
Digital Circuits and Systems
Prof. S. Srinivasan

Department of Electrical Engineering
Indian Institute of Technology Madras

Lecture - 34
MSI and LSI based Implementation of Sequential Circuits

(Refer Slide Time: 00:01:33)

We have been discussing the MSI and LSI circuits and implementing combinational logic
using these circuits. We talked about multiplexers, decoders, programmable logic
devices, prom, Programmable Logic Array PLA and PAL Programmable Array Logic.
But as you know that most circuits are sequential in nature and even the combinational
logic we discussed are useful in sharing the sequential circuits through the various states
as per the state diagram state graph.

So basically when you design a circuit or a sub system or a system or whatever you want
to call it, whatever level you want to deal with, it is a sequential circuit. When you say
sequential it doesn’t exclude combinational but when you say combinational it excludes
sequential. That’s why when you say sequential you do not have to say combinational
and sequential, I don’t have to say that. The sequential circuit will have to have a
combinational logic which will be the logic for determining the next states and the
outputs.

Therefore, with that in my mind we will now look at the implementation of sequential
circuits using the same MSI LSI logic. I will emphasize this point once more (Refer Slide
Time: 3:44) that when I say sequential circuit it has a combinational and a sequential
component so the combinational part will use all these MSI LSI we discussed. Of course

we can also do sequential for example Programmable Array Logic which had its own
flip-flops, this is what we discussed last time and those can be utilized for the sequential
part of the circuit, steering logic, that is to implement the states. So it is an integrated
effort.

We will also see later on how some of the sequential MSI like; shift register can also be
used for implementation of circuits, state graphs, we will see that after this. Thus, right
now we will use the same multiplex decoder etc and take a state graph which you know
how to implement otherwise using gates, you will take such a circuit and see how to
implement did using some of those MSI LSI you learnt in the last few lectures. So, for
that we will take the example of a state graph. You know what this interpretation of graph
means? One input one output, and these are the five states and is this a Melee machine or
Moore machine? It is a Melee machine.

This is a machine with five states S0 to S4, we will have to make sure which of these
states have two arrows going out, one is for 0 input and the other is for one input so S0
with 0 goes back into this, with one it goes here, S1 with 0 goes here, and with 1 it goes
here, S2 it is 0 it goes here (Refer Slide Time: 7:23), 1 it goes here, S3 0 goes back, 1 it
goes here, S4 0 goes here and 1 goes back here to the same state. Therefore as I said it is
an arbitrary state graph. It is a sample state diagram.

 (Refer Slide Time: 7:45)

I want to use this diagram to illustrate the point of implement this using multiplexers,
proms, pals and PLAs if necessary which will be used as steering logic and in case of
PLAs the flip-flops will also be used in the same IC. Again we do not know the system, it
is an arbitrary graph, whereas we assume this as an input and output so we will call the
input X and output z, X is here so this is equal to the output and there are five states so
we will call the states S0 S1 S2 S3 S4 so as arbitrarily for S0 it is 000, S1 it is 001, S2 it is
010, S3 it is 011 and for S4 it is 100, these are the assignment rules. We should also have

names for the state variables, so we will call the three state variables as ABC (Refer Slide
Time: 9:06), there are five states so ABC goes from a 000 through 100.

Let us use a D flip-flop to make the implementation simple in the sense we do not have to
go through the state graph state table and then a transition table. The state table and
transition table are same for a D flip-flop implementation; you know that. So we will take
this and write the state table which is also the transition table for this diagram. Therefore
for the present state what are the various things you will write in a state table? The
present state input x, the present state variables are ABC, input value is X and the next
state is ABC. Now, to distinguish between this A B C and this A B C we will put a plus
sign here meaning the values of ABC have to be clockwise and then the output Z.

(Refer Slide Time: 11:14)

Now from S0 X can be 0 or 1, then from S1 it can be 0 or 1, at S2 again it can be 0 or 1, S3
can be 0 or 1, S4 S5 S6 S7 may not exist, now this is 1 0 1 1 1 0 1 1 1. We do not have
these sates so there is no need for considering the input X is 0 input is 1 for these states.

Can somebody quickly tell me so that we will not make mistakes?

Where does S0 go when X is 0? It is to the same state 0 0 0 and output is 0. Next, 0 0 1 0
(Refer Slide Time: 12:40) then 0 1 0 0 0 1 1 0 that is when the cycle is in S1 the input is
1, it goes to S3 which is 0 1 1, output 0. From S2 it is 0 0 0 the output 0 or 1 0 0 with
output 0, then from S3 if it is 0 it goes back to reset state S0, so 1 goes to S4 with an
output of 1.

(Refer Slide Time: 13:50)

In S4 it is going back to 0 1 1, output of 0 and it remains in that state and here it is an
output of 1. The state table will also act as a transition table because we are going to use
the D flip-flops. Now these states are not going to appear so the next states are also not
defined ‘don’t cares’ but the outputs are always 0. Whenever the states are not defined we
will make it 0. This is also possible in advance, in the elementary level of treatment.
Thus, for a slightly more advanced level we can say, when the state transition has to
happen there also….. so the don’t care state occurs between two states whose output is 0
or between two states whose outputs are 1, by making it a 0 we are causing a glitch.

Do you understand what I am saying?

Suppose I had a state and the next edition a don’t care and then another state both these
states define the state output as 1 and the input in the don’t care state the output
is………because we say all don’t cares may be the output is 0. Let me now force an
output of 1 to become 0 and then back to 1 if I can retain that 1 as 1 then I will avoid a
glitch. That is a special technique. As I said we are keeping this discussion elementary
because this is an introductory course, I would rather teach you concepts and some other
practical things.

Of course I have been mentioning here and there like optimizing the state graph,
assignment rules, reductional state graph and so on, assigning output states properly.
These are the topics which I thought you should know, that which exists, it is not that
people do not know these things but some of those things which you can learn later once
you familiar with the basic things, these are the things which will come in practical
design.

(Refer Slide Time: 14:52)

Anyway coming back to this input all output we will put all 0s to start with. As of now
the standard rule we have been following that all outputs of undefined states we make
them as 0s. So the question is now I do not want to go through the Karnaugh map,
Karnaugh map minimization of….. these are the A power plus B power plus C power
plus inputs to D flip-flops. In the case of D flip-flops implementation this becomes the D
flip-flop input for A, D flip-flop input for B, D flip-flop input for C and these are the
outputs so we have to draw the Karnaugh map for each one them and simplify them and
implement by using gates. This is the procedure we are familiar with.

Now I am going to introduce multiplexers. In place of the combinational logic which we
have earlier done using gates let us try to do a multiplexer based implementation. I still
need D flip-flops because multiplexers can only give me the steering logic, multiplexers
are combinational logic blocks, remember that, multiplexers are combinational building
blocks and combinational building blocks are only a logic which controls the state
variations, the state transitions of the flip-flops, so that I am going to replace by
multiplexers but it does not mean that I am going to eliminate the D flip-flops.

(Refer Slide Time: 17:25)

The circuit is going to look like this (Refer Slide Time: 17:50) a Mux based
implementation. We are going to have three flip-flops; D flip-flops and these three flip-
flops are going to give the state variables A B C, there is no change in that, that is what
we have been doing, we have been following this rule will continue with that and then
these will be driven by……[18:41]…..

My aim is to reduce the number of ICs used in combinational logic, it has got a variety of
gates of different types can I use multiplexers and get this, that is my question. So the DA
which is the input to the A flip-flop DB which is the input to B flip-flops and DC to the C
flip-flop will now come from multiplexers instead of gates that is earlier we have done
the same problem not the same state graph but we might have similar to this, we know
how to get DA DB DC by drawing Karnaugh maps and simplifying them, by drawing a
gate implementation.

Now I am going to use multiplexers to get DA DB DC the output to the multiplexers
should be connected to DA, the output of another multiplexer to DB, output of another
multiplexer to dc that means we need three multiplexers, so it is a very simple design.
This is the output of the first multiplexer (Refer Slide Time: 19:55), this is the output to
the second multiplexer, and this is the output to the third multiplexer. For each of this it is
a 8 to 1, now I will tell you why it is 8 to 1. It is 8 to 1 because there are eight different
states in which the circuit exists, of course only five we use and the other three are don’t
cares. Now when you are in the present state we want know what the next state is. This is
all in the steering logic.

What is the purpose of the steering logic?

Given the conditions at the present state and the input what should be the next state, the
next state is nothing but the DA DB DC values for the next state. That means I give the

present state values along with inputs and find out what should be the next state.
Therefore, eight different present states are possible and for each of the present state what
should be the next state. So the multiplexer is a selector mechanism. I can have the
selected signals at the present state and then the corresponding input will be connected to
the output.

Suppose you have a 4 to 1 mux two selector and four inputs so the selectors are 0 0 0,
first input will be connected to the output, the selectors are 0 1 second one will be
connected so 1 1 and the last one will be connected. We will you use the same argument
here and say, I am going to give the values of the present state the a b c which says
available here these are the selector values S2 S1 S0 S2 S1 S0 S2 S1 S0, we will connect this
A B C so it is going to be very messy if I draw that so we can just assume that this is A B
C which are coming from here (Refer Slide Time: 21:50) because these are the present
state values which is fed back.

(Refer Slide Time: 22:00)

You remember that over all block diagram, all that sequential circuit implementation?
There we have this steering logic, the output which is the next state variable which is kept
in the flip-flop set back as the present state along with the input then you get the next
state. Imagine that, visualize that block diagram so A B C has to go back into the
combinational logic and that is what this A B C is.

Now all I have to do is to look at the state table, and corresponding to the present state 0
0 0 what should be DA, DB and DC, if X is equal to 0 then X is equal to 1, if I can put
that information in the input of the multiplexer A B C being selected here now 0 0 0 that
will be connected to DA and so we will go to the next state which requires this.

Now as an example we will take the first row, so present state is 0 0 0 X is 0 then next
state of the flip-flop A should be 0. If the present state is 0 0 0 and input X is 1 then also

the next state of the flip-flop is 0. So the next state of the flip-flop A should be 0 when
the present state of the circuit is 0 0 0. when the circuit is in S0 state that is 0 0 0 state the
next value for A is 0 irrespective of the value of X so because of that if I can put 0 here at
the first input, so how many inputs are there, there are eight multiplexers so there will be
eight so we will call this I0 to I7, this is I1 I2 I3 I4 I5 I6 I7 and that is why it is an 8 to 1
multiplexer that is why each of these is an 8 to 1 multiplexer.

There are eight possibilities and for each of these possibilities you select the next value.
Now let us finish flip-flop A before going to flip-flop B, we can exhaust this column
(Refer Slide Time: 24:45) then we will go this column then to this. We can do it either
way, doesn’t matter. I can draw parallely A B C and then go to next state doesn’t matter.
It is more convenient to look through this and then this and then this. So if the present
state is 0 0 1 S1 state again irrespective of the value of X the next state is 0.

Next state is 0 irrespective of the value of X if the present state of the flip-flops are 0 0 1
so again put 0 here. Now you know how to do this? It is a simple game they are playing,
that’s all. So, I am giving you a procedure where implementation is the minimum thing.
So all you have to do is to concentrate on the state graph, again I am emphasizing on this
point. As an engineer you are responsible for a proper state graph, most efficient state
graph, after the procedure, whether it is manual or software and then there is hardware
which can map and so on.

(Refer Slide Time: 26:50)

What I am saying is for a design concept for a designer, a company hires you for
designing digital systems, the maximum contribution comes in the, interpretation is a
problem into a state graph, rest is a routine procedure I am saying it should not be done, it
should be done, we should build it and test and if it doesn’t work you have to change it
and all that type of thing. So go again, S2 it follows X so if X is 0 the next state is 0; if X
is 1 the next state is 1. Then if the current state is S2 the next state is of flip-flop A is 0 if

X is 0, 1 if X is 1 that means I need to connect X to the third input, this X is not a don’t
care, this X input (Refer Slide Time: 26:54).

For S3 it is the same, it follows X next state variable follows the input that means it is X
again; for S4 it is again the same thing, it so happens, I just arbitrarily took it, circuit is in
state 1 0 0, X is 0 the next state is 0 for A, X is 1 next state is 1 so it is again X. So the
first two 0s, next three Xs and these three are don’t cares.

Do not confuse with this (Refer Slide Time: 27:47) I will put D here or phi. D is fine.
Therefore, the first two inputs are tied to 0, next three inputs should be tied to input X and
the last three inputs can be tied to anything, if you want another 0.

Do this for the next one, so I want to concentrate on 0 1 2 3 4 and 5 6 7 are anyway don’t
cares, what is I0 to I four?

Now you will have to look at the second column flip-flop B column. Present state is 0 0 0
next state is 0 irrespective of the value of X where X is 0 next set 0 X one X is one and
next state is 0. second state, the circuit is in one state and you want to find out the next
state of the flip-flop B, it is always 1, next state of the flip-flop is 1 from the present state
it is 1 whether or not X is present or not, X is present so that is a 1. So what should be the
next one? It is 0. The circuit is in S2 irrespective of the value of X the next state of the
flip-flop is 0. S3 is the same, S4 is X bar. The circuit is in S4 if the value of X is 0 then
the next state of the flip-flop B is 1. The value of X is 1 then the next state of flip-flop B
is 0, it is complement of X so X bar.

(Refer Slide Time: 30:10)

So tie the first 1 3 4 to 0, second 1 to 1 and fifth one to X bar. So the design is so
mechanical that mean this is common for whatever. If the state graph changes the only
thing that will change is this. As long as there are up to eight states in my circuit in a state

diagram there is a common circuit diagram, the circuit diagram is common up to eight
states, the only thing that will be different from design to design is the set of input
variables, inputs that you need to…[……….. 31:00].

There again, elegance is there, this is a very elegant circuit, implementation and number
of ICs, only three muxes, there are whole lot of gates even though these muxes are
functionally more complex, as I said, cost wise and everything else they are comparable
so we don’t have to worry about having to use multiplexers instead of gates. Now the last
three is again don’t care so I0 I4 and 1 2 3. The present state is 0, next state value is the
same as input value, the present state is 0 0 0, next state of C is 0 and X is 0 and if this is
1 X is also 1 so this has to be X again.

Next is X again because of this, the X value is reflected, C plus follows X when the
circuit is in state S1 so it is X and the next is 0 and the next is 0 and finally it is X bar. If
the circuit is in S4 state the input is 0 and output is 1, I mean when X is 0 the next state is
1 for C and if the input is 1 the next state is 0 for C so it is X bar.

I need to do horizontal mapping from here to here to here. Now we have finished this
circuit implementation and then the output is not completed. The output is again you
draw a Karnaugh map for the output because there are only four entries of 1 which is less
than the zero in number. Now I can draw a Karnaugh map to make a simple gate circuit
but if you want to use any multiplexer then it’s fine, I can give a multiplexer based output
also.

Now if you give the same input variables A B C, this is an 8 to 1 mux (Refer Slide Time
34:00) and the output of the multiplexer can be the output of my C but again it depends
on what present state the output is, the output is determined by the present state and the
input variable. In S0 state the X is 0 the output is 0, X is 1 the output is 1 and then 0 so it
goes like that. so I can use this same technique of drawing the multiplexer based output
so there will I0 to I7 that is 1 2 3 4 5 6 7 and it is 0 for this state, 0 for this state so for the
first three states the output is 0 anyway. For the first three states whether or not X is 0 or
1 whether or not X is 0, whether or not X is present the output is 0.

(Refer Slide Time: 34:50)

For the fourth state that means the S3 state if the input is 0 the output is 0 and if the input
is 1 the output is 1 so I need to put a X here (Refer Slide Time: 35:10). In the fifth state
again as the fourth state it is the same thing where the input is 0 output is 0 and if the
input is 1 the output is 1 X and we assume that the last three will be don’t cares so we
will put zeros anyway.

Because you have a state and the moment really going to the state if you have the output
as 1 and if you do not require an output then some glitch may be causing and triggering
something but this is only a practical tip, muxes instead of flip-flops driven by gates, this
is how I used a MSI, it is an implementer.

According to the state graph the output is defined by the present state and the input. This
is what the next state is, (Refer Slide Time: 36:26) when the circuit is in S3 and if the
input is 0, the next state is S0. And this arrow means that from S3 it goes to S0 but not
now but in the next clock edge. But now in S3 the output is defined as 0 if X is 0 and 1 if
X is 1 in this output corresponding to this state.

Because with the difference in Melee and Moore what did you say, in Moore machine the
output is defined for the state, in S3 state the output is defined, if it has a Moore machine I
will put a 0 here let us say this is also 0, this also is 0 and this also is 0 so put 0 here. In
Melee machine we are saying that the present state alone does not determine the output
but the present state and the input determines the output so the output corresponds to the
present state but not to the next states. This is the confusion sometimes people have.
Some of the books do not explain this very well. This is the present state output we are
defining.

(Refer Slide Time: 37:45)

Had I now used a prom instead of a mux that is even easier. There are four outputs which
are DA DB DC and C, so how many inputs I need? I need four, this can be considered as
a truth table. For a Prom implementation, so what is the size of the prom? This is the
address, the inputs to the prom is called as the address that means to tell you what has to
be stored in each of these locations in the prom.

There are four addresses that means there are sixteen locations so I need a size of 2 power
4 times four, so 2 power 4 is 16 and 16 into 4 is 64 bits, the answer is right but not
practical, if you buy a 64 bits prom it will have four inputs its four outputs I can’t
implement the circuits. So this is the size of the prom we need and the outputs are Z, this
goes into the three flip-flops I will not draw separately, three D flip-flops and the outputs
are, this is a standard block diagram of a sequential machine each is a flip-flop. You can
also use a four bit register and use the first three bits that is also possible, it need not be
three individual flip-flops.

For example, flip-flop come in dual, I told you 4 to 1 multiplexer comes as a dual chip,
you cannot by a single 4 to 1 mux but you will have to buy a dual 4 to 1 mux an used one.
If you want to by an inverter you will have to buy 6 a six pack we call it in US, if you
want to go for a beer you will have to buy a six pack, the price is cheaper,………..

The idea is to commercialize, try to drink more, six bottles you buy you try to consume if
faster than one at a time, that is the concept, commercial concept, driving the people to by
more and more, so two in one. Similarly, muxes are 2 in 1, D flip-flops are 2 in 1. So
anyway I have to buy two flip flps then a third flip-flop then I need to buy a two chip so
you can as well buy a four bit register because the register has a common clock for all the
flip-flops and four inputs and four outputs that I want. Therefore, sometimes you think
you are saving by buying three flip-flops but you will end up saving if you buy a four bit
register, I told this several times earlier.

(Refer Slide Time: 41:00)

Therefore, all I have to do is to program this prom as per this table. so present state the
first address is 0 I told you ……[…….41:40] so the prom table or the rom content table
as we call it, this is the size, the rom content table will be address content both in
hexadecimal so I can write 0 1 2 3 there is no need to see because it goes from 0 to f; very
first is 0 0 0 and the last is 1 1 1 f (Refer Slide Time: 42:19) so in the first word 0 0 0 the
word to be stored is 0, second location I need to store 0 0 1 0 is hexadecimal 2, this is
hexadecimal 4, this is hexadecimal 6.

(Refer Slide Time: 41:40)

The content is 0 2 4 6 0 8 0 so up to this (Refer Slide Time: 43:04) we will read and then
write one more column so after 6 8 0 it is 9 and here this is 4 5 6 7 so 0 to 7 so 8 0 and 9
is 7 so I will continue this table this side (Refer Slide Time: 43:45) continue so 8 9 A B C
D E F so after 7 it is 9 and after 8 it is 6 then 9. Now how would you put a don’t care in
the rom? I cannot write a don’t care in the rom because it is a physical address, I give the
address and I get the output.

Suppose a state exist or not or whether I give the address or not the corresponding words
should be read so I can make all of them same because whenever any of these sates occur
which is not going to happen I can always say that the next state is 0 0 0 something like
that I have to decide 1 1 1 may be. Thus, whenever a state occurs you put is back to the
state which is existing in the circuit usually the reset states so for the rest of these don’t
cares I will put 0 0 0 and the output is also 0 so I will fill all the column all the rows from
here to here.

Therefore, up to ten rows there are addresses which are valid, from tenth to fifteenth six
rows there is no output so I have to put a 0. I can put 0 all through. This is called the rom
content table. Therefore, take a rom of this size 2 power 4 times 4 get a rom rom
programmer from somewhere prom programmer from somewhere insert this prom in
your prom programmer and get each word and corresponding content; put 0 0 0; first put
a 0 address put the content as 0, increment the address by 1 put the content as 2,
increment the address by 1 put the content as 4 and finish the programming.

(Refer Slide Time: 45:50)

Then connect it to the flip-flops as shown here, the circuit works. This is again a MSI or
LSI based implementation. LSI or MSI here because the rom size is too small I do not
want to call in LSI. Usually roms and PLAs and PALs are classified as large scale
Integrated Circuits but then the size here is so small, it does not matter actually because
these definitions are not important, implementation scheme is more important.

How elegant it is?
One chip rom, we have the appropriate size, program it, there is one register with four
bits and a clock, that’s it, you give X and the output comes. Again convert this into
Programmable Array Logic, programmability wise, so this prom is a programmable logic
device, the next programmable logic device is PAL. For PAL I need to go little bit into
the thing I am not going to do it, I am going to leave it to you as an exercise. What will be
the size of the PAL, four inputs have to be given and four outputs need to come.

(Refer Slide Time: 47:35)

To this we will connect, I am not going to tell you what it would be, the only thing you
do not know is how many minimum number of min terms or product terms we can have
in reasonably. so determine the programmable logic PLA table that means we go for the
minimization of each of these variables A plus B plus C plus and C so each of those four
columns we have to minimize with as many common terms as possible then come out
with a list of product terms we need to generate and generate those product terms and
combine them in the OR gate. Then you can use a Programmable Array Logic also which
we will do in the next lecture.

