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We have been looking at the circuits for arithmetic operations. We first considered the 
adders which are the most fundamental arithmetic operation and we have also talked 
about speeding up of adders, one example we took was the Carry Look Ahead then we 
talked about subtractors and subtraction being a complement of addition is taken into 
account while designing subtractors. Then the next most widely used operation in 
arithmetic computations is multiplication so we would like to see multipliers. Of course 
there are different types of multipliers depending on the speed and hardware; it is always 
the trade off. More hardware faster multiplication is possible but you need to spend more 
money. If you want to go for a smaller circuit with less hardware then it will take more 
time. 
  
Basically the multiplication as you understand from our paper and pencil method is to do 
this shift and add that is we take the two operands one is called multiplicand the other is 
called multiplier and in case of decimal numbers each digit of the multiplier is multiplied 
with the multiplicand you write the result which we will called partial product then we 
take the second digit of the multiplier and multiplier again with the same multiplicand 
write it down from the first partial product. But when we do that we do the shifting 
because we have taken the second position of the multiplier, while we write the partial 
product we write it with a left shift of one digit position to the left and we continue to do 
that till we exhaust all the digits of the multiplier and finally we add the whole thing to 
get the final product. This is an algorithm which you are familiar within our hand 
computations, it is called shift and add algorithm because we have to add it after shifting 
it. All the partial products are added together to get the final product but before doing so 
we have to shift each of the partial product to one bit position to the left. 
  
Of course the other method of doing it would be to add the multiplicand multiplier times. 
That is if you want to multiply a number n by another number m I can add n m times then 
also you can deploy but that is a very slow process and I need to do n additions. The shift 
and add is by far considered to be much faster and a more efficient method of 
multiplication which has been used in computers. But as we go for higher and higher 
speed whether the shifting has to be done one at a time or all at the same time because 
suppose we have only one adder we can get one partial product keep in a register or keep 
it in a storage then get the second partial product shift it and add it using one adder then 
that result I will keep in a storage then get the second partial product or third partial 
product again add it with the same adder so with one adder in theory I can accomplish the 
shift and add algorithm and if you have enough storage facility to store the multiplier, 
multiplicand and the partial results I can accomplish the whole multiplication in a series 
of additions one after the other. 
  



On the other hand if I have a series of adders if all the partial products can be add at the 
same time I can get the result much faster because all adders can be added, all the partial 
products can be added the same time. So, one is the serial operation one after the other. 
The partial products are added one at a time till we complete the process of partial 
product addition. The other is to have all the partial products feeding on to the adders at 
the same time and then getting the sum in one stroke. Such multipliers are again as I said 
expensive in terms of hardware but faster. So it is always the conflict between the 
hardware you want to spend you want to use and the time you want to allow.  
 
Of course this is only a simple scheme there are other schemes in which you can even 
make these things faster. For example shift and add can be made slightly faster by some 
innovation. Similarly this all parallel all adders at the same time can also be speeded up 
by some innovation. So speeding up like this Carry Look Ahead from the straight adder 
to the Carry Look Ahead adder and many other adder schemes which are faster we can 
also have multiplier schemes which are faster than the basic things. In basic thing though 
there are only three things we can recognize; one is the repeated addition which is 
inefficient, we have the shift and add with a set of adders, we repeatedly do a shift and 
add in which we use several adders where all work at the same time. 
 
(Refer Slide Time 7: 47) 
 

 
 
These are three schemes within each one we can speed up using many techniques which 
we are not going to get into this course. So what we will do today is to look at a circuit 
which will do the shift and add all at once such a multiplier is called an array multiplier 
or a parallel multiplier. Why is it called an array multiplier because it needs an array of 
adders. Array is lot of elements. So when we look at the circuit diagram we will know 
why it is called an array multiplier. Even array multiplier uses only shift and add 
algorithm. That means I have to have the numbers put in the proper position with 
appropriate shifting in order to get the final result which is correct. 
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Let us take a simple example of two 4-bit numbers. Let us say I want to multiply two 
numbers A and B each four bits a3 a2 a1 a0 is my first number and b3 b2 b1 b0 is my 
second number I multiply, all As and all Bs are either 1 or 0 these are binary numbers so 
As and Bs can only take values of 0 and 1. So first I have to multiply in a traditional 
multiplier paper and pencil multiplier this is not multiplication. Here (Refer Slide Time: 
9:40) this is called multiplicand and this is called multiplier. In the decimal system you 
take one digit of the multiplier and multiply it with the multiplicand and write the result 
which is called partial product because this is not a complete product so I will call it 
partial product or intermediate product. Then I take the second position of the multiplier 
again multiplying this by the same number and write the partial result but with a shift. I 
will keep on doing it will have exhausted all the digits of the multiplier and I have this 
partial products with proper shifting then add column by column. This is we have do it. 
Now we will do exactly the same way here except these multiplications are only one bit 

ultiplications. 
  
m

So if I multiply this by b0 this will be a3b0, a2b0, a1b0, and a0b0 that is the first partial 
product and the second partial product will be obtained by multiplying a by again b1 
which will be a3b1, a2b1. a1b1, a0b1 it is the same thing except that I have to shift it 
corresponding to the second bit position, from b1 I need to shift the partial product when 
I write it down. Third is I will go to multiply this same a3 a2 a1 a0 by b2 I will shift it 
again a3b2, a2b2, a1b2, a0b2 and finally this will be b3 (Refer Slide Time: 12: 01) a3b3, 
a2b3, a1b3, a0b3 add a over-up so this will result in one number and this is same as a0b0. 
Then this would be added I will write the result here, this also can have a carry because 

is is a bit and this is a bit a0b0 can be 1 or 0 again. th
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Each product a0b0 and aibj is a bit 0 or 1 so it can be used as 0 or 1 and if both are 1 there 
will be a carry. Thus I need to put the result and take the carry into this (Refer Slide 
Time: 12:51) add these three then take the carry here put the result here take the carry 
here put the result here take the carry here put the result here take the carry here put the 
result here, take the carry here put the result here, take the carry here put the result here 
nd I may get one more carry finally.  

e number can have fewer 
its but the maximum number of bits you can have eight bits.  

in these two numbers will be the 
aximum number of bits you can have in the product.  

bit. Here it is the sum these two. Now the question is 
ultiplication is very simple.  

a
 
Because in this one bit the carry of this will go into this and that can itself generate a 
carry. So how many bits will be there in the product? There will be 1 2 3 4 5 6 7 so there 
can be an eighth bit because there can be a carry here. So we have two 4-bit numbers and 
the result is it can be up to eight bits not necessarily eight bits but it can be depending on 
the numbers. Depending on the magnitude of the numbers th
b
 
Thus I will call this P0, product bit one P1, product bit two P2, P3, P4, P5, P6, P7 this is 
P2, this is P3, P4, P5, P6, P7. So it is eight bits from P0 to P7 so a maximum of eight bits 
can be there. The first thing you should know about multiplication is when you multiply 
two numbers the total number of bits that are resulting is that the sum of the number of 
bits will be two operands. One operand is called multiplier and the other operand is called 
multiplicand bits. The sum total of the number of bits 
m
 
In the case of addition we saw that when we add two numbers of the same number of bits 
the result can exceed by one 
m
 
As I said I have to add a3b0 a2b0 a1b0 a0b0 with a3b1 a2b1 a1b1 a0b1 at the first step. If I 



have a 4-bit adder with an appropriate shifting of the bit positions I can carry out this first 
partial product summation then I can use the same 4-bit adder and shift the results 
appropriately to get the sum of these two. Whatever I got as the sum of this can be added 
to this, I can repeat it. So I can do repeated additions using the same adder where I will 
take one row of the partial product another row of the partial product first complete the 
addition take the result feed it as the input take one more row of the partial product add 
them get the result put it as the input and take one more row of the partial product and 
complete the addition. In the algorithm both techniques are shift and add, shift and add 
with one adder not a single bit adder, since I need to add four bits I need to have an adder 

hich is a 4-bit adder. 

efer Slide Time: 16:32) 
 

w
 
(R

 
  
On the other hand I can have at the same time I cannot have these two numbers the result 
of this can flow into this the result can flow into this I can have many adders so that I can 
complete additions as fast as possible. This second version is called the array multiplier 
because I need an array of adders, rather than a single adder I need an array of adders that 
is called array multiplier, that is the most widely used multiplier today. When the cost of 
these devices as technology has improved, earlier we used to do this shift and add, in fact 
it was so expensive they used to take one single bit adder do the first bit addition and then 
the second bit addition then the third bit addition and complete one row and go to the 

xt row that is called bit serial. ne
  
Bit serial addition is bit by bit serially I will add. Then we go to this second stage where I 
have a parallel adder with four bits or six bits or eight bits or whatever is the number of 
bits I need to complete my partial product addition of one row to another row. I will take 
row by row so row serial. Instead of bit serial I will have a row serial now a shift and add 
hardware. But now I don’t even have to do that because the technology has become so 
inexpensive, the cost of these things are not at all concerned today, the size is not 
concerned, specification is not a concern, we are able to have large ICs Integrated 



Circuits in which all of these things are packed. When in that case why do we have to do 
all this one by one and delay the whole process. It is a question of resources. If we have 
enough resources to complete my project I can get it done as fast as possible of course 
under certain constraints assuming that all of them can be done parallelly. I cannot 
commit a lot of resources and do a project really fast if my project implementation is a 
serial sequential, the first step has to be completed before the second step is taken up. If 

at is the requirement of my project I cannot do it even though I have lot of resources. th
  
In this case we are assuming that all these additions can be carried out the same time, we 
have enough number of adders these are called product terms each individual term I will 
call it a product term a0b0 a1b0 a2b0 a3b0 each one of them is a product term so I will 
feed all these product terms with appropriate positions, with appropriate shifting in my 
adder array that’s why it is called array multiplier, array of adders and we get the result as 
fast as possible, such a multiplier is called an array multiplier. But how are you going to 
get a0b0 as these are all AND gates right? When you have two numbers 0 and 1 multiply 
by another number which is also 0 and 1 the only case the result will be 1 is when both 
are 1 and in all other cases the result is 0. Is it not as same as the AND operation? I have 
a and b, ai and bj. My individual product term aibj will give me aibj if both are 0 or if one 
of them is 0 the output is 0 and if both are 1 the output is 1. So each of these product 

rms can be generated using an AND gate.  

d show 
ou how to do the addition process. This is the circuit for which you will do this.  

te
 
So first resource I need to commit for my multiplier is as many AND gates as possible. 
How many? I need to generate ai and bj for each I where i is equal to 0 to 3 and j is equal 
to 0 to 3 so four times four is sixteen product terms I need to generate so I need to have 
sixteen AND gates. Assuming I have sixteen AND gates in which I will appropriately 
feed a0 a1 a2 a3 and b0 b1 b2 b3 proper combinations I will get aibj where i can vary from 
0 to 3 and j can vary from 0 to 3. So in other words I can have from a0b0 to a3b3 all these 
sixteen terms are available to me at one stroke. With that assumption I will go an
y
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This is the circuit of the array multiplier. I have already assumed that all these product 
terms are available to you using AND gates. If you want to just show this then in one 
case you can show this. I didn’t want to clutter this drawing with all the AND gates in 
each of this so I will just put an arrow with this product term. We have to assume that 
each of this product term is coming from an AND gate like this. So this AND gate will 
give you a0b0 and this a0b0 does not require any more additions, the last row the least 
significant column the least significant column this becomes a partial product b0, the first 

it of the product term.  

y is passed onto, the carry from this column has 
 go to the next column remember that.  

b
 
The first bit of the product term P0 is nothing but the a0b0 so that is why as I said is 
nothing but b0 here. If we take the second column I need to add a1b0 to a0b0, a0b0 and 
a1b0 have to be added, a0b1 a1b0 and a0b1 have to be added these two product terms are 
available to me I put it in an adder and get the result this adder needs to be a half adder 
because I have only two terms and no carry, I have two inputs and no carry so I need a 
half adder and the sum goes to P1 the carr
to
 
When I add the partial product of this column to get the product term corresponding to 
this column the carry from here should go into the next column so my carry has to travel 
to the next bit position horizontally. This is the carry of this adder this is the half adder I 
put with the symbol H for half adder and this is sum (Refer Slide Time: 23:45). In the 
third column I will have to first add a2b0 to a1b1 along with the carry from the previous 
column and then to that sum I should add a0b1 take it as my P2 term the product term, the 
P2 bit of the total product and if there is any carry resulting from that I need to go to next 
stage. So there may be a carry resulting from here, there may be a carry resulting from 
here. Since there are two additions two carrys can be done, each of these carrys have to 



go to the next column. The carry is always one weight higher bit position wise in 
hierarchy. So the carry from here would go here and the carry from this has to go to this. 
That is why I am having here a1b1 a2b0 adding to the carry of the previous this sum goes 
into this to complete the product term P2 I need to add a0b2 further but the carry has go to 
the next bit position so this is my carry (Refer Slide Time: 25:08) this is my sum and with 
this sum I have to add a0b2 to get the sum which is my P2 and this carry into this. So the 
carrys have to go into the next positions and the sum has to travel vertically, the carrys 
ave to travel horizontally. h

 
Now I don’t have to keep on explaining all these terms. you take each column and take 
two terms at a time, if there has been a carry from the previous position put it on the top 
of it add it get a sum if that is the last addition take it as the particular bit of the product 
but if it is not the last addition go to the next term in the same column keep on adding 
sum, sum, sum in all those columns in which it has to be added one after the other and 

y carry generated has to be pushed into the next bit position whatever at this stage. 

utput. So this is a full adder so full adder, full 
dder and full adder (Refer Slide Time: 27:40). 

an
  
So a0b1 a2b0 added to this previous carry gets a sum and to this sum a0b2 I get the 
product bit P2. This carry goes into this I am having a2b1 a3b0 so this carry is also taken 
into account and it provides another carry which has to go into the next bit position a1b2 
which is this sum and this will give me this (Refer Slide Time: 26:52) along with this 
carry. Make sure that you never have more than three inputs to be added because you can 
have two inputs is called a half adder and three inputs it becomes a full adder. You cannot 
have more than three. So this is a half adder because I have the sum from here and this 
new term, this is a half adder. All these are half adders, this has be a full adder because I 
need a carry in, these two terms, carry out and sum. A full adder will have a carry in, two 
bits as inputs, carry out, and sum as the o
a
 
So a carry from here is pushed into this next column, a3b1 is the first value in this 
column, if you draw it this way it is convenient I could have always pushed this full adder 
here because this carry is coming in a new term. But then if you don’t keep that 
symmetry of the drawing it is very difficult to understand what is happening. So it is 
better to map in your drawing the hardware the circuit for the schematic as exactly the 
same way as the bits appear in your multiplication. So this multiplication can be taken as 
the reference for drawing this. Otherwise I could have push it here it is not going to harm 
me because the carry anyway be there, the new term will be there and then I can push it 
then it becomes sort of confusing after some time. It is asymmetric as something else. 

his is better to look at this way now in this symmetrical.  T
 
This goes here, this carry goes here so this is a full adder, it is pushed to the next stage so 
this addition process the carry will go into this a3b2 will be added to this carry and this 
carry and then this will come to new and then finally this will be the last addition of these 
two terms that will go into this so this will be the last adder (Refer Slide Time: 29:32) 
where a3b3 will be put along the carry from the previous position and this may generate a 
carry because there is a bit here, a bit here and a bit here because it is a full adder so there 



may be a carry here so you have to put one extra carry. So this is the sum of the last full 
adder and carry of the last full adder.  
Therefore in this the notation is H the half adder, F is full adder, S is sum, C is carry, and 
this is the multiplier called array multiplier. This is the most elementary form of array 
multiplier. You can make changes in this and speeding up is possible. Also, we are not 
talked about signed numbers. Should the numbers be all unsigned numbers or signed 
numbers? If it is signed numbers are they represented as twos complement? How it is 
going to be handled. Because when you multiply with two numbers the sum of the 
product depends on the signs of the individual numbers. If one of the numbers is negative 
the product is negative and if both the numbers are positive or if both the numbers are 

egative the product is positive. The sign of the product is positive if both numbers have 

 

ND gates and how many adders totally? 
 is 4 times 3 so 12 adders out of which 4 are half adders and 8 are full adders. It is 4 half 

 a total of 12 adders. 

(Refer Slide Time 36:45) 
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same sign. If the numbers have different signs then the product will be negative.  
 
All these things would be taken into account. I am not getting into all those details. so
this can be improved further for speeding up, can be improved for handling for signed 
numbers, this is for unsigned numbers. I can do it for 8 bits, 16 bits whatever you want.  
So in general now I have used 4 by 4 multiplier this is called 4 by 4 array multiplier, this 
is the name. What is the hardware required? 16 A
It
adders and 8 full adders so
 

 
 
If you want to generalize this if you want to call it m by n then m is the number of bits in 
the multiplicand and n is the number of bits in the multiplier. The first number is called 
multiplicand and the second number is called multiplier. In this case b is n, n is 4 so it is b 
as n is the number of bits, for ‘b’ it is 4 and for ‘a’ also it is 4 so here in this case m is 4 
and n is 4 but what I mean by m is number of bits of ‘a’ and number of bits of ‘b’ is 

lled n. It is only a notation, you can do it the other way also or you can use p, q or x, y. 
But I am using this just to keep the notation straight. 
ca



  
So if you want generalize that there are m times n AND gates, there is a half adder in 
each row, one half adder in each row, each row corresponds to the multiplier bit as each 
multiplier bit gives rise to a product row, each multiplier bit gives rise to a partial product 
row so the sum of the half adder is same as the number of bits in the multiplier. So n is 
the number of half adders, what is the total number of adders? It is n rows but in each row 
since we are going to have only one less adder because of taking this into account (Refer 
Slide Time: 34:28) it is one less adder in each row one less than the number of bits so 
there are n bits there are only n minus 1 adders in each row but there are m rows so the 
total number of adders is n (m minus 1) (Refer Slide Time: 35:24) so the remaining is full 
adder. That means total adder is mn minus n so full adder is mn minus 2n or n into m 
minus 2 numbers of full adders. Therefore the number of full adders is the total number 

 adders minus number of half adders. 

number of adders half adders and full adders you have an estimate of the 
rdware. 

of
  
There is a problem here (Refer Slide Time: 36:12) this is mn minus 2n plus n becomes 
mn minus n, just generalize this so you have to idea now. Therefore I can do an 8 by 8 
multiplier, the m and n need not be same that is why I have given you as m and n 
otherwise I would have put n and n squared and all that. So I can have a different number 
of bits for the multiplier and for the multiplicand. So, if you know this idea the number of 
gates and 
ha
  
The beauty is the whole thing is available as a single chip not even a 4 by 4 but even 
bigger than that. And as I said this extra circuitry for speeding up, as I said speeding up 
always comes at the cost of something else remember that. And also the signed numbers 
the 2s complement numbers these unsigned multiplications, signed multiplier which 
speed up, larger number of bits are things that are available. Today fortunately it is 
hardware ICs so you can just plug it and use it, just plug it in your circuit and use the 
circuit for multiplication purpose. Now we are talking about this as an improvement from 
bit serial forget about it bit serial is olden days.  
 
That is you take only one bit full adder give a0b0 or whatever it is, for example you want 
to take one addition. Let us take this addition a1b0 a0b1 you put a0b0 a1b0 a0b1 into the 
full adder get the sum and the carry you should have some way of storing the carry till the 
new bits are put it the same full adder because I have only one full adder you remember. 
To this full adder I will have to get these two numbers I should have a way of keeping 
this carry till that time adding it at the right time and also keeping the partial products in 

orage places and all that. It was necessary when adders were expensive.  

to this (Refer 
lide Time: 39:17) and adding this to this that is called as I said row serial.  

 

st
 
When adders became very cheap when the Integrated Circuit technology became so easy 
to fabricate and so inexpensive, now nobody talks of bit serial multiplier today but until 
recently the debate was between partial product and one multi-bit adder, not a single bit 
adder as in the case of bit serial adder but one multi-bit adder which will be repeatedly 
used for first adding this to this and then adding this to this and adding this 
S



Row serial was until recently being used because of the expensive nature of these array 
multipliers. Again as I said in the class room we can do a 4 by 4 and in the textbook you 
can find a 4 by 4 but you want to do a real job four bits is only sixteen 0 to 15 numbers 
and out of these you signed arithmetic it is plus or minus seven in the case of ordinary 
sign magnitude minus 8 to plus 7, it is such a small range and nobody used this as a 
multiplier, you can do it by mental sum, by tables. 
  
Therefore we are talking of a 16-bit multipliers, 32-bit multipliers, 64-bit multipliers so it 
all exponentially grows the number of gates and full adders and all that. It becomes cost 
effective to do this because the speed has become such a critical issue today. We are 
talking of computers which have to work in nano second clock cycles. Therefore 
naturally I need to have hardware for multiplication which should be very very fast, and 
the only way to achieve is we have all of them available at the same time (Refer Slide 
Time: 40:52) so commit as much resources as possible to get the job done as quickly as 
possible.  
 
Having said that is it all that fast we will have to see, because after all they are adders and 
adders suffer from carry propagation, we saw it in adders, carry propagation is a big 
issue. Here also there is carry propagation, this carry has to go here and then trigger this 
and this sum will go, of course there is no worry because until I have P7 I cannot use this 
product. So let me see how quickly I can get P7. I cannot do the full product until all the 
bits are in place. 
 
(Refer Slide Time: 41:34) 
 

 
 
So, even though the sum may take more time once this carry is available here this would 
be fired and this sum will go here and carry will go here, I will not worry about this path 
anymore but I will worry about what happens to this carry how fast can I get it here. 
Similarly how fast can I get this carry here, how fast can I get this carry here how fast can 
I get this carry here, how fast can I get this carry here, how fast can I get this carry here 



(Refer Slide Time: 41:59) and how fast can I get this carry here. So the number of carry 
is this 1 2 3 4 5 6. If I call Tc as the carry time or carry propagation time and Ts as sum 
propagation time of an adder. In fact for symmetry sake you have uniformity don’t worry 
about few half adders. If we are talking about 64 by 64 or something like that you may 
talking of so many adders a small number of them needs to be a half adder and need not 
be taken into account, you can have them all as full adders with carry 0 that is not a big 
issue. So we will not worry about propagation time separately. 
 
We will call it Tc the carry propagation time and Ts is the sum propagation time of an 
adder whether it is full adder or half adder we will assume this to be the same, the speed 
would then be here, this is available after Tc and this is available after Ts where Ts is the 
sum time. This is available instantly. I am not considering the add time. If I consider add 
time it is an extra time, TA as the AND gate time. So TA is common to all, all product 
terms are available after TA so I will not worry about it now, finally I can add this TA so I 
will have put TA plus TA and all that. So this is immediately available after TA, this is TA 
plus Ts and this will be TC plus 2Ts (refer Slide Time: 44:05) this is 2Tc plus 3Ts because 
1Tc, second Tc, Ts, Ts, Ts and this will be 3Tc plus 3Ts and this is 4Tc plus 2Ts and this 
is 5Tc plus 1Ts and this is 6Tc. 
 
(Refer Slide Time: 44:50) 
 

 
 
Therefore this term is available after six Tc after the multiplication has started, this term 
is available at 5Tc Ts after the multiplication has started etc. Usually Tc is more than Ts if 
you assume that. Of course you can always make an adder in which Tc is faster than Ts. 
So, if Tc is greater than Ts I will not worry about this Tcs because 6Tcs is the largest 
number of Tcs so the propagation time is 6Tc and the multiplication time is; TA plus 6Tc 
and 6 is only a number for this particular combination in generated there would be n 
minus 1 plus m minus 1 one less for n and one less for m or this will be TA plus this 
(Refer Slide Time: 46:30) this is the time at which I will get the final result.  
 



(Refer Slide Time 46:41) 
 

 
 
Or in general it is this (Refer Slide Time: 46:51). If on the other hand you have a circuit 
which is efficient because many times you have a circuit Tc is faster than Ts because Tc 
has to carry on and Ts is only local. Ts is a local phenomena, the sum propagation is a 
local phenomenon and carry propagation is the global phenomenon, it has to go. So 
because of that many times you want to optimize the circuits and it configures such that 
Tc becomes smaller than Ts, if that is the case what will be happen? If Tc is less than Ts 
then the propagation time will be TA plus 3Tc plus 3Ts or in general it is TA plus (n 
minus 1)Ts plus (m minus 1)Tc it is the same as this that is why I wrote both. 
  
Here this is also important Ts. Even though this carry would have to propagate I have to 
wait for this. In 3Tc this is available after this, 3Tc is common between these two, this is 
6Tc and this is 3Tc (Refer Slide Time: 48:39). But after this time for another 3Tc time 
this is available whereas for another 3Ts time only this is available. Now Ts is larger than 
Tc that means this P4 is going to be the last not P6 but earlier we said P7 was the last to 
arrive. Now because 3Tc is common between these two 3Tc after this is available and P7 
is available slightly earlier because Tc is smaller than Ts whereas 3Ts is going to take a 
little more time so P4 will be the last to arrive so I will have to take that into account 
again in n minus 1 m minus 1 form. 
 
So why did I say all these about the speeds. I said I am committing a lot of hardware 
here. Instead of a row serial addition I am having an array of instantaneous addition. I 
hope to achieve instantaneous, moment the number A and B are given I want the product 
P which is A times B but of course it is limited by hardware which is AND gates and 
array of adders. We have to make sure that this is faster than this. of course there are 
techniques to speed up the process but as I said I am not going to discuss those things in 
this class but the point is you have to see whether the resources you are able to get 
whatever you want but if in spite of that you are not able to get this speed I don’t want to 
use it. Before committing a lot of resource you have to make sure that you will get the job 



done in the time required. If you cannot still meet the dead line what is the point in 
committing lot of resources to that. So I can think of another way of improving. 
 
Can I get some more resources to speed it up or reach a point to know that technology 
cannot deliver what I want so I will go back and do the old version way, something like 
that? 
  
With this we will conclude the arithmetic circuits. We talked about adders, half adder, 
full adder, multi-bit adders, fast adders, Carry Look Ahead adders. There are many other 
fast techniques which I have not considered in this class. We talked about subtractors and 
subtractor being 2s complement of adders. We talked about multipliers in different 
schemes and then one of them just to give you the flavor of the multiplication hardware.  


