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In the last lecture we saw some examples of designing combinational circuits starting 

from specifications through the truth table and the Karnaugh Map. We took the examples 

of code converters which are a class of or type of circuitry in digital electronics used 

frequently. We talked about a BCD to Excess - 3 converter also a binary to gray code 

converter. I also mentioned about parity generators. I mentioned parity is a concept used 

to detect errors. A single bit error can be detected using parity. so what we do in a parity 

generator is to send a bit stream of a given number of bits and you also send an extra bit 

that bit will tell whether the total number of 1s in the bit stream that you have sent earlier 

is odd or even.  

 

So, for example, if a four bit stream bits are sent in groups of four bits the total number of 

1s in a group of four bits is 1 and a fifth bit will be sent called a parity bit. The number of 

1s in the four bits data bits originally sent is odd we send an extra one. If the number of 

1s which is sent is even you send a 0 indicating the number of 1s is even. So this extra bit 

is called parity bit you can have an odd parity or even parity again you have to define it. 

So the receiving side should be able to receive the parity bit and check whether your data 

matches with that. it is not necessary should always send an odd parity as 1 and even 

parity as 0 you can also do it even parity as 1 and odd parity as 0. As long as there is a 

complete communication understanding between the sender and the receiver the sender 

this is called protocol. 

  

Protocol is defined as, they know what will be the total number of bits we are going to 

send in each group of data and they should also know whether you are going to send a 

parity bit or not at the end of group of data, they should also know whether you are 

sending an odd parity bit or even parity bit. So once you understand the protocol on both 

sides it is used for communication and as I said in the last lecture it is not a very 

sophisticated scheme it is a very simple scheme. all you can do is a detect if there is a 

single bit error in your data stream, if there is a double bit error then you can’t do it two 

bits have changed you can’t do anything about it. So this is one simple scheme. 

 

The idea of introducing this is whatever is the protocol you define is always a way of 

designing digital circuits for that. You give an example of all of those things you see in 

communication and telephony in control everything is finally digital and everything boils 

down finally to design of digital circuits using the specification, truth table, Karnaugh 

Map, gates the procedure and to highlight that I am taking a simple example. So in this 

example what we will do is a four bit odd parity generator. That means I am going to 

send four bits at a time and the parity bit will be 0 if the number of 1s is even that is why 

it is called as odd parity generator error. Odd parity will be generated or a parity bit will 

be generated whenever the parity is odd. In this case parity is odd because the number of 



1s is 1 so I will have 1 at the output. So whenever the number of 1s in the group of four 

bits is odd a 1 will be generated by the parity generator and whenever it is even it will not 

generate a bit that means it will be a 0. And this is for a four bit I can do it for a five bit 

six bit seven bit as I said ASCII code is a seven bit code, you are sending ASCII 

characters ASCII data and I would like to have an eighth bit as a parity bit because seven 

bit ASCII code eighth bit will be a parity bit. These are all various schemes or protocols.  
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Now given this you have to look at this table and see in each of the sixteen rows using 

four bits this is the binary bit we are sending b0 b1 b2 b3 find out the number of 1s if it is 

even put a 0 here if it is odd put a 1 here and 0 is assumed to be even. And now I want to 

design a circuit which will make this generation of parity bit possible from this data. that 

means my hardware is 4 - bit odd parity generator and the inputs of these are the four 

binary bits and output is p odd and this is the Karnaugh Map 0 1 1 0 I just mapped this 

truth table into this four variable K’ Map b2 b3 b1 b0 being the four input bits. 

  

Now the next step is to simplify this reduce that using grouping of the 1s. Is there any 

grouping possible at all in this map? All are individual 1s so how many terms will be 

there in the final output? So if you write P odd will be, each of these 1s is an individual 

term it cannot be combined because all the neighbors all the adjacent cells are 0s for any 

given 1. For any given 1 all the adjacent cells are 0s so you cannot group them at all 

together so there will be eight terms. But as you see here there is a nice pattern here an 

alternate one, checker board pattern they are called chess board or checker board pattern.  

 

So whenever it is a chess board or checker board pattern there is a hardware 

simplification possible using Exclusive OR gates. Even though you cannot directly read 

an Exclusive OR gate from a Karnaugh Map one can do a further simplification of the 

minimum sum of products using Exclusive OR gates. And if you are experienced enough 

you can even read the pattern of the Exclusive OR from the map. Since it is a first 



exercise you are doing of this type I will write it in the conventional way sum of products 

and then simplify it to show that this pattern is nothing but the Exclusive OR pattern so 

each of these 1s is an essential prime implicant which has to be in the final expression. 

All the essential prime implicants have to find a place in the final expression so each of 

these terms can be written quickly b3 bar b2 bar b1 bar b0 plus b3 bar b2 bar b1 b0 bar first 

two terms, the second two terms are b3 bar b2 b1 bar b0 bar plus b3 bar b2 b1 b0 plus these 

two I can write as b3 b2 bar b1 bar b0 OR plus b3 b2 bar b1 b0 and finally these two b3 b2 b1 

bar b0 plus b3 b2 b1 b0 bar. Therefore all the eight terms have been written. This is if you 

want to do a minimum sum of product expression with traditional Karnaugh Map 

simplification Karnaugh Map reduction this is what the solution is.  

 

It looks like we need eight input OR gate each of the eight input OR gate will come from 

an AND gate with four inputs and all the variables b0 b1 b2 b3 have to be inverted. So 

there will be four inverters to invert variable b0 b1 b2 b3 and eight AND gates to combine 

these eight terms followed by an eight input OR gate, it is too much logic. So let us see 

we can simplify it. As you can see you look into the pattern you can simplify this. This is 

common so I can combine these two terms as b3 bar b2 bar (b1 bar b0 plus b1 b0 bar). You 

know that b1 bar b0 plus b1 b0 bar is Exclusive OR b1 b0. Likewise we can say for this as 

b3 bar b2 (b1 bar b0 plus b1 b0) and this is Exclusive NOR. 

  

Next is b3 b2 bar (b1 bar b0 bar plus b1 b0) and finally b3 b2 (b1 bar b0 bar). This is 

grouping, I have grouped each of these, two terms in each row, that’s all, very simple. 

Now this is common to these two b1 bar b0 bar b1 b0 bar which is Exclusive OR b1 and b0 

is common to these two terms so I can take it out and say (b1 bar b0 or b1 b0 bar) (b3 bar 

b2 b3 b2). This is combining this and this.  
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These two terms are common (b1 bar b0 bar OR plus b1 b0) which is Exclusive NOR (b3 

bar b2 plus b3 b2 bar). What we can do is; further start writing it as Exclusive OR b1 



Exclusive OR b0 b3 Exclusive NOR b2 but I am going to write it as Exclusive OR b2 bar. 

Exclusive NOR is same as Exclusive OR bar so I am taking this term and writing as 

Exclusive OR (Refer Slide Time: 15:34) OR (b1 Exclusive OR b0 bar) for this term this is 

(b3 Exclusive OR b2).  

 

Now if you call this b1 Exclusive OR b0 as another P, this is Q same as P Q bar OR P bar 

Q where P is b1 Exclusive OR b0 and Q is b3 Exclusive OR b2, P is this and Q is this. Just 

identify them just for the sake of identification. That means really it is b1 Exclusive OR 

b0 this is nothing but P Exclusive OR Q, this is P Exclusive OR Q PQ bar OR P bar Q so 

P is nothing but b1 Exclusive OR b0 Q is nothing but b3 Exclusive OR b2 so the whole P 

odd is b1 Exclusive OR b0 whole Exclusive OR (b3 Exclusive OR b2) by law of 

commutation. I can also write it as (Refer Slide Time: 17:40) b0 Exclusive OR b1 

Exclusive OR b2 it is a very nice pattern so this pattern can be identified as Exclusive OR 

pattern. 
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I think we had this in the gray code somewhat similar to this the gray code simplification 

that you saw in the last lecture some what similar pattern so now the hardware is so 

simple all we need is three Exclusive OR gates so I can give b0 and b1 and that will be 

given to b2 this will be given to b3. So if I give four bits this is my hardware the logic that 

we had inside this box. The four bit odd parity generator here is nothing but three 

Exclusive ORs contained this way, this is the 4 - bit odd parity generator and by 

induction we can prove that I can use any number of bits 7 - bit ASCII code so all I need 

is six Exclusive OR gates to produce the parity. Even parity may be Exclusive OR or 

Exclusive NOR combinations slightly different you will have to work it out whether it is 

odd parity or even parity. 
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The beauty of the Exclusive OR Exclusive NOR combinations is one is the complement 

of the other. So if you take an inversion of an Exclusive OR you get Exclusive NOR and 

when you take the inversion of Exclusive NOR you get Exclusive OR.  

 

Hence because of that whether it is odd parity or even parity is a question of one 

inversion again. So these are some of the practical circuits we use all the time in data 

communication; transmission and parity checking. Parity generation parity checking is an 

integral part of any data communication. As I said this is a very simple communication 

protocol for error detection of a single bit correction but if there is more than one bit and 

there are multiple errors and what you do with the error being detected how do you 

correct it? So as I said it is a huge communication subject by itself where error correction, 

error codes, error detection, error detection techniques which type of codes are most 

amenable for detecting errors and all those things, that is not the subject of this course so 

we will not dwell too much on it. Finally everything reduces to logic hardware, gates, etc 

that is the point I want to make.  

 

Are there any questions on this? So you can now do it for different number of bits odd 

and even parity and for all those combinations. Let us see one last example in this series 

and then we will move on to arithmetic circuits. Whatever examples I have been 

discussing or standard circuits are used repeatedly in digital system design. The 

application may be different application may be communication or as I said error control 

or switching activity reduction there may be different reasons coding, security but these 

are standard circuits used again and again. So I am picking up those circuits but the 

concept of design is the same. Solving the problem, specification is very clearly defined 

going to the truth table to the Karnaugh Map with simplification and hardware.  

 



Sometimes from the minimum sum of product you can directly implement this logic but 

sometimes you may have to do some extra manipulation as in this case. We also saw this 

in the case of the gray code generator, some sort of a grouping helps in reducing the 

hardware further. This looks so formidable eight gates each with four inputs and inverters 

for each one of them followed by eight into OR gate this is so elegant. So those types of 

things also sometimes are possible. Hence as I said the last one from this example we will 

take today which is called as the 7 - segment display decoder.  

 

Again we will say BCD to 7 – segment display decoder what do you mean by this? we 

are used to decimal numbers in arithmetic, in data presentation, in displays and 

everything, we are standing in front of a counter in a bank they keep putting the display 

of the number and what is the number that is being currently service it is a decimal 

number and I don’t think you would like if the number is given in binary form. But then 

as I said digital logic is always for binary number. So some way we are converting 

decimal to binary that is what we do all the time using four bits and BCD means 4 - bit 

binary we will take for each of the digits rather than convert the whole number of 

whatever magnitude convert into binary by repeated division by two that is the technique 

used instead of that you take each digit of the decimal representation and convert into 

corresponding binary this is called BCD representation.  

  

So, when you do a BCD representation you give the binary numbers bits either for code 

conversion or arithmetic all that we will be only doing binary, digital logic, the circuits 

inside, gates and other sequence of circuits that we are going to discuss later on so all of 

them are going to process binary numbers but I want to give input as a decimal so I have 

a BCD converter.  

 

Similarly, after the result is out I need to have a decimal display rather than a binary 

display. So this is called BCD to binary. once I have done this process and it is a BCD, at 

the output of my process there is a decimal number coded in the binary form but I want a 

decimal display so a four bit binary number from 0 to 9 using four bits has to be 

displayed either in a clock or any other place you want to display number as a decimal 

number so we need to have sort of an interface or hardware for that. So this is what it is 

going to be. Thus I have a BCD number b0 b1 b2 b3 this is a binary coded decimal number 

0 to 9. That means it will be 0 0 0 0 to 1 0 0 1 ten combinations will occur here and each 

of these combinations should produce a display, (Refer Slide Time: 25:22) this is the 

display decoder we are trying to design. What is the display look like? You have seen the 

displays all over the place.  

 

So, depending on the number you want you can use this display. for example, if it is three 

you want to display or if you want to display five the standard display we will use for 

displaying by any BCD number from 0 to 9 if 0 would be this then 9 would be this, some 

people will do it this way for their understanding this is good enough and 8 would be all 

these segments which would be right up. So each is a segment which is independently 

controlled, these are LEDs Light Emitting Diodes. These are Light Emitting Diodes 

which are individually controlled to light up for the particular number you want to 

display.  



 

Suppose I want to display 3 I need to light up this LED, this LED, this LED, this LED, 

and this LED (Refer Slide Time: 26: 45). If I want to display 1 I need to light up these 

two LEDs. If I want to display 0 I need to light up all LEDs except this bar. If I want to 

display eight I need to light up all the LEDs. So I should produce the corresponding 

signal so the particular LED will be lit up or not, that is the function of this BCD to 7 - 

segment display converter. This is called 7 - segment display because there are seven 

segments. We will call these segments a b c d e f g, a to g has seven numbers so each of 

these segments we call it seven segments, a display can be made up using seven segments 

and each of these segments can be controlled by an LED which can be independently 

turned on or turned off depending on the requirement. If a particular segment has to be lit 

up the LED should be turned on. if a particular segment should not be lit up then that 

particular LED should not be turned on it should be turned off.  
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So how many outputs do I need from this? I need seven outputs called a b c d e f g 

depending on the code of the number I am giving here 0 to 9 this is 0 this is 9 depending 

on the code of the number I gave the corresponding LED should light up. If I give 0 0 0 0 

I want a b c d e f to glow g not to glow. If I give five 0 1 0 1 that is five 0 1 0 1 is five so I 

want LEDs a c d f and g to glow and all others not to glow. If I want eight 1 0 0 0 is eight 

then I need all a b c d e f g to glow. So I like to write the truth table for each of these 

segments.  

 

What are the combinations for which ‘a’ should glow? What are the combination for 

which ‘b’ should glow? What are the combinations for which ‘c’ should glow? ‘d’ should 

glow, ‘e’ should glow, ‘f’ should glow, ‘g’ should glow and then draw a Karnaugh Map 

for each of these segments, simplify it and do the logic then I have a 7 - segment display 

decoder which is used everywhere. You can see in an elevator you have the 7 - segment 

display, clocks have this as I said in the waiting rooms and other places wherever you go 



you have the seven, these are only the numbers, you also have the ASCII display 

decoders. When you want to have messages which has non numerals also alphabets and 

special symbols, punctuation marks it’s all possible, same logic here too, give the code 

tell me what are the LEDs I should make to glow and what are the LEDs I should switch 

off then I will have the final count.  

 

So we will write the truth table for this, the inputs are as I said b0 b1 b2 b3 and the outputs 

are 7 in number a b c d e f g. this is a four input seven output truth table four input will 

have sixteen rows out of which you will be concerned only with first ten rows 0 to 9 and 

11, 12, 13, 14, 15 are going to come because for one single display I cannot put a 10 or 

11 or 12 or 13 so all we need is 1 0 0 0, 1 0 1 0, 1 0 1 1, 1 1 0 0 these six rows (Refer 

Slide Time: 31:38) are not used so they will have big don’t cares. I want to put one big X 

all the columns are don’t cares for all of these rows. For the six rows ‘a’ don’t care, ‘b’ 

don’t care, ‘c’ don’t care so I don’t want to go on writing that so this big X means I don’t 

need any of these a b c d e f g is not defined for these last six rows. 

 

So let us quickly do this for one segment. What are the numbers for which ‘a’ should 

glow? Let us list them and then put the corresponding table. ‘a’ should glow for 0,2, 3, 5, 

and depends on how you define 6 so we will have 6 like this. If you also have alpha 

numeric characters then this will be used as a small ‘b’ and in that case I will put 6 like 

this. If I am only doing numerals I can have 6 like this also. We have both numerals and 

alphabets this may be considered as a small ‘b’ so you can put a cap on the top. so to 

make it simple I will have six of this type so ‘a’ will not glow for 6, and ‘a’ will glow for 

7, 8 of course all of them will glow, and 9 because 9 will be like this, this is my 9. So ‘a’ 

will glow for 0, 2, 3, 4, 5, 7, 8, 9. 
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Any questions does any one not understand what I am saying? It looks simple to me at 

least but if it is not clear please tell me. We will do one more segment to make sure that 

you understand.  

 

Let us say what are the numbers for which the segment ‘g’ should glow? The segment ‘g’ 

need not glow for 0, for 1 it need not, 2 yes, 3 yes, 4 yes, 5 yes, 6 yes, 7 no, and 8, 9. This 

is how we can finish for a b c d e f g and then map it on the Karnaugh Map. Now in the 

Karnaugh Map corresponding to ‘a’ you put one for these segments 0, 2, 3, 5, 7, 8, 9 and 

rest of them are don’t cares as I said. 

  

Similarly we will write for ‘g’, for 0 it doesn’t glow, 1 it doesn’t glow, 2 it glows, 3 it 

glows, 4 it glows, 5 it glows, 6 it glows, 7 it does not glow, 8 it glows, 9 it glows. We can 

finish the rest of the table identifying the segments, identifying the codes or the numbers 

from 0 to 9 for which ’ b’ should glow, ‘c’ should glow, ‘d’ should glow and so forth. So 

having done that our next job is to do the Karnaugh Map for ‘a’ identify the simplest 

possible solution and then implement it using gates then do it for ‘b’ then do it for ‘c’ 

then do it for ‘d’ ‘e’ ‘f’ ‘g’.  
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So let us do it for ‘a’ map for segment ‘a’ K’ Map for segment ‘a’ b3 b2 b1 b0 it is 1 0 1 

1, 0 1 0 1, 1 1 this is the map for ‘a’ segment. Now let us simplify this. These four 

corners (Refer Slide Time: 37:32) can be one grouping and all these four corners the 

power of don’t cares you can see here.   

 

I did not know the hardware simplicity at that time. for some reason we made 6 like that 

as I said small ‘b’ and all that numerals, if we put an extra 1 here you mean then it will 

become simpler fine but I am assuming ‘a’ will glow for 6. This is the second iteration. 

You design for a customer, the customer tells you my 6 should look like this. You come 

to the drawing board and do the design and tell this fellow if you can let me do this 6 like 



this I can save you half a cent by reducing some hardware then he may fall for it. So it is 

a second iteration. Having specified the problem I already defined 6 as this and 9 as this 

so let us not go back on that. It can be done I am not saying it should not be done but 

there should be a reason for doing that. 

  

Now what is the expression for ‘a’ minimum sum of products? First you use this four this 

will be b2 b0 then this will be b3. Usually it is the convention not a rule to write the 

smallest number of literals and then larger number of literals progressively. So b3 then 

this is b2 b0 this is this, and these four will be b2 bar b1 and then these four would be b2 

bar b0 bar.  
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What is the last one? b2 bar b0 bar. So we will draw the gate structure for this. Display ‘a’ 

would be b2 b0 bar, I am assuming b2 bar b1, b2 bar b0 bar and I am assuming b0 b1 b2 b3 

have been inverted already because all of these segments will require b0 b1 b2 b3, b0 bar b1 

bar b2 bar b3 bar we don’t have to show inverters every time. Inverters can be done once 

in the beginning to cater to all the segments and the last one is b3. Therefore whenever 

these conditions occur ‘a’ will glow and then ‘b’ will glow and ‘c’ will glow and then 

finally the combination of them will make different digits glow. 
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So we will quickly do it for ‘g’ may be because you have already written ‘g’ just 

complete the example. Map for ‘g’, what are the segments for which it is 2 3 4 5 0 1 2 3 4 

5 6 7 8 9 this is map for ‘g’. So ‘g’ is, this is one term (Refer Slide Time: 44:24) another 

term, another term, another term, this is b2 b3 then what is this term it is b2 b1 bar, this 

term the last one b1 b0 bar and this would be b2 bar b1. So you have to check these terms 

when you do it one more time to check all the terms are right both in terms of the literals 

and the bars. So this would be again a simple b2 b0, b1 b0, b2 b1 so this is b2 b1 bar, b1 b0 

bar, b2 b1 and finally b3 all of them together.  

 

So likewise you can complete this exercise for other segments b c d e f and also check 

this ‘a’ and ‘g’ to make sure that all the entries are right. We can do a little improvision if 

you want to save them. Sometimes what you can do is now this circuit will have four 

inputs and seven outputs we treated them as one circuit even though we are doing it in 

seven different circuits.  

 

Each Karnaugh Map gives a logic circuit with gates so there are seven individual circuits 

inside but as far as consumer is concerned the buyer is concerned you go to the market 

and ask for a BCD to 7 - segment display decoder and he gives you one IC in which there 

is seven of these circuits independently. So sometimes it is easier when you are putting so 

many circuits together it is possible to combine terms. There may be slightly different 

way of implementing if you can identify similar terms or same terms and draw all the 

seven maps together and see whether there are any common terms between all the seven 

at least many of them, if two or three of those maps have common terms that part of the 

hardware can be shared between those three segments. You are drawing a map for a b c d 

e f g suppose there is a group of 1s common for let us say three or four of  those maps, if 

you identify that term that part need not be repeated in everything, you can take that part 

as one of the inputs to the OR gate for that particular segment, each segment will have an 

OR gate into which many AND gate terms will be feeding in, many product terms will be 



feeding into the OR gate and if one of these product terms is common to three or four or 

even seven or whatever that part of the hardware AND gate combination need not be 

repeated for every segment.  

 

You can go one step further and see even deliberately re-read the map not the most 

optimum way. Do not re-read the simplest possible way, you see how many common 

terms I can make, make as many common terms as possible and rest of the terms which 

these displays.  

 

So these are all some of the design techniques you can use but here we are talking about 

concepts and using a truth table, Karnaugh Map in order to design circuits instead of 

taking arbitrary sum of products, arbitrary min terms, sequence as I did in the first few 

classes. I have now given you practical circuits like code converters and parity generators 

and 7 - segment display decoders. So that is the development of subject but if you are a 

practical designer getting paid by a guy who hired you to give the best possible design 

you will have to go one step further and see whether I can find common terms and reduce 

the cost of the hardware. 

 

We will not do that exercise now but remember that can be done if you want to. So as I 

said we are going to stop with this type of general combinational circuit. Of course all 

circuits can be treated as combinational circuits, many more applications are there. I want 

to go to the arithmetic circuits. So in next lecture we will start talking about arithmetic 

circuits because these are the basic units building blocks of computers or calculators, all 

computational functions require arithmetic so we will start designing arithmetic circuits 

from the next lecture.  


