In this state only TY is
important, in this state only TTG is important, in this state again TY, in this state only TSG is
important.

So when I am monitoring a time of a particular duration the other time knows the consequences
so I can have a simple timer started by clock and give different outputs when the count has
reached let us say 1000, 2000, 500, 400 whatever time you fix and when that duration is counted

that will be the signal for this state to go from here to here for example, or the circuit to go from
this state to this state. So the output of this timer would be; TMG TTG TSG TY all that is fine
but when the clock goes on, but I want a starting point also only then I can fix my time. When
the clock goes on it goes through all these.

Depending on the count, depending on the number of bits in the clock, number of bits in the
counter, when the clock goes on the counter keeps counting to the highest possible count using
those many bits goes back to 0 and starts all over again, one of those counts is a TY or one of
those counts is TMG etc etc, whether how do you know went to start. So every time I need a
fresh count to be started I need a signal called start timer. That means normally I will have a
counter which free runs. But in this case I will not have a counter which is free runs. The counter
will not count unless there is a count enable.

This start timer can be a count enable. Even though you have fed a clock to the counter it will not
count until or unless you give a signal give called count enable. The moment you count enable
comes, it starts counting from 0 upwards from wherever you left. So you can reset and start all
over again, whatever it is, so it can have a reset and once you go to a state you can reset and
when you want to count you start counting so when that particular count is reached that
particular signal is…[….14:54].

So this ST is a start signal which is required to be generated also by this. So when I say these are
the only light signals required out of this output, it is not really complete since I have forgotten I
have left out a start timer. So one more signal to be start timer is also an output. for example,
when you want to find the capacity the PROM required to do this we count the number of inputs
and number of outputs, we have only counted the number of outputs as four lights, each of them
have three states red, yellow, green so 12 outputs. There is really one more output that is ST that
also has to be done.

(Refer Slide Time: 15:45)

So whenever you want to start a timer you issue a signal ‘start timer’ and then it starts counting
and then when a particular count is reached it goes, then the next time you want another
count….. So when you reach the state you can reach that circuit, reset the count and can start all
over again to the next sequence.

There is one thing I wanted to mention, it is an important hardware feature, of course
concentrically it is not alright, but then as I said, final goal is to make hardware which works.
Concepts can only take you so far and beyond that it is the nitty-gritty of the hardware, it has to
make it work. That is the reason for all these bugs in your system. When you have a system,
when you buy a computer or when you have an electronic gadget it doesn’t work because the
design is good but then somebody forgot to put on the earth properly, somebody forgot to give a
signal which is supposed to clear the whole thing. These are the pit falls.

That is the way the design, these are the design specifications, this phase is very important. Then
I can have one more state which I said the other day. If you want you can have a starting state or
the reset state, normally when you switch on….. it can…… there are three flip-flops as I said
already, a b c and each of these flip-flops go through, there are 6 states only so they will go to six
different states and when you switch on for the first time any of these things could be the starting
state and then we can go on from there, that is not a problem.

But generally, in any of these circuits we have a reset state because of you want to service or you
want to switch off the lights, make all of them zeros, all the lights will be off, you want to keep
the lights for a while, remove the clock from the system and then it will remain……so usually a
reset state will be there, we will call it S 0 in this case so this reset is a forced reset, when you
switch on the system we can force the circuit to go to the reset state so that from then on it goes
to the sequence that you want. So it is always possible to get S synchronous reset so this is what
it is.

(Refer Slide Time: 18:27)

The system can be reset, we force the circuit to reset and start by a push button or something, it
can be synchronous, all the counters can be 0 0 0 before you switch on the power for the first
time, the circuit in the morning, you want to start the traffic light controller, start the circuit,
switch on the power and then reset it by a push button then it gives you the 0 0 0 state and from
then on it moves to the proper sequence. So when it is not there we will make that and when the
circuit is in reset state switch off the power so when the circuits is in the reset state all the lights
are off. That is one option; I am not saying it is the only way to do things.

Design is always open-ended, only one thing you have to make sure is that all the specifications
are met, the customer gives you the design problem, he gives you a design assignment and you
are supposed to carry it out and meet all the specifications then comes the efficiency the most
efficient way you have to do it in a most cost-effective way, do it in a way it reduces power and
consumption etc, these are the features. But first we have to satisfy all the requirements and
whenever there is any design, design is always open-ended unlike analysis.

You make an analysis there is always one possibility so design is an open-ended problem, this is
one possibility, this I am discussing that’s all. you may think of some other way, as long as you
think of a better way it’s good for you, as long as I said it is not very inefficient compared to this,
I am not saying it should be always better than this by saving at least one more gate, no. As long
as this circuit is similar even by your innovative design even if it consumes a couple of extra
gates that is better than taking somebody’s circuit which is designed already so innovation is
required in a design because some ideas which I have forgotten or overlooked will come out.
So with this background we can now write the state table and from then on you know how to
proceed. I will call it state table, we are going to use d flip-flops, state table becomes the
transition table, inputs and outputs will also be included. So to make life simple I will map S 0 as
0 0 0, S 1 as 0 0 1 and so forth. S 6 will be…(Refer Slide Time: 21:36), these are the seven states
we need to implement.

(Refer Slide Time: 21:41)

So the present state input, next states outputs are as I said ST and then all these lights; main
green, main yellow, M1 and M2 we call them, remember, M1 green, M1 yellow, M1 red and so
on. In order to save space, what I will do is, I will right M1, M2, T and side.

(Refer Slide Time: 23:43)

We will always follow the red, yellow, green pattern so that I don’t have to, so first light is, so
this is the pattern, this is the order in which we will write the outputs (Refer Slide Time: 23:55).
You may have to help me here to finish the table fast otherwise it will take for ever for me to
finish this. We will call this A B C and A plus B plus C plus as usual, present state is 0 0 0, input
is nothing it always goes to 0 0 1 and only light is 1, ST we have to get started. Because once
move here the timer will start. As soon as I hear I can just start the timer because one clock count
does not matter. I have done one clock count earlier than….. after reaching here it should count
TMG but once I am there I don’t know how to start so I will start it and then go here.

Suppose a 2000 count you want to program it we can count from 2001 or we can program it from
1999 doesn’t matter really because one clock is a small, short duration and all other signals are 0.
So when I put 0 it is a concatenation of all the signals, nothing else, it is a zero state, then the
next state is 0 0 1 and in 0 0 1 there is one signal and TMG is off it stays in 0 0 1 and if it is on it
goes to what? I asked you to help me so we can finish the table fast, why are you hesitating so
much? Is it so difficult to read this, I am asking you because I can’t read parallelly you know. It
is parallax. Otherwise I would not have asked you for this simple favor. Don’t want to commit,
why commit and get involved, that is the motto.

ST will be on only when you go the next….. here ST will not be on because we have already
switched on ST and we have to wait for TMG so what will be the output, which lights will be on,
which lights be off. for M1 it will be 0 0 1, M2 also 0 0 1 then turn 1 0 0 and this is the same
thing depending on whichever state it is, in state s one the lights are there, these are what I told
you as Moore machine so outputs are defined for the…. Except for this output all other outputs
are defined for the state. ST along changes because ST depends on the timing. If the time is over

only I can start the timer. ST is a Moore output and all others are Mealy outputs. ST is a Moore
output because Mealy output, ST is a Mealy outputs because I can only start the timer when I
leave the state to go to the next state.

Next one is; in 0 1 0 the only thing to be monitored is TY because there are only two states and
what are the two states, again 0 1 0 and 0 1 1. This table is the simplest table you can think of
tonight. This state is always one more. The state graph is a simplest state graph and then again
you start the timer when you leave the state, as long as you have a yellow state you count the
timing, read the timing.

(Refer Slide Time: 28:39)

So I am going to, for now, assume that ST resets and starts because otherwise I have to define
another signal for resetting and then starting. so right now we will assume that ST has the, it will
reset and start or it will rest and ok, it has to reset and start ok so we will assume that or
otherwise it is going to be difficult to have one more signal to reset and then to start (Refer Slide
Time: 29:04). So ST is a signal which means, that means the timer has to be defined with a
proper input circuitry, may be flip-flops or counters but a little bit of extra combinational logic, it
will take ST signal first for one clock cycle and immediately it will clear it and then it will start,
one clock cycle.

All I need from you is this otherwise it is so simple. Tell me what is the lights, main…. this is not
yellow, it is yellow, M2 is yellow, ok, 0 0 1 then, then, ok, next one is what? TTG tell me what is
the signal, 0 ok, even if it is the same you have to tell me because I have no way of verifying
looking through that, then 1 0 0. This is 0 0 1 and this is 1 0 0, then 1 0 0 TY bar TY so TY bar is
what? 1 0 0 and 1 0 1 and 0 1, then 0 1 0 and this one is 1 0 0 and this one is 0 1 0 then 1 0 0,
(Refer Slide Time: 31:30) 1 0 1 TSG bar………… TSG 1 0 1, 1 1 0, 1 0 0 then 1 0 0 then 1 0 0
then 0 0 1.

(Refer Slide Time: 33:38)

Finally 1 0 1, 1 1 0, TY bar, TY. 1 1 0, 0 0 1, goes back to the starting state 0 1, 1 0 0, 1 0 0, 1 0
0, 0 1 0 and finally it is 1 1 1, it is not going to happen so irrespective of that reduce the don’t
care, we will put it 0 0 0 and all the signals will be 0. You make all zeros so that no problem
occurs if it comes to this state. This it the state table or transition table if you want to call it or
whatever.

Now if you want the PROM implementation how many inputs are there? Inputs are 3 for the
state variables and 4 external inputs namely; TMG, TTG, TSG, TY so 7 inputs and outputs are 3
for the state variables, 12 for this and 1 for this so 13, so 13 plus 3 is 16. Of course as I said that
there is a possibility to concatenate or compact the outputs by defining the relationship
between….., you can always define a relationship between red light and a green light. For
example, in the same street red and green cannot be on at the same time and the main street green
and side street green cannot be on at the same time.

We use all those relationships we may be able to come up with a simpler output table and it is
called ROM compaction. We want to reduce the size of the ROM the width of the ROM word
word width we can do that. They used to do that earlier. Today technology is not a big problem,
the size of the ROM is not a problem at all especially for small designs like that. Nobody does
any of those things it is called ROM compaction using the relationship between the different
outputs if they are dependent, naturally here they are dependent. The outputs are not independent
of each other, the outputs are dependent on each other, we can always reduce the number of
outputs by deriving some relationship between these different outputs, if you want to do that you
can do it as an exercise, ROM compaction.

(Refer Slide Time: 35:59)

So, the size of the PROM would be 2 power 7 into 16 bits and in addition we need 3 d flip-flops,
2 into 16 bits PROM plus 3 d flip-flops or you want gate solutions, for each one of these you
need to draw a Karnaugh Map. For each of the next state outputs you have to draw the Karnaugh
Map, next states you have to draw the Karnaugh Map, for each of the output 13 outputs you need
it. So 13 plus 3 so 16 Karnaugh Maps you draw and simplify the expressions to get a gate
solution. Or you want a multiplexer solution let us do that, that may be interesting.

What is a multiplexer solution going to look like? Mux-based implementation. For each output
you need to provide a mux, 16 into 1 mux I mean 8 into 1 mux. So I will take the first one and
the next state variable A plus. I will do for one or two and you can complete the rest. So the
variables are A B C the present states and the next states be 1 2 3 4 5 6 7 8, this (Refer Slide
Time: 37:15) will be A plus, next state variable A plus will be given by this mux, so all you have
to do is to look at this column, so wherever there is a 1, this is a 0 0 0, 1 for TTG so this is a 0 0
0, if TTG is high this is high so this is TTG, this is 1, this is 1, this is TY bar, if TY bar is 1 if TY
is 0 then this 1 goes to TY bar. All of know how to do this is it not from our earlier mux-based
design. Look at the present state, the next state and what condition will make it 1 that we have to
put for each present state. The present state is 0 0 0, no condition will make it 1 so put a 0, for 0
0 1 no condition will make it 1 so put a 0, in this case 1 0 1 present state whatever is the
condition the next state is 1. If I take here the present state is 0 0 1, TTG will make it 1, TTG bar
will not make it 1 so put a TTG.

(Refer Slide Time: 38:41)

We have done this before, yes or no? My God, I thought you are dead, right. Class is alive and
well. Now A plus B plus C plus let me not do A plus B plus C plus, you do it yourself, finish the
design, let us do some of the outputs.

Main green M1 green M1 green, what are the conditions at which M1 is green? Let us look at
these columns. In state S 2 it is 0, S 1 it is 1, S 2, S 3 first three states, rest of the states it is 0 so
this is a 0, in S 1 M1 green, S 2 I am sorry, S 2 M1 is green, S 1 M1 is green, S 2 M1 is green, S
3 M1 is green. Put 1 1 1 rest of them are 0s.

(Refer Slide Time: 40:50)

Is it too much task to do these things yourself? Please do this quickly. You see you have come on
after a long holiday and early morning, many of you went home, why can’t you be little more
lively today? Then let us do the ST. Somebody’s going to tell me what ST is. I am tired of doing
it all by myself.

S T outputs, ok who is going to tell me ST outputs? You there, yeah. Quickly just tell me what
are the inputs I need to connect to the mux. Look at S T column. No, we have these present states
and under what condition S T will be 1 in each of the present states? Present state is 0 0 0 but
under what condition S T will be 1? No condition, unconditional 1 so I put a 1. Now complete it.

(Refer Slide Time: 41:49)

Then TMG, then TY, then say it again TTG, let him say because if too many people talk at the
same time I can’t hear properly, then TY, then TSG, and then finally it is 0, very simple. So we
can do a multiplexer-based solution PROM based solution, gate based solution or PAL based
solution, PLA based solution whatever hardware your boss wanted to use based on the stock and
availability, sometimes the boss decides the type of hardware you need to [bec….42:48] that is
the type of inventory you have in your company and you can use it or the same product line of
your company, you don’t want to use your rival’s, competitor’s hardware. These are the many
reasons, practical and commercial reasons but you know how to do it whatever. Only one minor
itch, I have not really completely taken care of how to convert my S T.

The S T has two roles; S T sets a…. this is a timer, the clock runs continuously the counter keeps
running continuously. I want to start it from 0 and when a count reach…… So when S T has to
start but the count let us say TMG I have used I need to keep counting, will keep counting so
when S T comes it will, when S T is removed it will not…. the count is frozen and then the next
time S T comes it starts from there. But I want to start or count always from 0 only then my
timings will be right. My timings will be right TMG, TTG, TSG, TY will be right only every
time I start with 0 then a particular count has reached.

So ST has a role of resetting the count. That is also possible because actually inside the count
enable S T can do a resetting that is enough. Let the clock run continuously, if it resets it is
enough. All S T should do may be, this is the counter (Refer Slide Time: 44:40) clock, you
understand the problem here, and the counter is programmed to give different count as outputs;
TY, TSG I am assuming this in the order as this is, the lowest count, next higher count, this is the
order, this is not necessarily true but………….

(Refer Slide Time: 45:08)

There are two ways. The count can be enabled and disabled by S T rather than that let the count
be on all the time but S T will always reset it to 0, from then on it starts counting it keeps
counting, every time S T comes it restarts and then from 0 it starts so when the count is reached
it is taken and then it will continue but next S T is anyway going to reset it again. So this could
be my S T which is counted to reset. Actually it should not be called start timer, start timer in the
sense it starts the timing of that particular interval S T stands for start timing but for that interval
you start. So this could be the reset, once S T comes the first counter resets to 0 0 0 and then on it
counts as I said, it will be one count less than what you want but it doesn’t matter. Supposing I
have put 1 KHz clock that means every millisecond it counts and I want 2 minutes or even 1
minute or I want 60 seconds so 1000 in 1 second and 60 into 1000 so 60000 counts I am going to
count for TMG and if it is minus 1 it doesn’t matter or you program it for 2001 that is ok, 1001
that is a minor………so that also has been sorted out.

Now you have a complete solution for this. The object of this exercise, the object of this exercise
is all of these things are known to us. I don’t think I have introduced any thing new. You know
how to design using multiplexers, you know how to design using PROM, you know how to
design state graphs, and you know how to translate a state graph into a state table or a transition
table. But what is new is the systematic understanding of the problem and defining the various
states and the transitions, what are the transitions allowed and not allowed, when the transitions
should happen and so on, go to the nitty-gritty in details of the signal that is required, how to
generate those signals, what hardware will be required so that we will be able to come up with

the inventory of parts that we need to build this then the design becomes complete because the
designer, the engineer is the designer, the role is to make sure that all i’s are dotted and all t’s are
crossed and until that time it is not complete, anything left…. because it could be, you may have
something in mind but then somebody else might interpret in some other way so it becomes
ambiguous design and that is what we want to avoid.

So I want to show you only one more example. In this example what I did was I have used a very
simple design in the sense the hardware required is very little, all I need is lights which are not
under my control, we only generate signal for turning on; the green light, blue light, yellow light,
red light and then if it is not there you have to boost the signal voltage and current levels and
then get a huge thing circular disc which you will get in your traffic light stations here. Other
than that there is hardly any hardware except the counter. This hardware (Refer Slide Time:
48:40) is called the controlling hardware.

The state gate implementation is the sequencing, I told you this earlier, it is an algorithm, it is a
program. Whether it is a programmable device you are using or fixed device you are using like
multiplexers or gates it is the sequence through which you want the circuit to go through. So this
table gives you the sequence of events and that is unique to the problem. Each problem has its
own state graph and a state table and an implementation of the state table, you cannot do it in
advance although the problem is known to you.

On the other hand, the circuit requires a lot of other hardware which is in this case a counter.
Suppose when I give you a design in which large number of these hardware is available, take a
computer for example, you may give the sequencing of the various function units but then there
is a standard arithmetic logic unit, that is a memory, that is an input device, output device, I don’t
think we should design each one of them every time, this design has to be done, this is an
algorithmic design, state graph has to be designed, you draw the state graph program it for proper
use. This is called the algorithm, as I said the other day, you can call it sequence if you want to
call it or procedure you want to call it procedure for going from state to state the sequencing or
algorithm. But the other type of hardware which is a commonly used hardware which may be
required for your design in this case is very little except the counter may be and lights which are
not under our control.

Circuits like a computer, microprocessor, calculator which may need lot of off-the-shelf
components available components I need to get them, I need to connect them together, I need to
functionally define what I want, I need to connect them together, I need to operate on them, I
need to give signals for them to start, signals for them to clear, stop. So if the problem is little
more involved I will use two types of hardware: One type of hardware is what is known as off-
the-shelf components or available components which can be bought any standard store, usually a
4-bit ALU which is all you need to say and other hardware is the hardware which will result
because of the state graph you will implement for that particular problem. For each problem you
need to draw a state graph, state table, mux design, PROM design or PAL design. In addition,
this extra hardware like the counter, like the flip-flop, like the shift registers, like ALUs, like
memory chips those things I don’t have to design again and again and again these are off-the-
shelf available.

So the next example I want to take the case of a design in which we will view some of those, we
will have a mix of some of the off-the-shelf components, again a simpler design of how much
you can do in a class, a simple design but conceptually you will have to partition the problem
into two parts, the parts which are available you should know how to control them, the other part
is designed by us, the controller, which issue the signals for controlling them to get the signal if
you want, that will be the last example we will be working out in this class.

(Refer Slide Time: 51:50)

(Refer Slide Time: 00:51:59)

(Refer Slide Time: 00:52:13)

(Refer Slide Time: 00:52:20)

(Refer Slide Time: 00:52:30)

