

Digital Circuits and Systems

Prof. S. Srinivasan

Department of Electrical Engineering

Indian Institute of Technology, Madras

Lecture - 27

Pattern Detector

(Refer Slide Time: 1:43)

So, we talked about Moore machines and Mealy machines based on the outputs. In a

Mealy machine a Mealy state graph the output at any state is defined by the state at the

input. So in a given state there can be more than one output because there are more than

one input possibility. On the other hand in a Moore machine the output is tied to a state.

A particular state will have only a particular output and the output will change only when

the machine changes from that state to another state. For example, if your machine is in

state S0 and there is an input variable called x so in state S0 if x is 0 the output can be 0. If

x is one the output can be one. On the other hand in a Mealy machine a Moore machine

we will say at state S0 the output is 0 the output has to change so it has go to another

state. So we will do some more machines the drawing of the state graph.

As I said that is the most important step, the reason I want to spend a little extra time in

this is this is a most important design step. If you have understood the problem very

clearly if the problem has been stated clearly to you by the user the client and you are the

designer first of course you have to understand the problem clearly of course that person

has to state the problem clearly to you and ask all questions to understand that there is no

ambiguity, that is one certainty. Having said that the first step is to draw the state graph.

Once you have the state graph the rest will fall in place. That is why I thought it’s

important and the designers job is to get a best state graph possible for a given set of

specifications. From then on to the rest of the design procedure is simple because this is

a standard procedure. Anything which is standard can be simplified and also even

automated. Today you have the age of computers and automatic design Computer Aided

Design they call it CAD or they call it e d a electronic design automation these are all the

industry terminology for automatic design but all that will come only after you have got

your state graph.

Of course the state graph also the computer can generate but then it may be sub-optimum

the designers creativity designers innovation the designers specialization can be shown

only at this stage of drawing a good state graph, that’s why I thought we will spend some

extra time and give you one or two more examples. Of course we will also do systems

later on and there also we will have to start with state graphs but here at this point in time

in our course since we are talking about state graphs just taking a state graph’s example

without any sort of overall system view I will just define a system with an input and

output and the conditions for which these outputs has to be there and then we will have to

draw the state graph. So let us take an example of a Mealy state graph.

(Refer Slide Time: 9:04)

Draw a Mealy state graph for a circuit with one input x with a serial input x and an output

Z that means at every clock pulse at the edge of the clock a new input bit is sent into the

hardware that means there is an input which comes, it can be same also, it is sampled

during every clock transition. the input is sampled at every clock transition, and if the

value is changed it will take a new value and if the value is not changed it will still take

the value as the old value so it will be a series of 1s and 0s. and then you want an output

Z is also of series of 1s and 0s and then the relationship between x and Z will be the

following.

Whenever there is a pattern, we did the pattern generator, Z should be 1 coinciding with

the last bit of the pattern 1 0 0 1 or 0 1 0 either this or that happens so if the input bit has

a pattern with 1 0 0 1 along with the fourth one output would be 0 0 0 1 here. Similarly

the input is 0 1 0 the pattern 0 1 0 is detected by the circuit and output Z should be 1

corresponding to this 0 during that clock period and for the rest of the time the output is

0. So we will also assume that overlapping is allowed, overlapping of the two patterns or

the same pattern repeated also has to be considered as completion of the pattern,

overlapping of the patterns should also be considered as (Refer Slide Time: 8:43)

that means there is a series of bits 0 1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 and that goes on, so

this is the sample input and output sequence.

We are looking for this pattern 1 0 0 1 here or 0 1 0, there is 0 1 0 here, there is 0 1 0

here, 0 1 0 here (Refer Slide Time: 10:05) so Z should be 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0,

this one is for completion of this 0 1 0, this one is for completion of 1 0 0 1, this one is

for completion of 0 1 0, this one is for completion of 0 1 0. It is a similar example to what

we did in the last lecture but slightly more involved in the sense there are two patterns

one is a larger pattern and then the overlapping is also there. So, we wanted a Mealy

machine that means from each state you will have to look at the possibility of x being 1

and x being 0 and you have to decide the next state and the output for each of those.

So let’s start with always 0 state reset set you call it S0, the input is 0. If an input is 0

output is 0 so it is x and Z, output is 0 go to state S1 so S1 state is a state where pattern 0

as been identified. It’s 1 from another state, x is 1 Z is 0 output is 0 and in this state 1

would have been registered or memorized or recognized whatever you want to call it.

Then S1 again can be 0 or 1 and if it’s 0 it’s not going to give you any extra information

so it can be the start of a new sequence 0. And on the other hand if it is 1 it will go to S3

because we have now identified a 0 followed by a 1 which could be the first two bits of 0

1 0 pattern.

(Refer Slide Time :12:50)

Likewise in S2 if 1 comes it could be the beginning of a new pattern so no extra output it

continues to be in the same state. And if a 0 occurs on the other hand it will be 1 0 it

could be the first two bits of 1 0 1 pattern because when you want to detect both of these

1 0 0 1 and 0 1 0. So if 0 occurs let us create a new state called S4 in which 1 0 will be

remembered. That means up to this point of pattern 1 0 as occurred and that’s what it

means.

Hence you have to proceed like this for each state until you have your patterns and no

more possibility is there. So in S3 0 1 if 0 occurs 0 1 0 pattern is completed and that could

be also part of 1 0 0, 0 1 0 could be the first two bits of 1 0 0 1 pattern which is already

here in S4 so if 0 occurs here you go to S4 which is 1 0 but you produce an output of 1 in

this case because we had completed it as pattern 0 1 0. The x is 0 leading it to 1 0 state

and a new 1, 1 is the output because 0 1 0 is now completed with this.

On the other hand if 1 occurs here it’s 0 1 1 but 0 1 1 has no meaning and only the last bit

1 is of any value so that is in this state S2. So 1 occurs here (Refer Slide Time: 14:55). So

we exhausted S3 and also finished the pattern 0 1 0. Now let us continue with S4 and see

how to complete the pattern 1 0 0 1.

S4 is 1 0 so if 0 occurs here that will be part of 1 0 0 1 so I will have to create a new state

for that S4 with 0. We can put a new state called S5 which will remember 1 0 0. There is

no output again because 1 0 0 1 only when that is completed we will have an output of 1.

When 1 occurs in S4, S4 is what 1 0 so if 1 occurs there is 1 0 1 and the first two bits will

be 0 1 0. So if 1 occurs in S4 it can go to 0 1 which is S3. So S3 and this is 1 0. Now S5

and in S5 if 0 occurs then it is 1 0 0 0. So 1 0 0 0 has no value except that the last 1 0 is a

value which is S1 so if 0 occurs then it is (Refer Slide Time: 17:00). On the other hand if

1 0 0 I if 1 occurs here the pattern is completed and the last 1 0 1 of that 1 0 0 1 could be

the part of the pattern 0 1 0 so S3 Z 1 0 0 1 S3 so I will have to go here. It is 0 with an

output of one because it has completed just now the sequence of 1 0 0 1 1 is the input and

1 is the output.

(Refer Slide Time: 17:39)

Of course from here we will have to the state graph state table and all that, we will talk a

little bit about it. but one thing I want to say here is the problem is simple, two patterns

and you can mentally sort of visualize the whole thing but the problem becomes more

complex. It’s not a pattern detector but some other problem or even a longer pattern or

more than two patterns. You will lose track of some of the combinations that’s already

been there. Of course you take notes here so do not worry about having creating an extra

state. thumb rule of any design is don't worry about extra hardware to start with. To start

with you make sure that all requirements are taken care of, all specifications are covered

completely. You can have hardware which is redundant.

Of course it is not efficient in terms of speed cost power but that is better than having a

hardware which will not work properly which is inaccurate, which will give an erroneous

behavior so when in doubt create a new state. Supposing you are in a particular state like

S4 and then 0 occurs whether it should go to one of the existing states or it should create a

new state of course if there is a simple thing like that you can always think for a minute

and visualize it and go there.

But in case if the diagram becomes longer, bigger and you are not able to really check all

the possibilities into account you can as well create a new state and proceed so you may

end up with more than the minimum number of states that’s not a serious difficulty even

though more states means more flip-flops and more flip-flops means more driving logic

and more driving logic means more and more hardware that takes more space, cost, more

money and consists more power. All that is fine but your system will still work because

you are taking care of all specifications. so do not be over worried about simplifying. of

course it doesn’t mean you should design inefficient circuits all the time but when in

doubt create a new state.

Later on of course there are techniques to make sure whether this is indeed the simplest

possible state graph, any extra states can be knocked off by a process similar to this

Karnaugh Map.

We went through the Boolean algebra, reduction of the terms, reducing the term to the

minimum using Karnaugh Maps, similar concept is also possible in state reduction. so

once you have a state graph you can reduce the state graph to the minimum possible

number. A state graph is a minimum possible number of states. Later on I can show you

how a state graph with more states than required can be reduced to a state graph with a

minimum number of states there is a technique for that.

Even if the technique is not available I would rather go with a conservative state graph

which will take care of all my possibilities rather than going and taking I will draw a

simpler graph and then ignore some of the possibilities. Between these two options I will

any day prefer the option in which I will have more states but I can solve the problem to

the entire specifications, that is one point I wanted to make here.

State reduction to minimum number of states that’s a technique of doing it. Many text

books talk about it now-a-days. If possible we will cover it even though I don't want to do

it at this stage.

The next thing is once you have number of states you must know how you proceed. You

have to assign the state now. there are six states 0 to 5 there are six states, for six states a

minimum of three flip-flops are required so you can sort and call these variables A B C or

P Q R whatever and then start giving 0 0 0 0 0 1 that is an arbitrary assignment. This is

called an assignment. Once you have a state graph which states symbols other than binary

values converting the states from symbols and letters into binary variables is called a state

assignment.

(Refer Slide Time :22:29)

So one is reduction of states, reduction of state graph, these are steps you need to do

which I said I am skipping at this point in time, second is the state assignment. State

assignment is a process of mapping or assigning binary values to the states. I cannot start

with 0 0 0 0 0 1 because I never know when I start a problem how many states are going

to be in total so how many binary variables I should get started with I don't know

otherwise I would have started with 0 0 0 here then I will go to 0 0 0 state will go 0 0 1

state 0 0 1 state will go 0 1 0 state so I can make a graph like that but I don't know

because I don't know how many variables I have to start using so I would probably start

with symbols and then later on after finding out how many states are required I will

assign.

Now I know how many state variables are required. Now I know that three state variables

are required so I am going to call them P Q R whatever. So I would say S0 is 0 0 0 and S1

is 0 0 1 making this assignment etc. This is called state assignment. this step of

converting the symbols state symbols into binary values is called state assignment. Here

again I can do it a little more efficient, this is an arbitrary assignment, natural binary

sequence I have taken and assigned it.

Finally the state values become the present state values and then the next state values

depending on the state graph and from there you go to the flip-flop inputs and outputs so

the Karnaugh Map is drawn based on the transition from the present state to the next

state. It is the simplification of the hardware finally. The hardware that we are going to

finally get, the steering logic we are going to get depends on the present state and the

corresponding next states. So from S0 the present state and S1 the next state what is the

best possible assignment of S0 and S1 so that a minimum hardware is required for

transition, this is also a problem of interest in reduction hardware. So there is a possibility

of optimally assigning the binary values to the states rather then randomly or arbitrarily

assigning as we did in this case, can I make a more efficient assignment, hardware

efficient assignment. by this what I mean is instead of blindly saying S0 is 0 0 0, S1 is 0 0

1, S2 is 0 1 0 instead of saying that can I use some sort of a rule and figure out which state

should be next to which state.

Whenever the state assignment of one state differs from another state in only one variable

these are called adjacent states. A 0 0 0 and 0 0 1 are adjacent states like the Karnaugh

Map. In Karnaugh Map adjacent cells differ only in one variable.

Like that in binary assignment also adjacent states are the states which differ in only one

value of the state variable and other state variables are the same so use some adjacency

rules. this is also possible. These are steps to reduce the hardware. This is very important

when it becomes for example from nine states I am able to reduce to eight states it’s a

significant reduction because instead of four flip-flops I can use three flip-flops. State

reduction becomes more meaningful if I can reduce the number of flip-flops. Even

otherwise it will be meaningful because if I have less states instead of six states I may

have four states even though in both case have used three flip-flops I will have more don't

care values when the number of states is less and when I have more don't care values my

hardware is simpler you know that. when I have more don't care entries in my state table

my hardware is simpler. So to that extent it will also impact the hardware but more

significant reduction is possible if you can even reduce the number of flip-flops.

The same argument I can hold here, if you have assignment states such that the transition

always happens from one state to the next state which is differing in only one variable the

switching activity or the transition is minimum that is also efficient. Again I am going to

skip this part of the thing this point. I want to tell you these are the things which are

possible which can be done and which should be done for efficient design but we will

have to first go through the design procedure and then later on if I have time we will do

it.

(Refer Slide Time: 27:50)

Why I am not giving lot of importance to these at this point in time it is because in

today's technology nobody bothers about hardware because gone are the days when you

have to count the number of gates. If you can do something with seven gates instead of

nine gates, seven gats instead of eight gates you are very happy I will reduce one NAND

gate. today as I said these ICs Integrated Circuits which have a large number of gates

inside then on one single chip I can have a gate equivalent function even though we call it

gates it does not mean that thousand gates will be sitting there.

There are functional parts functional blocks within that IC which are capable of

delivering the performance of above thousand gates. So what is the point in having a gate

with a performance like that and thousand gate and then reducing it from 767 to 734. You

can only say I have made it less. Of course little bit increase is there in terms of switching

activities less so to that extent there is a power saving but the size is the same and IC is

sitting in a board so there is some marginal advantage. Anyway there is some marginal

advantage. but the amount of advantage in terms of cost and the size and even the power

consumption is not as significant as the earlier days where each one is a separate IC. I

have to buy and put an IC, one AND gate means one extra thing I have to put, for one

multiplexer I need to put one extra thing, one flip-flop I need to put an extra thing so for

each one I have to go and buy an IC and put it there it takes more space, more power,

more money, more everything, speed is reduced so those days hardware reduction was

very significant.

Today it is we say thanks to the technology advancement called VLSI technology,

advances in VLSI technology. It is so common that everybody talks of VLSI even

without understanding what it is, they simply talk of VLSI. We have newspapers which

talk about VLSI courses. because of that this hardware is available in plenty, it is not very

important unless it’s a critical issue.

For example, if I have thousand gates solution nearly thousand gates solution which is

slightly exceeding thousand gates I will try to accommodate in a thousand gates solution

other than the next possibility which is two thousand gates. I would rather do some

exercise to reduce it to less than 1000 so that I can use a smaller IC than a 2000 gate IC.

So these are certain critical areas or certain speed issues when it comes to high speed

applications. Today technology both speed-wise and hardware availability-wise there is

plenty we don't have to worry about the speeds of normal applications except in very high

speed applications, high speed computing. Likewise hardware availability is enormous,

cost saving is minimal if at all there is any. because of these things only we are skipping

these steps now there is no point in doing it.

But at the same time as a designer if you want a digital design you should know that it is

available here, when you need you should be able to apply it. You may be an IC designer,

later on you may doing a very sophisticated IC in which every component is critical in

the sense of area and space and everything so you have to go and start optimizing block

by block you should know what are the techniques available to you for that so I don't

want to sort of not let you know that there are things like this which could be done but it

is not important especially in small systems like this. Talking about a pattern generator

with three flip-flops and a bunch of gates the whole thing is over which can be

accommodated in one small integrate circuit a Medium Scale IC M S I the whole design

is one M S I. I buy a M S I and put it there and it works so why bother about trying to do

some of these things. that is the reason I am skipping some of these steps now at this

point.

We will do an arbitrary assignment most of the time until we have time to revisit these

areas, let’s try to do some of these things if possible. So we will do a normal assignment.

from here you know how to do it that means I have do a state table which can be also

considered as a transition table depending on the type of flip-flops. So I have to say

present state input next state output, and the present state values are let us say PQR and

next state values are P power plus, Q power plus, R power plus and let us use D flip-flops

so that PQR are same as DP DQ DR and for other types of flip-flops I should be able to

use a separate thing. Hence this state table is also a transition table. The output is Z. So

we will have 0 0 0, 0 0 1, 0 0 0 0 and the last state is 1 0 1 and if x is 0 what happens, and

if x is one what happens and the other two states are not being used. And this row fully is

don't cares (Refer Slide Time: 34:33).

Remember that in the don't care also the output should be 0s. so you can complete this

table. you know how to do that from here, this is 0 0 0, this is 0 0 1 so 0 0 0s I will write

one entry, in 0 0 0 x is 0 it goes to 0 0 1 output is 0, in 0 0 0 input is one it goes to 0 1 0

and so on. Please fill this and design the circuit using D flip-flops and gates. That is an

exercise you can do it yourself, you have done enough of those by now.

This is how you start from a basic problem definition with very clearly stated specs. Take

all possibilities into account draw the state graph, from the state graph you do the state

assignment, reduce the state if necessary and if possible reduce the number of states, give

a state assignment either randomly, arbitrarily or using some thumb rules or design rules

to make it efficient and from there you go to the state table and design the type of flip-

flops, if the flip-flops are of the ordinary type then you draw a transition table which is

other than the state table and from there you draw the Karnaugh Maps and simplify and

then draw the gates, circuits the steering logic using gates and the flip-flops which will be

driven by this steering logic and then your circuit is over and then you start giving the

patterns and then test it, so build it and test it and then it works. This is only a sample

sequence you don't have to give the sample sequence, we should give any sequence.

whenever any sequence you give this pattern is identified and it should immediately give

an output of 1.

This is total procedure with a slightly involved I wont say it is a very complicated

problem slightly involved compared to what we did in last lecture. We will do one more

example of the state graph generation this time using Moore machine. We have not used

that so far, we have done only Mealy. So let us do a Moore machine state graph and the

rest of the things is easy. Once you have a state graph you know the state assignment and

I am not going to talk about all these things one more time. We will have a state graph

and from there you know the reduction is necessary then you go to the state assignment

these are arbitrary or efficient assignment and then this logic design using hardware.

Maybe we will use the same problem and instead only change this to MOORE here

(Refer Slide Time: 37:39).

This time we will not identify overlapping patterns, I will give you two variations. That

means I should clearly have a 1 0 0 1 output will be 1 that 0 1 will not considered as a

part of another sequence and again it as to start with 0 0 1 0 only then it can be a

sequence pattern so non-overlapping so I am going to reduce this, overlapping of the

patterns need not be done.

(Refer Slide Time: 38:29)

Design a Moore machine again for the same patterns and do not have to worry about

overlapping. We will always assume that when a pattern is completed it starts all over

again. That means after every output 1 you have to go the reset state and start all over

again. That’s what is non-overlapping. You start with a reset state, the pattern is

completed and since no overlap is allowed you have to start with the reset state and again

wait for the next pattern to come.

(Refer Slide Time: 41:05)

Now if you want to use the same sequence as an example, now 1 0 0 1 is identified here

but this 0 1 0 I will not recognize as a part of a pattern because it’s non-overlapping so

this 1 0 0 1 will produce an output of 1 until then the output will be 0. ((Refer Slide Time:

39:55) correction in slide) z is 0 0 0 1. So we have an output here because of this pattern.

Now this 1 0 0 1 gets knocked off then this 0 1 0 will also be identified since it’s a

separate pattern non-overlapping.

It’s only a sample sequence it can be anything and then 1 0 0 1. This type of input output

if you want. We have two variations in the problem that I have made. One is that we have

a Moore machine not a Mealy machine that means the output will be decided in the state

and not along the arrows the second thing is the reset of the pattern is detected and then

will start all over again. We will have to quickly draw the state graph and the rest of

things you will do it yourself as homework. Complete this also as a homework.

So let us start with S0 the reset state 0. now I don't have to draw the arrow, this and this

but i have to draw the output within this state. So usually you put S0 that means in this S0

state the output is 0 that’s what it means. Along the arrow we mark the inputs and inside

the state we mark the output. So we go to S1 and S1 is a 0 state remember, 1 S2 one state

members and now here it can be 0 or 1 and if it is 0 it continues to be in this state as long

as any number of 0s is there we have a S1 assuming that the latest 0 is the only 0 so 1 will

go to this (Refer Slide Time: 42:50), S3 is 0 1 state. In S2 if 1 occurs continue to be here

and if 0 occurs it will be 1 0 which is again new. Then you are in S3 it is 0 1 so 0 occurs

and the pattern is completed.

(Refer Slide Time: 43:42)

S2 to 0 will be 1 0 why 0 1 0?

We have 1 already here and here there is 1. Since already there is 1 here, we are here only

if 1 has occurred. if it is a fresh 0 it would have been here. This could be a new start, this

could be old 1 0 0 1 or starting of a new pattern here, it can either go here or here you are

saying. I think we will stick to this because we have two patterns to detect first so we will

consider that little later on separately. From here 0 occurs I would rather like to use that

as a pattern 1 0 0. If it is not going to result in a pattern then you are losing that extra 0

that’s what you are saying. S4 to S3 we are going to do it now. let us complete this.

Now in S3 if 0 occurs what will happen? 0 1 0 completed it will go to S5 I cannot go into

any other thing because output has to be 1 here, a new state in which output has to be 1. I

cannot go to one of the states that is already there because all those states are only 0s. So

this is 0 state, that is S5 0 1 0 if 1 is occurring here, this is 0 1 state, this has no meaning

this has to go here, the 1 occurring here will go here. Let us look at S4 now. In S4 if 0

occurs it will go to S6 so if 1 occurs it will go to S3 this is 1 0 1 so 1 0 1 would be 0 1. So

that is the 0 you are worried about and that 0 has now been taken care of, this 0 would not

have been lost now. You don't have to return it there because it would anyway go to the

S3.

(Refer Slide Time: 47:10)

So this is 0 now S3 and this is a1. So 1 we consider both arrows here, now S6 is 1 0 0. in s

six if 0 occurs there is no use because 1 0 0 0 has no meaning except the last 0. if on the

other hand in S6 a 1 occurs the pattern will be completed the output will be 1. So in S6 if 1

occurs we will go to S5 make an output of 1 and since there is already a state with output

of 1 we will put this output here. That means S5 is a state where we will have output 0 1 0

as well as 1 0 0 1 with both having an output of 1. And if on the other hand as I said if 0

occurs this 0 has no meaning and it could only be a start of a new sequence after

resetting, a new sequence 0 1 0 and that is where S1 comes into picture because S1

remembers S0.

So if 0 occurs it goes here. S5 is a state where an output is 1. that means we have

completed a sequence either 0 1 0 or 1 0 0 1. Whether 0 or 1 occurs it should only be a

start of a new sequence. If 0 occurs it will go to this S1 because that is the start of a new

sequence with 0 for 0 1 0 and if 1 occurs it will go to S2 because that is starting point of a

new sequence 1 0 0 1. So 1 will take you to the S2 state which starts a new pattern with

one start for 1 0 0 1, if 0 occurs it takes us to state S1 the start of a new sequence 0 1 0

here.

(Refer Slide Time: 49:50)

Now the diagram is completed. It has six states plus one so seven states totally. Again

we use three flip-flops. You can draw the state graph with present state values arbitrarily

assigned as 0 0 0, 0 0 1, 0 1 0, 0 1 1, 1 0 0, 1 0 1, 1 1 0 and then input x is equal to 0,

what is the next state, what is the output, of course output is different from the state now

so with input x is equal to 0 what is the next state then for each of the present state you

write the output that becomes the state table and depending on the type of flip-flop you

can do the transition table and finish the hardware.

So I leave the rest of the problem as an exercise to you. Draw the state graph using these

flip-flops, get the Karnaugh Maps for the next state variables as well as the output and

then draw the logic diagram of this. With this we will complete the state graph drawing

as an exercise. but of course you will visit this area again when you do a system design

naturally again state graph will become a part of the system design. Also, if time permits

as I mentioned earlier we will talk about some simplification procedure for reducing the

number of states and also for hardware efficient assignment. we will continue with more

concepts in system design from next lecture.

