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Lecture - 50 
DAC Basics 

This is VLSI Data Conversion Circuits, lecture 50, today we will begin the study of 

another important piece of the delta sigma loop, and use this as an excuse to study D to A 

converters, so we will be looking at this. 

(Refer Slide Time: 00:30) 

 

Now, as the name suggests the input is a digital code, the output is either voltage or 

current or charge. 
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And if one plots the digital code on the x axis, and the analog output on the y axis will 

get ideally you are suppose to get a characteristic like this, please note that these inputs 

actually do not make any sense, the code can only be an integer all. And delta is called 

the step size just like in a A to D converter. 

This is the positions of the x and y axes are interchange, and this represents a 3 bit D to A 

converter delta is the LSB or step size of the duct, now just like how the thresholds of an 

A to D converter can be in error due to various factors. For instance, due to mismatch in 

analogous manner, the steps of a D to A converter can also be in error, so how do you 

think erroneous characteristic will look like, will it be changes in the x axis or in the y 

axis. 

Student: Y axis. 

Only in the 

Student: Y axis. 

Y axis, so the common kinds of errors is a very similar to what we discussed with A to D 

case, if one draws, joins the output levels of an ideal D to A converter, you must get a 

straight line. In practice one common kind of error is when you join these points, you get 

a straight line; however, this straight line is shifted up or down from the ideal line, and 

this is called the offset. 
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Another kind of error, again all this should be very familiar given to expose to A to D 

converters is when you join these points, you get a straight line; however, the slope is not 

you know delta for every change in the input code, it is more than the delta. That has 

been coated, for example on the data sheet, so this is like having a larger delta that is all, 

so this is called gain error does it make sense. 

So, gain and offset errors are not really that problematic in a system, because both of 

these would be calibrated out anywhere, what is important is that the straight line 

remains a straight line. Of course, that is not true either, so the outputs may be deviating 

from their ideal values in this fashion, and therefore as you can see the step size is not the 

same from code to code. 

And therefore, the step size at code n, if we call the output for code as V n, and the 

output for code n minus 1 is v n minus 1, then this is the or rather the step size of code n 

is nothing but, v n plus 1 minus v n. And ideally should be delta in practice it is not delta 

it is either larger or smaller, so how can you quantify the deviation from the ideal step 

size. 

We know that they are all should be about delta, and we are actually interested in the 

deviation from delta, so analogous to the A to D converter case, the deviation from the 

ideal step size, so that is v n plus 1 minus v n minus delta, which has absolute units of in 

this particular case volts. If you want to talk about compare different converters, it make 



sense to not talk about the absolute deviation, but the relative deviation in which case 

you normalize it to the step size, and this is called the DNL at code n. 
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And similarly, so this is normalized to the step size the units are DNL of n is in LSB, on 

the other hand the absolute deviation from the ideal output is also of interest, and that is 

simply is v n minus n delta. And again it does not make sense to talk about absolute 

deviation or the dimension quantity, so you normalize this, and this is called the integral 

nonlinearity or INL of n. 

(Refer Slide Time: 13:04) 

 



And the running sum of the DNL is the INL just like in ADC’s, now these in practice is 

not, as if the converter will have a just offset or just gain error or only DNL or INL, the 

whole thing will become as a cocktail. So, in practice a converter will have offset plus 

gain error plus nonlinearity which is characterized by DNL and INL, so if you want to 

find the DNL and INL of a converter, what should you do first. 

Student: minimum speed. 
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So, the way of finding DNL and INL is first remove offset and gain error and then, so by 

best fit, for example and then from this you will find the actual the I mean the true l s b 

size, which will result in a closest fit to the D to A converter characteristic. And once you 

remove offset and gain error, you can find the DNL and INL with the step size obtained 

from step 1, the LSB obtained from does make sense, the next thing is dynamic 

performance the input to the D to A converter is a sequence. 
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And it is discrete time Fourier transform is nothing but, e to the x of n e to the minus j 

omega n sum over, so this is nothing but, x of e to the j omega. Now, conceptually what 

the D to A converter is doing is taking the sequence of discrete time impulses, and 

converting it into a continuous time signal. 

(Refer Slide Time: 17:30) 

 

And therefore, one can think of the whole operation as replacing the discrete time 

impulse with a dirac delta pulse, and the spectrum, therefore of the continuous time 

signal is nothing but, x of n this is the sampling rate of the D to A converter e to the 



minus j 2 pi 

Student: A to D 

F times f T s times n, this is the Fourier transform of the continuous time signal does it 

make sense . So, how do you relate the discrete time Fourier transform to the continuous 

time Fourier transform. 

Student: Minimize ((Refer Time: 19:08)) 

All that you need to do is replace 

Student: Minimum Fourier transform 

Omega by 2 pi f times 

Student: T s 

T s, so as usual omega equal to pi corresponds to f s by 2 
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And therefore, if the discrete time spectrum look like this, and I am sorry discrete time 

spectrum look like, then all that one needs to do is change the axis to 0 f s by 2 f s 

unfortunately, generating dirac delta pulses is not realistic in practice. So, every DAC has 

got a pulse shape and we have discuss this before in the context of a delta sigma 



modulator, common pulse shapes are the NRZ pulse, where the output can be thought of 

as x of n. 

And the time domain can be thought of as x of n times p of t minus k times T s, the 

output in continuous time is this, where p of t is 1 from 0 to T s, so can you comment on 

the spectrum now. So, you can think of this as a taking the continuous time waveform, 

which is at sequence of dirac impulses and passing them through a low pass filter, whose 

impulse response is rectangular. 

If the impulse response is a rectangular it follows that, the Fourier transform is sinc 

function, and it has null set multiples of 1 by T s which is f s. So, in other words the 

spectrum of the NRZ DAC will be something like this, on the other hand if you had the, 

so called return to 0 pulse, what happens to the spectrum now. 

Student: Once for ((Refer Time: 24:11)) 

(Refer Slide Time: 24:23) 

 

So, for an NRZ pulse the filter is of the form T s sinc f times T s. So, this has null set 

multiples of 1 by T s, for a return to 0 pulse, it is 2 T s by 2 sinc f times T s by 2, which is 

the same as T s sinc of f T s by 2 which means this has null set. 

Student: ((Refer Time: 25:22)) 1 by 2 by 

F plus at even multiples of 1 by T s, and that makes physical sense. So, the spectrum to 



the NRZ, so this is the NRZ filter if you saw, if you like the RZ filter will only have will 

look like that, so these are often called the images of the signal. And as you can see the 

images are attenuated to a much larger degree by a, when you have a NRZ DAC pulse 

shape rather than a return to 0 DAC pulse shape. 

And that makes sense because a return to 0 pulse shape has got much larger transitions, 

and these transitions occur twice every period you understand. That means, that the 

jumps going up and down are much larger in the return to 0 case which also means that, 

then it must have much higher strengths of high frequency components, so the spectrum 

actually makes sense. So, now, the question is why would anybody choose a return to 0 

DAC pulse, given that there is the signal has got lot more high frequency content, do you 

understand. 

When, you use an NRZ DAC pulse shape the signal has got the images are alternated to 

a larger degree, the height of the pulse is smaller and there are no transitions in the 

middle. So, one obvious question that could be asked is if everything is, so nice about the 

NRZ pulse, why even talk about a RZ DAC, yet we have gone and seen the applications 

of this in a continuous time delta sigma loop, we even discussed jitter and such. So, the 

question is yeah, so why do you think a return to 0 pulse makes any sense at all. 

Student: ((Refer Time: 28:32)) due to excessive. 

In the context of a delta sigma loop as he points out, definitely you know return to 0 

pulse is got is a lot, when use a return to 0 DAC you are a lot less sensitive to. 

Student: Axis loop delay. 

Axis loop delay, but there is another important and not. So, obvious point that I will 

make now no real NRZ or RZ DAC will have perfectly sharp edges, so they are always 

be of finite rise time and a finite fall time. 
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Now, let us consider a sequence say 1, 1, 1, 0, 0, 0 let us assume that it was 0 throughout, 

now an NRZ DAC waveform ideally would look like this, and now the rise and fall times 

A are not 0 first of all, and B could be a symmetry. This is also a very common thing for 

example, if you use a I mean if you use a if you look at a C MOS inverter for example, 

the rise time is always if you if you not size the devices properly, you will find that there 

is always a difference between the rise and. 

Student: Fall 

Fall times. So, it is not uncommon to have NRZ DAC pulses, where the NRZ pulse has 

different rise and fall times, I am going to grossly exaggerate the rise and fall time 

asymmetry now, and therefore the actual waveform looks like this. Now, let me consider 

another waveform another sequence, which is 0, 1, 0, 1, 0, 1, 0 and with rise time and fall 

time asymmetry the waveform would look like this. Now, if the system is perfectly linear 

consider this the input to this, the input sequence to the system is 3 1’s followed by 3 0’s, 

and here it is 1 0 1 0 1 0. 

So, if the system has perfectly linear, since both these sequences have the same average 

values is that something that you agree with. 

Student: Yes. 

The average value of 1 one 1 0 0 0 is the same as the average value of. 



Student: 1 0 1 0. 

1 0 1 0 1 0. So, if the DAC is perfectly linear, then the average value of the red waveform 

here should be the same as the average value of the red waveform drawn below, now can 

you comment on the average values of the 2 waveforms. 

Student: ((Refer Time: 33:56)) from bottom of this line. 

Student: Bottom of this line. 

The average value of the lower 1 is higher, and why is that. 

Student: 1 2 2 by 2. 

Student: Fall time is fall time is more, if it is a square wave, e r remains the same and a 

rise times and fall times are equal, the losses the area in this portion will be compensated 

by this. 

Absolutely. 

Student: Here the fall time is much higher. 

Correct. 

Student: So, you have for every rise time and fall time you have some delta extra error 

adding. 

So, it is a very good observation that if the rise and fall times were exactly equal, then 

when you compute the average the loss in area here would be compensated exactly by 

the area increased there. However, because the rise and fall times are not the same, these 

areas are not compensated, so if you have more falling edges and rising edge pairs in a 

given amount of time, you keep accumulating that error. 

In other words the average value of these 2 waveforms are not the same, and I mean this 

is an example I chose, but you can clearly see that, even the average value of the 

waveforms depends on the sequence that is being put in. So, 2 sequences having the 

same average, do not result in 2 waveforms with the same average, so what is this, can 

you give me one word to characterize this property. 



Student: Nonlinear. 

It is non-linear. 
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Let me put that down here 2 sequences with the same average value result in waveforms 

with different averages, and this is nonlinearity, and this is all that is needed to establish 

that rise and fall time asymmetry causes nonlinearity. Of course, to characterize this very 

carefully I mean you can do it, but the bottom line is that using an NRZ DAC pulse 

shape with rise and fall time asymmetry will result in nonlinearity. 

On the other hand with a return to 0 pulse, the height of the pulse must be twice the 

duration should be half, and even if there a significant rise and fall time asymmetry. So, 

whether it is a 1 0 1 0 pulse or a 1 1 1 0 0 pulse, I mean whether it is a 1 0 1 0 sequence 

or a 1 1 1 0 0 0 sequence we see that the average remains the same. It is just that the 

pulse shape, which was ideally a rectangle of height 2 and duration T s by 2 is now 

altered, all that it means is that it is a linear phenomenon where the filter applied to the 

ideal impulse strain, is not what you thought. 

It was slightly different which means that the high frequency response changes a little 

bit, but this is not a non-linear phenomenon, does it make sense. So, this waveform can 

always can still be represented as x of n to p of t minus n T s instead of having p NRZ p 

RZ, it is some p hat r z that is all. Ideally you would have got you would have expected 



this, now instead of having the blue pulse you have the red pulse, but it is still a linear 

system. 
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So, an NRZ an RZ DAC is immune to rise time fall time asymmetry, unfortunately a 

return to 0 DAC has other issues namely, in the context of a delta sigma modulator. It is 

got problems with respect to jitter, as well as the loop filter now has to handle signals 

which are I mean who peak amplitudes are twice when compare to the NRZ case, but we 

see that the return to 0 DAC has an advantage over a NRZ DAC. 

This becomes a particularly important when, you are running this at very high speeds 

where the rise time becomes a non negligible fraction of a entire clock period or in cases 

where the precision required is, so high. That even a small change in the rise and fall 

time or rather small mismatch in the rise and fall time can give rise to components which 

are significant when considering the very low restoration that one needs. 

So, in oversample converters we also saw example of a third pulse shape, which is again 

fairly commonly used and that is the exponentially decaying pulse shape. Now, one way 

of implementing these DAC's, let us just first consider a simple NRZ DAC, the output of 

the flash is a digital code. 
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And one can think of many ways of converting this digital code into an analog output, so 

what is the simplest way you can think of converting, so easiest thing you can think of 

perhaps is a resistive sting. You have a reference, you have a bunch of nominally 

identical resisters, and you have some kind of mux is an analog mux now, which has 

many inputs, and the digital the digital code selects, which one of these perhaps get to 

the output. So, what do you think are the problems with this approach. 

Student: Resistance will not be an ((Refer Time: 44:55)). 

Of course, like resistor mismatch will mean that the steps are not exactly equal, can you 

comment on what do you call the monotonicity of this DAC. 

Student: Monotonic. 

It is monotonic, this is an inherently monotonic, can you comment on the output 

impedance of this DAC. 

Student: Difference on the difference of the ((Refer Time: 46:15)). 

As, you can see depending on the digital code, the output impedance is this resistance in 

parallel with the resistance below, so the output impedance is code dependent. So, this 

can be I mean a big problem, from a point of view of nonlinearity, I mean the output 

waveform, therefore will have different time constants depending on the input code. So, 



if you are interested in the entire waveform or the spectrum of the waveform, you should 

be prepared to accept a lot of distortion, simply because the time constants keep 

changing depending on the code. 

However, if you are only interested in the settled value, then you do not need to bother, 

you are only have to worry about the static aspects of the entire DAC, which is the 

resistor mismatch. 
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So, the fact that the resistor output impedance code dependent means that, there is poor 

dynamic performance, can you comment about the complexity of the decoder . 

Student: I am able to interfere, sir system 2 system. 

I mean how many wires must come from the DAC, from the resistor string to the mux. 

Student: The average may be in between 2 s. 

Student: The changing of weight 2 power. 

2 to the power n lines must come from the resistor string into the array, and all these 

switches must come together at one single node namely the. 

Student: Output node. 



Output node. So, you can see that this you are picking up a whole lot of parasitic, and 

therefore this Messy decoding logic and band limiting at the output node, so all these 

problems basically you are allocated this DAC to places, where you really do not need. 

You know either much speed or any dynamic performance at all, basic as what it means 

the nice thing about this is that it is inherently monotonic, and the fact that the decoding 

logic is messy is also a problem. 

So, you use it in the places, where that the logic does not get too Messy, in other words 

where the resolutions are not very high, and when you are not really interested in 

dynamic performance. Can you explain I mean can you tell me where you have seen this 

being used in the past. 

Student: In flash A to D convertor. 

In a flash A to D converter that is basically what you are doing, the resistor string is also 

if you think about in a another light, you can think of it as a DAC, where all the outputs 

are available, simultaneously and you pick which 1 you want, that is what the mux is 

doing. So, when you had a flash array where all the references were needed at once, this 

seems like a natural choice, that this resistor string has got all DAC outputs available at 

once, and all these are going to the comparator, you know offset I mean whatever 

capacitors which store the reference. 

And in that particular design example I discussed where, we needed only one reference 

at a time, all that you need to do is have an arrangement like this, and this mux figures 

out which of the taps of the ladder to pick and you know give to the that particular 

comparator. So, that is basically a DAC in disguise you understand which are resistor 

string DAC, again because you have a lot of time for auto zeroing and so on, the settling 

time of the DAC is not really a big issue, and the fact that it is inherently monotonic is 

advantages. 

So, only in such applications you use a resistor string a full resistor string DAC, so in the 

next class I will discuss other topologies, and see what their limitations are and what 1 

can do about it. The fact that mismatches a problem is you know, it is not as if know you 

magically get away from it, mismatch will always be a problem regardless of what DAC 

topology you chose. Thank you. 


