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So far we have seen several ways of realizing a noise transfer function: one is the so-

called single loop structure; the other, which we saw in the last lecture, is the cascade 

structure or the multistage noise shaping architecture called the MASH. The cascade 

structure as we saw depended on matching, because we use a second loop to digitize the 

error introduced by the first loop and subtract it from the output of the first loop. And, 

this is done in the digital domain. So, one needs the transfer function of the digital 

cancelation filter to match the noise transfer function of the first loop, which through its 

inherent nature is analog. Therefore, you end up with artifacts caused by mismatch; and, 

you may not get the order of noise shaping that you originally hope to get, because of the 

leakage of the noise of the first loop into the output. Is this clear? So, the next thing is to 

see what one has to do to implement the various building blocks of a modulator loop. So 

far we have seen the various so-called system level aspects of the entire loop. We know 

how to derive the loop transfer function; we know what the quantizer does; and, that is A 



to D and D to A; and, we know that, the errors in the A to D thresholds do not really 

matter; whereas, the errors in the D to A thresholds can be very problematic; and, so on 

and so forth. 

Now, the time has come to start understanding how to realize each of these? 

Student: Blocks 

Building blocks in circuit form, so that we can get a or make a working delta sigma 

modulator. So, the first thing we look at is the loop filter. The loop filter as you know 

takes the output of the quantizer as one of its inputs; the input would be digitized as 

another of it inputs and does some processing and gives you an output sequence. Now, if 

the input has been already sampled; correct? Then, the filter is working off of two 

sequences: one is v and the other one is u; the levels are still continuous. So, this is a 

discrete-time analog signal. And therefore, the filter that processes such signals is what is 

called a sampled data filter. And, they are often implemented using what are called 

switched capacitor circuits. And, since the signals inside are all discrete time and analog 

in nature, these are what are called discrete-time sigma delta modulators. 

So, I suppose most of you are not familiar with the switch capacitor circuits. So, we will 

presumably come back to this mode of realizing the loop filter. Later on in the course, 

since you are doing analog IC design parallel, perhaps towards the end of the semester, 

we can get back to this mode of realizing the loop filter. Another way of realizing the 

loop filter is to do this in continuous time. So, in other words, the loop filter can be 

realized as a continuous time structure. And, the output of interest is not the entire 

waveform of the loop filter output, but only its samples. 
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In other words, the modulator structure looks like this. Do you understand? As far as the 

loop is concerned, you can fool the loop into thinking that, what is there. In fact, here is a 

discrete-time filter, because you are anyway sampling the output of L of s. So, as long as 

the samples match, what you would have gotten if there was a true discrete-time filter L 

of z; the loop would not know so to speak. 

Student: Now, that u t is not sampled one. 

Now, u t is not a sampled waveform; u of t is? 

Student: Continuous 

Continuous time. There are several advantages to doing this as we will find out going 

forward. And, this way of realizing the loop filter results in what is called continuous-

time delta sigma modulation. So, what this L of s is trying to do therefore, is to mimic 

the operation of a? 

Student: ((Refer Slide Time: 08:16)) 

Discrete-time transfer function, where the sampled output of L of s must be the same as 

that would be obtained when the sequence v was pushed into a discrete time filter. We 

will get into the details a little later on. But, at least intuitively you should see that, this 



should be possible. How you do it is another question. But, hopefully by fooling around 

with L of s, you can make it look like some desired L of z. 

Now, let us refresh ourselves. Please note that, v is a digital sequence. And, to convert it 

into an analog waveform, you need a D to A converter. And, if you go back to the very 

beginning of this course, a discrete-time sequence is related. The sequence v is a 

discrete-time sequence with discrete levels also mind you, because it is the output of an 

A to D converter. The sequence v here is that digital sequence with finite resister length. 

So, these levels will be whatever – quantized. Now, D to A conversion is the process at 

least conceptually of converting this into a sequence, which is continuous time. But, 

instead of discrete time impulses, you have continuous-time impulses. This was n; this 

must be t. And, what is the periodicity of these samples? The sampling rate of the D to A 

converter. So, this is… In fact, instead of calling this, if I call this 0, 1, 2, 3, 4 and so on; 

I can still call this 0, 1, 2, 3, 4 and replace t with t by T s. So, in principle, this is what a 

D to A converter will do. It will take a discrete-time sequence and convert it into a 

continuous-time waveform. This is an analog waveform; it is so turns out that, its levels 

are quantized, because the input is that way. There are a couple of… Such a DAC is what 

is called an impulsive DAC, because the output is a sequence of dirac delta functions. 

And, if you have impulses, you know that, it is most likely not practical to have such a 

DAC waveform. In practice, what one will do is to have a pulse shape associated with a 

DAC. 
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In other words, what you do is not send out impulses proportional to the input sequence, 

but some multiple of a known pulse shape. So, for example… So, this is what is called a 

non-return-to zero DAC. Everybody understands that, a DAC takes an input sequence 

and converts it into an analog output waveform. So, the only point of contention is what 

the pulse shape of the DAC is. So, it can either be impulsive or it can have the favorite 

pulse shape. Commonly used pulse shapes are the following: one is what is called the 

non-return-to zero DAC, where instead of putting an impulse, which we know is very 

difficult to generate. We have a rectangular pulse, where the height of the pulse stays 

constant throughout the sampling period. So, such a DAC is called – in short, it is called 

an NRZ DAC. NRZ is standing for non-return-to zero, because the waveform does not 

return to 0. 

Now, given that, there is a name called a non-return-to zero DAC. It must also follow 

that. 

Student: ((Refer Slide Time: 14:38)) 

There must be something called a return-to zero DAC, where the waveform actually 

returns to zero in the middle of the clock cycle. For example… This is what is called the 

return-to zero DAC or in short, the RZ DAC. And, as I said, you can choose the favorite 

pulse shape; NRZ and RZ DACS are commonly used pulse shapes presumably because 

they are easy to generate. 
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Now, another pulse shape that one can think of is the so-called exponentially decaying 

pulse shape. So, you have something like this. So, one obvious question is what is the 

difference between all these waveforms? Or, why would one want to do one versus the 

other? First of all, can you comment on how one can relate the spectrum of the discrete-

time sequence to that of this impulsive DAC output. Clearly, the output continuous-time 

signal is representation of the discrete-time sequence. So, their spectrum must be related. 

Given the discrete-time spectrum, we should be able to determine the continuous-time 

output spectrum. So, can somebody tell me what that relationship will be? 

Student: ((Refer Slide Time: 18:10)) 

Yes. 

Student: ((Refer Slide Time: 18:20)) 

So, it is very straightforward. X of e to the j omega is nothing but sigma x of n e to the 

minus j omega n. And, X of f is nothing but sigma x of n e to the minus j 2 pi f T s times 

n; correct? So, as you can see, it is simply a matter of taking the spectrum of the discrete-

time sequence and scaling the frequency access. Instead of omega… Omega equal to 2 pi 

specifically becomes f equals 1 by T s or f s. So, the continuous-time fourier transform of 

this impulsive sequence will look like will have images repeated at multiples of the 

sampling rate. Is that clear? Now, how can you relate the spectrum of this to the 

spectrum of energy DAC output? 

Student: The precession of ((Refer Slide Time: 19:56)) Instead of taking z, it will be 

integral of that or another way is through say some sort of ((Refer Slide Time: 20:21)) 

From which we have to pass one impulse; we will get the… 

Correct. Since it should… Please note that, this… Once you know this spectrum… Or, in 

other words, once you know the spectrum of the impulsive DAC, finding the spectral 

properties of the NRZ DAC or the RZ DAC or the exponentially decaying DAC are all 

very straightforward. They are equivalent to taking the impulsive DAC waveform; in 

principle, taking the impulsive DAC output and passing it through a filter, whose 

impulse response is the DAC pulse shape and we get the… So, for example, the 

impulsive DAC output spectrum let us say is something like this. At multiples of f s, we 



must have the spectrum repeated with the same strength. That makes sense because the 

impulse has got… The impulsive pulse has a fourier transform, which is flat. Correct? 

Now, after passing this through an NRZ pulse shape, what is p of t for an NRZ pulse? It 

is 1 for 0 less than t less than T s and 0 elsewhere. Correct? So, what do you think is the 

fourier transform of the 

Student: ((Refer Slide Time: 22:57)) 

It is T s sink f T s. So, the sink will have null set. 

Student: ((Refer Slide Time: 23:08)) 

Multiples of 1 by T s or f s. So, if you want to find the spectrum of the DAC, whose 

pulse shape is an NRZ pulse; then, you take this spectrum and multiply it by sink square 

and in the log… You will have basically nulls if you want to just find the fourier 

transform, take this and multiply it by sink for n. For a DAC, whose pulse shape is a 

return-to zero pulse, how will it look like? 

Student: Spectrum will be of span ((Refer Slide Time: 24:18)) 

So, a return-to zero pulse shape. What is the p of t? 

Student: ((Refer Slide Time: 24:25)) 

If you want it to have the same DC gain as the NRZ pulse, then you must have a height 

of two, but extends to only half the clock period. So, that way, you will have a pulse, 

whose DC gain is the same; and, whose frequency response will look like… So, this is 

the RZ spectrum. This is the NRZ spectrum. And, as you can see from this spectral 

picture, the RZ DAC spectrum has got lot more high frequency energy than the NRZ 

DAC spectrum. And, why does that make intuitive sense? Width is less. So… I mean 

one… See the amount of high frequency energy is proportional to the number of jumps 

you have in the… Or, the magnitude of the jumps you have in the waveform. Correct? 

So, you can see that, clearly, in every clock sample, there is a guaranteed two jumps of 

equal and opposite magnitude. So, even if the input to the DAC was DC, the output will 

be a bunch of rectangular pulses. So, there will be high frequency energy. 



Whereas, if you had an NRZ DAC and the input was purely DC, the output would be 

free of DC, because there is a null at multiples of f s. If the input only consisted of DC, 

the nulls will take care of – will remove all of the high frequency images and you will 

see only DC spectrum. And, that makes sense because there will be no jumps in the time 

domain waveform at all if you use an NRZ DAC with a DC input. Is this clear? So, for 

an exponentially shaped DAC… I am not going to do the math here, but straightforward 

to find the fourier transform of the pulse shape and compute the spectrum. So, all that I 

want to say is that, the choice of pulse shape within the signal band at low frequencies; 

whether you choose NRZ or RZ, at low frequencies, it does not matter. That make sense 

because in the average, whether you use an NRZ DAC or an RZ DAC, the average will 

be the same, because one has a value of 1 for full clock period; the other one has got 

value 2 for half the clock period. So, on the average, it is the same thing. But, they have 

different high frequency properties; and, you can all relate them to the spectrum of the 

original discrete-time sequence that generated this waveform. Do you understand? 

So, as far as we are concerned, when we talk about a DAC, we need to know the 

sampling rate and the pulse shape. And, as we discussed some time back, an ideal DAC 

will be such that, if the code here was 1 and the code here was say 2, the ratio of the two 

steps will be exactly 2. Correct? But, another non-ideality is the fact that, these steps are 

all not the ideal steps; there will be small differences because of mismatch. And, that is a 

non-ideality. But, even an ideal DAC is associated with the sampling rate and a pulse 

shape. The pulse shape can be either an NRZ or an RZ or an exponential decaying pulse 

shape or a sinusoidal shaped pulse. The choice of pulse shape is yours; but, you must 

have a pulse shape. 

Now, we want to build a sigma delta loop, where we are trying to make the loop believe 

that, the filter is discrete time. Do you understand? So, the question is how do we do 

this? So, let us take an example of a first order loop as an illustration. 
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So, let us now consider a first order discrete time delta sigma loop and see how one can 

use a continuous-time filter to make the loop believe that, it is indeed dealing with a 

discrete-time loop filter. So, all I have done is… This is a familiar discrete-time loop. As 

far as the loop is concerned, we want to make sure that, the transfer function from E to V 

here is 1 minus? 

Student: z inverse. 

z inverse. So, V must be 1 minus z inverse times E. And, if the gain of the loop filter is 

high enough, the STF will be 1 at DC. Correct? So, for the time being, let us not worry 

about the STF; we want make sure… See the feedback loop is in this way. Correct? So, 

if you want to realize the same noise transfer function with continuous-time circuitry, we 

should focus on this whole path; that is, you break the loop here for example; you will 

get the same noise transfer function if you have the same loop gain. Correct? And, how 

will you measure loop gain? In this example, I will break the loop like this, for example; 

I will apply an impulse here and look at the output sequence, which comes up. 
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So, if I do that, what happens? The input sequence is an impulse; and, the output 

sequence… How does it look like? 0, 1, 1, 1 and so on. Does it make sense? Now, what 

we want to do is to do this entire thing in continuous time, where the output of the loop 

filter is sampled. And, let me call this minus l of n, which is the actual thing that comes 

up. The sequence that comes out here is minus u of n minus 1. So, I am going to avoid 

drawing negative samples; I will simply call this minus l of N. Now, the loop filter has a 

transfer function z inverse by 1 minus z inverse. So, if you want to do this in continuous 

time, what is going to happen? 

Let us assume a DAC pulse shape. So, let us see what we need to put in the loop filter. 

There is clearly a sign inversion here; and, we have the pulse shape of the DAC to worry 

about; the output of the loop filter is sampled and fed back through a quantization error. 

Is this clear? Now, how would we break the loop? We break the loop… We finally, want 

the transfer function from E to V to be 1 minus z inverse. Please note that, these are all 

only… E is a sampled sequence; V is also a sampled sequence. So, we do not really care 

what happens in the middle; but, if we break the loop here and inject an impulse, we 

should see if this was claimed to be a… Somebody claimed this is a first order 

modulator. When I broke the loop here at E; apply an impulse – discrete-time impulse on 

one side; the sequence which comes back at the other end must be exactly u of n minus 

1. Is this clear? Do you understand? 



So, let us take an example of an NRZ pulse shaped for the DAC. We need to talk about 

some pulse shape instead of leaving it as p of t. Let us call this an NRZ DAC. And, to 

make matter simple, let us assume that the sampling rate is 1 hertz. We can always scale 

it to whatever we want later. 

(Refer Slide Time: 37:39) 

 

So, in other words, this pulse shape p of t will be 1 all the way from 0 to 1 second. What 

are we expecting if this loop filter is doing its job properly and mimicking a discrete time 

integrator properly? What sequence are we expecting here? 

Student: ((Refer Slide Time: 38:05)) 

We are expecting the output samples to look like this. Is this clear? So, if I put an 

impulse here. So, here I must inject a discrete-time impulse. At the output of the DAC, 

what will that result in? 

Student: Single rectangular pulse 

It will result in a? 

Student: Single rectangular pulse 

It will result in a single rectangular pulse, which is… It will result in this pulse basically. 

Correct? And, the sampled output of the loop filter must look like this. Do you 



understand? So, what do you think should be there in the box? What is this? What is that 

level finally? 

Student: 1 

1. So, what do you think must be there in the box in order that you get a waveform, 

whose samples will be 1 when excited by a pulse as shown here? 

Student: Integrator 

It should be an? 

Student: ((Refer Slide Time: 40:27)) 

It should be an? 

Student: Integrator 

It could be an integrator. Do you understand? So, a continuous-time integrator for 

example, will give you… 

(Refer Slide Time: 40:56) 

 

If the input to the continuous-time integrator was like this, the output would be… How 

will the output look like? How will the output look like when this is integrated? 



Student: It should be ramp ((Refer Slide Time: 41:27)) 

It will be a ramp. At the end of 1 second, the output will be 1; after which, it will be? 

Student: Constant 

Constant. And, if you sample this at the sampling rate, which is 1 hertz; how will it look 

like? The sampled output sequence looks like 0, 1, 1, 1 and so on. So, in other words, 

this part or rather this part here, where the input is at discrete-time sequence and the 

output is also a discrete-time sequence is completely indistinguishable from the situation, 

where we had a truly discrete-time filter, which directly processed the input sequence 

without having any continuous-time circuit; which means that, an integrator, which is 

being driven by an NRZ DAC is mimicking the role of a discrete-time integrator. Is this 

clear? So, since the input sequence delta of n and the output sequence coming out of the 

loop filter after it is gone through the loop are identical to the discrete-time case, it must 

follow that, the noise transfer function when I close a loop like this must be? 

Student: 1 minus z inverse 

Must be 1 minus z inverse, because as far as the loop is concerned, it does not know that, 

all this integration is being done in continuous time and you are sampling the output of 

the continuous-time filter, rather than taking the samples and actually integrating them in 

discrete time. Is this clear? 
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Now, the next thing is to worry about what happens to the input. Correct? So, let us see 

that. The input is some low frequency waveform like this. And, if the oversampling ratio 

is very large, this is a grossly exaggerated picture, where the oversampling ratio is not 

very large. You can see that, it is kind of one cycle is occupying perhaps maybe 10 or 12 

units of time. So, if we have a highly oversampled signal, the periodicity of the signal 

will be many many many samples. So, what I want to point out is that, whether you have 

the signal like this or whether you say that it is some signal like this; really does not 

make much of a difference you understand. So, as far as the stepped signal 

approximation is concerned, you can think of it as taking u of t; sampling it with an 

impulse sampler; and then, passing it through a filter, whose pulse shape is also an NRZ 

pulse. This is an NRZ DAC pulse. This is 1 by s; this is the output. This is the 

quantization noise; and, this is V. Rather let me say… Is this clear? So, as long as the 

input signal is of lower frequency, you can think of this as being filtered by a… I mean 

impulse sampling it and having an NRZ pulse shape to the input also, so that that will 

then allow us to represent this whole thing as what? 

Student: ((Refer Slide Time: 48:18)) 

As a 2 input discrete-time integrator. 

(Refer Slide Time: 48:25) 

 

There is no sampler at all here. Is this clear? So, what we have essentially done is taken a 

continuous-time loop filter. In this case, finding what the loop filter must be turned out to 



be a trivial affair; we are able to guess. With more complicated loop filter structures, that 

may not be possible. So, we need to figure out a systematic way of finding the l of s; 

which when driven by a DAC with a known pulse shape p of t and its output is sampled 

at f s will result in the same sequence that one would have got when one used a discrete-

time loop filter. Do you understand? I mean this kind of ad-hocing will not probably 

work for higher order more complicated noise transfer functions. Do you understand? 

But, before we go there, we will also kind of see what happens when u of t is not really a 

low frequency signal. The assumption so far has been that, the input to the sigma-delta 

loop is oversampled; which means that, some sampling has taken place before; which 

means that, before we sampled, we know we are going to put an anti-aliasing filter, 

which is going to cut off stuff at multiples of the sampling rate. But, here no such thing is 

happening. This idea is just a way of understanding the equivalence between a discrete-

time modulator and a continuous-time one. But, the true modulator is only this. And, 

here is where we… 
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Let me draw that. The true modulator is only this – a DAC with some pulse shape. This 

is an ADC; this is V; this is Y; this is y of t; this is u of t. So, the sampling – please 

notice is happening inside the loop at the output of the loop filter. So, we have no 

intention of sampling before the signal enters the loop. So, one question is do I really 

need to put an anti-aliasing filter at all. So, in other words, if this input signal, which is 

anyway being sampled at the output of the loop filter inside consists of high frequency 



components along with the desired low frequency component; one question is clearly, 

the high frequency component cannot be represented as samples of u of t with the 

rectangular pulse shape. So, we have to wonder what will happen to this loop if the input 

consist not of a low frequency signal, but frequencies, which can potentially alias to DC, 

because we have not done any anti-aliasing here. So, we would be curious to figure out 

what happens if the input was say a tone at frequency f s, which in discrete-time delta 

sigma modulator would result in… 

If you did not put an anti-aliasing filter, a tone at f s would alias to DC and show up in 

the signal band. If the same thing happens here, then we will say that is too bad; it is nice 

that we are able to realize the loop filter using continuous-time circuitry; but, we still 

need an anti-aliasing filter upfront to kill any signal components at multiples of the 

sampling rate. So, we will see what happens to this – how this loop behaves when a tone 

at multiples of the sampling rate is put. We will do that in the next class. 


