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This is VLSI data conversion circuits lecture 23; in the last class we saw the intuition 

behind the amplitude dependent stability of a sigma delta modulator, right. And, the key 

point was that the input to the quantizer consists of the input to the modulator plus 

quantization noise which is being shaped by a filter; whose transfer function is NTF of z 

minus 1, right. And, if the gain of the noise transfer function at high frequencies that is at 

frequencies around omega equal to pi becomes very large. Then, the variance of the 

noise riding over the input which is what is present at the input to the quantizer becomes 

very large causing the quantizer to saturate; if the quantizer saturates the gain for the 

quantization noise falls down. If you have a high order loop filter which is what you will 

do or you will tend to do in order to push the in band quantization noise low; the closed 

loop system will become unstable. So, in other words the noise transfer function is doing 

something like this; this is problematic it is too high, correct. But this goes as omega to 

the power N and this will be 2 to the power N. So, we like this but we do not like this 

part. So, the question is what do we do or can we do anything at all to fix the problem? 



So, any suggestions? I mean you want something you do not want something; so what 

will you do? So, the basic idea is to say if I pass this instead of having if my NTF was 

not looking like this. But if I multiplied my NTF with a function of the form which 

emphasized lower frequencies more than higher frequencies; then it seems that I will you 

know it is like having my cake and eating it too. So, I will be able to have the nice omega 

to the power N dependence of the in band quantization noise; while at the same time 

attenuating some of the high frequency components of the noise does it make sense. So, 

instead of having a noise transfer function of the form 1 minus z inverse to the power N 

right; I could for example, multiply this by some N 1 of Z divided by D1 of Z; where this 

is the a low pass response. I mean we do not know much about the low pass response 

other than the fact that we want it to be high at low frequency; and kind of taper off at 

high frequencies right. So, clearly doing this seems to you know address the problem. 

However, you must understand that cascading 1 minus z inverse to the N with another 

low pass filter will basically increase the order of the loop filter. So, the question is can 

we do anything, can we achieve the same effect without increasing the order of the filter 

you understand? So, any suggestions? 

Student: ((Refer Time: 04:55)). 

Pardon. 

Student: ((Refer Time: 04:59)). 

Where? 

Student: In that loop function. 

Oh; well one suggestion is why do not you make this 1 minus K z inverse; but the 

problem with this is that if K is not 1; what happens to the the responses of NTF at D C? 

What do you want for the NTF to do at D C 0? 

Student: ((Refer Time: 05:24)). 

It must be 0. So, if K is not 1 then the noise shaping is lost correct. So, that is not a 

workable idea all right. 



(Refer Slide Time: 05:44) 

  

Let me again get back to this pole 0 plot; the gain of the noise transfer function at omega 

equal to pi is at this point you draw vectors from omega equal to pi; which is what I have 

shown here to the 3 poles. And, where are the 3 poles in this examples I have chosen 1 

minus z inverse the whole cube which is nothing but z minus 1 the whole cube by z cube. 

So, the 3 poles are at the origin and the 3 zeros are at Z equal to 1; does it make sense? 

The question now is we want to reduce the gain of the noise transfer function at omega 

equal to pi right; what is it right now? 

Student: It seem to be 8. 

It is 8 because it is the this part is 2 correct; that cube is 8, this happens to be always 

equal to 1. So, the gain at omega equal to pi is 8; we want to be able to not increase the 

order of the loop filter. So, we still want 3 poles and 3 zeros and we want to reduce the 

gain at. 

Student: Pi. 

At pi right; there is an additional constraint that you cannot move the zeros. Because if 

you move the zeros away from Z equal to 1 you will not have. 

Student: Noise shaping. 



Noise shaping correct. So, the only I mean this is this is a good thing because then you 

only have to worry about where you are going to place the. 

Student:Poles. 

Poles, does it make sense? So, if you want the gain of the noise tranfer function to 

decrease at omega equal to pi what will you do with the poles? 

Student:((Refer time:08:03)) 

We know that the gain at pi is basically the location it is 8 divided by. 

Student: ((Refer Time: 08:19)). 

Pi minus whatever. 

Student: P 1. 

P 1 into blah blah blah pi minus P 3 correct. So, if you want to reduce the gain at omega 

equal to pi it is sorry it is 1 minus p 1, 1 minus p 3; if you want to reduce the gain at 

omega equal to pi what should you do? 

Student: Try to push. 

I mean you cannot change 1 So, you must change. 

Student: P 1, P 2, P1. 

The locations of P 1, P 2 and P 3. So, where will you put them? 

Student: Focus to ((Refer Time: 09:26)). 

So, if you push these poles in this general direction right; the low frequency part of the 

NTF will still be proportional to z minus 1 the whole cube. But the gain at omega equal 

to pi will be. 

Student: ((Refer Time: 09:29)). 

Now, 

Student: Less than. 



Dependent on the lengths of these vectors which is obviously larger than. 

Student: 1. 

1. So, they will reduce the gain at high frequencies, does it make sense? 

(Refer Slide Time: 09:54) 

 

So, for example if I moved the poles from where they were originally that is at the origin 

towards the right. Then, the magnitude of the vectors joining omega equal to pi or z 

equal to minus 1 to these poles has increased significantly; what was originally one 

seems to have gone to a number closer to close to 2 now; obviously it is smaller than 2. 

But it is significantly larger than 1. So, in other words the noise transfer function is now 

of the form 1 minus z inverse the whole cube divided by D of z inverse earlier D of z 

inverse was simply 1 right. Now, D of z inverse is some polynomial in z inverse of order. 

Student: 3. 

3 right. And, if you choose the poles of the NTF; in other words the roots of D of z 

inverse properly by I mean when I say properly I am it means that in the generally in the. 

Student: ((Refer Time: 11:25)). 

You know towards the right then the magnitude of the denominator at omega equal to pi 

is larger than 1. Therefore, reducing the gain of the noise transfer function at high 

frequencies. And, this is possible without increasing the overall order of the noise 



transfer function; does it make sense? So, what was originally something like this; this is 

mod NTF, this is omega equal to pi, this is 8 all right. Now, for this pole constellation 

what do you think the gain will be at omega equal to pi is smaller than. 

Student: 8, 8. 

Smaller than 8. So, let us say it is something like this; what can you say about the gain at 

the origin at omega equal to 0 or z equal to 1. 

Student: 0. 

Of course at z equal to 1 it is 0 right; for small omega how does this go the original NTF 

1 minus z inverse whole to the 3. 

Student: Omega power omega power 6. 

It mod NTF. 

Student: ((Refer Time: 12:56)); omega power cube. 

Omega cube; now how does it go? 

Student: Positive omega constant. 

It will be it will go as constant times. 

Student: Omega. 

So, at the origin this guy will have gone as omega cube. Now, because of the poles being 

pushed close to the 0; what do you think will happen to the gain at low frequencies? It 

will still go as omega cube because you have 3 zeros at. 

Student: ((Refer Time: 13:45)). 

At z equal to 1. But will it go faster I mean will it go as 1 times omega cube or will it go 

as 5 times omega cube or will it go as 0.1 times omega cube? Look at the picture that is 

the key to ok. 

Student: Smallest smaller than 1, smaller than 1. 



No. 

Student: Larger. 

No, if it is not smaller it got to be larger right. 

Student: Larger means the whole now it has come inside for distance is less than. 

Correct so. 

Student: Denominator is less than 1 means it will be larger larger than one. 

Great that is absolutely right. So, earlier the poles were sitting here at the origin right and 

at z equal to 1 correct; this in the neighborhood of z equal to 1 always evaluates to 

omega cube right. Now, the only point of contention is what does this do at small 

frequencies correct? And, this is clearly earlier what was one these vectors are now 

reduced in magnitude which means that. 

Student: Denominator is less than 1. 

The denominator is less than 1. So, this must go as. 

Student: Less. 

The red one must go as K times omega cube; where K or alpha times omega cube since 

we have been using K all over the place alpha is definitely greater than 1 right; whereas 

the original NTF would have gone as simply omega cube; does it make sense all right? 

So, in English what does this mean, what has happened now by moving the poles in this 

fashion, what has happened or what do you hope has happened to the maximum stable 

amplitude? 

Student: MSA ((Refer Time: 16:16)). 

MSA has gone hopefully. 

Student: Up. 

Up right; what do you what can you say about the in-band quantization noise? 

Student: ((Refer Time: 16:41)). 



Has gone up or gone down. 

Student: Gone down in band or. 

In band, in band quantization noise. 

Student: Up sir. 

The in band quantization noise is the this integral of NTF square in some band here. 

Student: Gone up. 

It has gone up. So, quantization noise is gone up what is happened to the out of band 

gain? 

Student: ((Refer Time: 17: 11)). 

Has gone. 

Student: Down, down. 

Down. So, what I did not like to bring to your attention is the following; the in band 

quantization noise has gone up. And, the out of band quantization has gone I am sorry 

the out of band gain has gone. 

Student: Down. 

Low or gone down right. And, this is not just a coincidence. 



(Refer Slide Time: 17:50) 

 

Let us look at the NTS that we have seen at pi all right. So, for the first order NTF how 

does it look, how does the NTF look at the origin? 

Student: Suppose it goes. 

It goes as omega right and what is it at out of band? 

Student: 2, 2. 

It is 2. So, it looks like this; for the second order how does it look? 

Student: Near the origin omega square. 

Near the origin it is omega square and at pi. 

Student: 4. it is 4. 

It is 4 all right. Now, what happens for the third order modulator? 

Student: Omega cube, omega cube. 

Omega cube and then this goes as goes to 8 all right. So, this is mod NTF and this is 

omega and this is 1 minus z inverse, this is 1 minus z inverse the whole square, this is 1 

minus g inverse the whole cube and what trend do you see? 



Student: Band in band width is. 

So, whenever we are doing better in band we seem to be doing worse. 

Student: Out of band. 

Out of band right. And, not only when we change the order but also when for the same 

order we move the poles in such a way as to reduce the out of band gain; which seem to 

be doing. 

Student: In band noise the in band noise is increasing. 

The in band noise is increasing you understand; it turns out that this is a fundamental 

property. And, we will come to this in a couple of minutes. 

(Refer Slide Time: 20:08) 

 

To retreat the maximum A D C input must be smaller than the quantizer range right; that 

this is the so called u that we have been talking about. And, it has more shaped noise 

then it means that there is more likelihood of instability. And, as you have just seen now 

we have made a passing observation that the more the shaped noise the smaller seems to 

be the. 

Student: In band. 



In band noise right now the evidence is simply circumstantial right we have seen 1 minus 

z inverse, 1 minus z inverse the whole square, 1 minus z inverse the whole cube as well 

as 1 minus z inverse the whole cube by D of z inverse. And, in all these cases it seems 

like if the out of band gain goes up the in band gain goes down all right; that does not 

mean that it is true for everything. But it turns out that it is true for all noise transfer 

function that we encounter in practice; I will derive that a little down the line. An 

aggressive noise transfer function loosely speaking is one which has much smaller in 

band quantization noise than a non aggressive one right; an aggressive one if you have an 

aggressive noise transfer function in an attempt to push the in band quantization noise 

lower it must follow that the out of band gain must be. 

Student: Higher, higher, higher. 

Higher; if you have a higher out of band gain what can you say about the maximum 

stable amplitude? 

Student: Less, less. 

It must fall. Because for the same quantizer input range if you have a higher out of band 

gain it means that the variance of the noise riding above the input is higher. So, in order 

to keep the quantizer happy you need to reduce the input amplitude thereby reducing the 

maximum stable amplitude of the modulator loop right all right. 

(Refer Slide Time: 22:13) 

 



Before I go further I just like to mention you know how one might estimate the 

maximum stable amplitude of a modulator in practice; this is obviously something which 

is very relevant right. So, simulation is the most reliable way of doing it; where in the 

given that doing this analytically it can be a very messy affair. 

So, one thing you could do is put a sinusoid with some amplitude; look at the state 

variables inside if none of them blow up you are fine the; this amplitude is within the 

stable range. You go on stepping up the amplitude and right you can do this 

unfortunately this takes a lot of time. 

(Refer Slide Time: 23:16) 

 

So, another technique is to take a very slowly varying ramp; by slowly varying I mean 

you know this varies from 0 to full scale of the range of the quantizer right over a say a 

million steps, correct. So, these are very very slow ramp and monitor the input to the 

quantizer; we know that when the modulators become unstable what happens to the input 

of the quantizer? 

Student: It blows up, blows up. 

It blows up right. So, rather than plot the input to the quantizer you can plot the log of the 

input to the quantizer; in which case what will happen is that it look nice and clean up to 

somewhere here right. And, then once you start exceeding the maximum stable 

amplitude; the magnitude will blow up which means that the log will also blow up. And, 



you will see something like this. And, then the ratio of this to 10 power 6; how long you 

have gone before the input to the quantizer blows up is an estimate of the maximum 

stable amplitude. And, people have found that this is a good way of doing things. 

(Refer Slide Time: 24:36) 

 

So, this is what I was talking about it is a very slow ramp; where one stands for the 

quantizer range right, this is a loop filter. And, you keep monitoring the input to the 

quantizer. 

(Refer Slide Time: 24:56) 

 



And, you will get a plot like this. So, please note that this is log of mod y; when you start 

at z I mean the initial part is because the input is close to 0 right. So, the y will be 

hovering you know up above and below 0 right. So, if you since it is 0 if you take it is 

log it will be negative correct. And, then as you keep increasing the input amplitude you 

can see that in general the magnitude of y increases. And, at a certain point in time which 

can also be mapped to a certain input; you can see that the log of the y just blows up 

which means that y is simply gone to infinity; which means that this is the maximum 

stable amplitude. In this particular example it is about 90 percent of the quantizer range; 

is this clear all right? I will come back to this a little later. 

(Refer Slide Time: 26:14) 

 

So, now let us digress a little bit. And, see if we can get any intuition about or rather we 

can get through more light on the fact that the in band performance and the out of band 

performance of a noise transfer function seem to be related; which seem to be not be able 

to do better in band without worsening the performance out of band. So, to understand 

this one needs to kind of rewind a little bit and refresh or familiarize oneself with some 

terminology. And, some results this is an example of a negative feedback loop; this has 

got nothing to do with delta sigma modulation right; this is a standard negative feedback 

loop. And, if the loop gain is very high correct then what is V? At all frequencies where 

L tends to infinity or L is very large we have find that V must be the same as. 

Student: Input. 



The input correct? And, that make sense because V can be written as x times L by 1 plus 

L plus E times 1 by 1 plus L; correct this is all well known stuff. So, in other words at 

frequencies where the loop gain is very large; the output is completely devoid of E. In 

other words the loop has completely rejected. 

Student: Error. 

This error injected at the output of the loop filter or the loop is extremely insensitive to E 

not to L to E; at those frequencies where the magnitude of the loop gain is infinite. Now, 

the ratio 1 by 1 plus L (Z) evaluated on the unit circle is a measure of how effectively the 

feedback system rejects disturbances or noise injected at its output? And, classical 

control this is being called what is called the sensitivity function of the loop ok. Please 

note that this is a function of the loop gain all right. Now, in a delta sigma modulator 

assuming the quantization noise is additive the sensitivity function is the same as the. 

Student: NTF. 

Noise transfer function correct; I mean now if somebody told you that this is a block 

diagram you would immediately say that this represents the additive noise of the 

quantizer. And, therefore you can identify the sensitivity function of a negative feedback 

loop in the delta sigma context by the noise transfer function of the loop, correct. 

(Refer Slide Time: 29:39) 

 



And, it turns out that since in a sigma delta loop the sensitivity is the same as the noise 

transfer function; some very interesting results from control can be applied. And, to get 

there let us recall the first thing which is the first sample of the impulse response of a 

noise transfer function and must be 1. And, why is this happening? 

Student: Delay, delay free. 

Because you cannot have a delay free loop all right; in the frequency domain this means 

that the noise transfer function evaluated at z equal to infinity must be. 

Student: 1, 1, 1. 

Must be 1 correct? Now, if the noise transfer function has poles and zeros on slash within 

the unit circle; of course the poles you would expect to be well within the unit circle; the 

zeros are either on the unit circle or sometimes it so happens that the zeros move a little 

bit inside. For example, when the integrators have finite gain you can show that the zeros 

of the loop right; instead of being z minus 1 or 1 minus z inverse will be 1 minus alpha z 

inverse; where alpha is slightly smaller than 1. So, you can always factor the noise 

transfer function into something of this form. So, 1 plus a z inverse is the first order 

factor; if you have complex conjugate poles you can factor them into 1 plus a 2 z inverse 

plus z 2 I mean a 3 z to the minus 2 and so on. And, the denominator is 1 plus b z inverse 

b 2 z inverse plus b 3 z to the minus 2 and so on. And, the roots of all these factors that is 

the roots of this factor that is factor, this factor, this and this will all be for the poles they 

will be. 

Student: Definitely ((Refer Time: 31:03)). 

Definitely within the unit circle if you want to have a working modulator right the zeros 

at the most they can be. 

Student: On the unit cell. 

On the unit cell all right. And, clearly this form of writing the NTF satisfies this 

fundamental condition; which is at the first sample of the NTF impulse response must be 

equal to 1 why? Because if I take this and evaluate it at z equal to infinity what do I get? 

Student: 1. 



I get 1 you understand; in other words any noise transfer function can be written in this 

form is this clear? 

Student: Sir, the zeros can be inside these. 

Yeah the 0 can be inside the unit circle. 

Student: Not the outside. 

I mean most of the in most practical cases you will find it they are either on the unit 

circle or. 

Student: Inside. 

Inside. So, you design them to be on the unit circle; however did you finite gain effects 

and so on they actually might move in other is this clear all right. 

(Refer Slide Time: 33:14) 

 

Now, it turns out that it can be shown that if I evaluate the integral from 0 to pi of the log 

of the magnitude of a term 1 plus a 1 e to the j omega from 0 to pi. Then, this turns out to 

be equal to 0; you understand? ;et me repeat this again I have a term 1 plus a 1 e to the j 

omega; in other words this is nothing but 1 plus a 1 z inverse evaluated on the unit circle 

right; I find it is magnitude only take the logarithm and integrate it from. 

Student: 0 to pi. 



0 to pi all right. And, it turns out that this is 0 it is not too difficult to show. Now, since a 

picture is worth 1000 words it is nice here to draw a picture. So, if I draw on the x-axis 

omega or omega by pi and on the y axis I draw log of 1 plus a 1 e to the minus j omega 

or a to the j omega. Then, the net area is 0; in other words the area of this log magnitude 

curve above 0 must be the same as. 

Student: ((Refer Time: 35:16)). 

The area below 0; is this clear? I mean if we have multiply this whole thing by 20 

nothing changes correct and then you can express everything in d B. So, if you plot the 

log magnitude of 1 plus a z a 1 z inverse; where a 1 has a magnitude smaller than 1. 

Then, the area above the 0 d B line will be exactly equal to the area below the 0 d B line 

so. 

(Refer Slide Time: 36:00) 

 

Now, consider the second order factors; if the poles lie within the unit circle you can 

always break this up into a product of. 

Student: 2 first order. 

2 first order terms where the coefficients are now complex conjugate right; if the roots 

are complex otherwise they are 2 real poles. And, if the if we accept the previous result; 

then you can show that if you plot the log magnitude of this transfer function. Then, 



again the area above 0 must be equal to the area below 0 or in d B the area above the 0 d 

B line must be the same as the area. 

Student: Below. 

Below the 0 d B line, correct. 

(Refer Slide Time: 37:03) 

 

Now, that we have accepted this; our NTF is simply log of. 

Student: ((Refer Time: 37:13)). 

I mean whatever log magnitude of the NTF is simply nothing but log magnitude of 

products of terms like this correct. And, each one of them individually evaluates to. 

Student: 0, 0. 

0 right. So, in other words the log magnitude of the noise transfer function integrated 

from 0 to pi must therefore be. 

Student: 0. 

0 is this clear? So, in other words if you plot the log magnitude of the noise transfer 

function. And, the NTF is stable and the 0 of the NTF are either on the unit circle or 

inside; then the area of the log magnitude of the NTF above 0 must be equal to the area. 



Student: Below 0. 

Below 0 right; I mean this fits in well with all our circumstantial evidence namely right. 

You know when we attempted to increase the out of band gain correct; what would we 

find the in band noise is getting better. On the other hand when we reduce the out of 

band gain which is equivalent to saying if you reduce the out of band gain the out of 

band log of the gain also reduces; which means that that area above the 0 d B line is 

reducing; which means that the area below the 0 d B line must increase. And, where is 

the magnitude log magnitude less than 0? For the NTF at what frequencies is the log 

magnitude smaller than 0? 

Student: ((Refer Time: 39:11)). 

Pardon. 

Student: Frequency. 

At in band frequencies correct. So, right 

(Refer Slide Time: 39:17) 

 

So, this area. So, if you plot say log NTF; the area of this above 0 must be the same as 

area below 0 right C 1 which is this area and C 2 which is this area must be the same. 



(Refer Slide Time: 39:53) 

 

And, this is what is called the bode sensitivity integral all right. And, therefore in English 

this means that good in-band performance can only be obtained at the expense of. 

Student: Poor out of band. 

Poor out of band performance which is something we have seen all along. For example, a 

1 minus z inverse has good out of band performance because out of band gain is only 2. 

But it is in band performance is not great; a second order modulator has a poorer out of 

band performance but better. 

Student: In band. 

In band performance and so on and so all right. So, let us keep this for the time being. 

So, this also I mean please note that we have not said anything about the order of the 

loop filter so far; this is irrespective of the number of poles and zeros in the noise transfer 

function. So, if we had 2 noise transfer functions with the same out of band performance 

right. But if one had a higher order than the other then you can do better in band and the 

reason is that. 

Student: Because the noise transfer function is. 



I will I mean let me explain what this graph shows; it shows 2 noise transfer functions 

the NTF in red has a higher order then the NTF in blue clearly; both these noise transfer 

functions have the same. 

Student: Out of band out of band gain. 

Out of band gain correct. But in band one of them is doing better which one is doing 

better? 

Student: higher order red is better. 

The red one is doing better; the higher order modulator is doing better why do you think 

this make sense? From the discussion we just had about this bode sensitivity integral. 

Student: Because it has more area. 

Student: Ok. 

Student: Above 0 d B it has more area. 

All right. So, I mean you can see that they I mean clearly the area above the 0 d B line 

must be must be the same as the area below the 0 d B line correct; in a high order 

modulator you can make the transition very. 

Student: Sharp, sharp. 

Sharp; this is exactly analogous to I mean your digital what you have done in DSP right; 

if you have a higher order transfer function you can make it. 

Student: Sharp. 

Sharper; you can see that the lower order transfer function wastes a lot of area in the. 

Student: Transition. 

Transition whereas if you had a higher order NTF since the transition is sharper right; 

you do not need to waste that area in the transition right. All the positive area for 

example can be utilized to get a larger negative area which all happens at. 

Student: In band. 



In band frequencies you understand ok? So, that is another piece of intuition. 

(Refer Slide Time: 43:32) 

 So, to summarize the 

discussion so far all noise transfer functions of the form 1 minus z inverse to the N have 

stability problems. And, the reason is that the out of band gain is too high; fortunately 

this can be remedied by. 

Student: Moving. 

Moving the poles all from z equal to 0 to locations which are closer to the zeros; thereby 

bringing the out of band gain. 

Student: Down. 

Down and this automatically means that the in band gain will go. 

Student: Up. 

Up somewhat. Because the out of band gain and the in-band gain are related; and you 

cannot do better out of band without making things in band worse. So, we now at least 

have a way where yeah sure we have a high order NTF right. But the I mean earlier we 

had an NTF with say omega to the power N with very small MSA. Now, you have some 

alpha times omega to the power N but the MSA is much larger right; this alpha being 

greater than 1 is not really an issue. Because going from I mean the what is the whole 

idea in going to high order modulator you want to reduce the in band noise correct. 



So, let us say you had for second order you had omega square, third order you cannot 

have omega cube you must have some alpha omega cube; where alpha is greater than 1. 

So, compared to omega square alpha omega cube is much smaller right because at low 

frequency omega is virtually. 

Student: 0. 

0, right. So, the increase in quantization noise due to alpha being greater than 1 is much 

smaller than. 

Student: Reduction. 

The reduction in the quantization noise because of the extra factor. 

Student: Omega. 

Omega, right. So, it does indeed make sense to go for a high order modulator which of 

course has been designed. So, that the maximum stable amplitude is not very small; and 

that is done by moving the poles choosing the poles properly. So, that the out of band 

gain is smaller than 2 to the N correct. 
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So, let me quickly go over a systematic way in which one can design an NTF. So, as we 

said we introduced poles in the noise transfer function is now of the form 1 minus z 



inverse to the N divided by D of z inverse right. So, D (z) where evaluated at is equal to 

infinity must be 1. 

(Refer Slide Time: 46:41) 

 

And, as we saw the out of band gain will now reduce. Because of the moment of the 

poles the in band gain will go up; and that is not a problem as we just discussed. 

(Refer Slide Time: 46:55) 

 

So, to systematically design an NTF what one realizes is that a noise transfer function is 

nothing but a high pass filter. So, the job of designing a noise transfer function is 

analogous to. 



Student: ((Refer Time: 47:10)). 

That of designing a proper high pass filter. But can any high pass filter be a noise 

transfer function. 

Student: No. 

If I gave you a high pass filter transfer function and said this is your NTF; what check 

will you run to make sure that this is indeed an NTF? 

Student: ((Refer Time: 47:30)). 

You must make sure that the high pass filters response that the transfer function when 

evaluated at z equal to infinity. 

Student: Must be 1. 

Must be 1 otherwise you will not be able to realize it. Because you for realization you 

must have a you must not have any delay free loops. So, and high pass filters you know 

the synthesis and approximations have been worked out; they are all well known stuff. 

So, it does not make sense for us to start inventing new high pass filters; they actually 

take resort to mat lab where you know all these libraries are have been around for ages. 

So, you pick your favorite high pass filter let us say one of you likes Butterworth, one of 

you likes chebyshev, one of you likes inverse chebyshev it does not matter; you pick a 

high pass filter family all right. 
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And, I mean so when you starting of let us say you choose the order right, you choose 

the over sampling ratio. And, you choose the number of levels in the quantizer and you 

choose the target SNR; this SNR is the. 

Student: In band. 

In band signal to noise ratio. So, as an example let me say I like Butterworth. So, I will 

say I will choose a third order Butterworth high pass filter. So, once I say that my high 

pass filter is Butterworth and is of third order; there is only 1 degree of freedom and what 

is that? 

Student: Cut off. 

There is only one you know free variable that is the cut off frequency correct. So, at 

since I do not know anything I will just pick some random cut off frequency; I mean. So, 

this is my pi, this is my signal band pi by OSR; the cut off frequencies of the Butterworth 

can you comment on should it be greater than pi by OSR or smaller than pi by OSR? 

Student: Pi by OSR greater than. 

Must be much higher than. 

Pi by OSR. 



Pi by OSR. Because the high pass filters transfer function is like this; you do not want to 

pick a cut off I mean this is the cut off frequency correct. And, your signal band must be 

in the stop band of the high pass filter. So, it make sense to choose a number which is 

much higher than pi by OSR right. So, I randomly chose pi by 8. 
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And, so we get the transfer function from mat lab; mat lab unfortunately I think this 

picture is missing the minuses and pluses. So, anyway mat lab does not know that you 

are a sigma delta designer. So, if you ask it for a high pass filter it will give you ratio of 

polynomial such that the gain at in the pass band is. 

Student: 1, it is 1. 

It is 1 correct. So, unfortunately or I mean whatever so but we do know that for a valid 

NTF H of infinity has to be plus 1. So, what do you do? 

Student: Divide it by. 

You just have to divide the first term; make sure that the first terms are the constant 

terms in the numerator and denominator are both. 

Student: 1. 

1. 
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So, once you do that you will get an NTF where the numerator must be of the form. 

Student: 1. 

This must be 1 minus z inverse the whole cube. Because the Butterworth filter has got all 

its zeros at z equal to 1; Butterworth high pass filter will have all its zeros at z equal to 1. 

So, if the original H the high pass filter that mat lab gave you is like this; once you scale 

the coefficients you will get a noise transfer function whose magnitude response looks 

like this. So, in the next class we will continue and see how one goes through the 

systematic design procedure.  

Thank you. 


