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Lecture - 02 
Sampling - 1 

So, in the last class, we were reviewing some basics of sampling, so let us quickly recap 

what we did in the last class. 

(Refer Slide Time: 00:21) 

 

So, let us say we had a continuous time signal x of t and we sample it, at a uniform rate 

every T seconds, then we get a discrete time signal where time is quantized, but 

amplitude is continuous. And we were trying to relate the spectrum of the continuous 

time signal to the spectrum of the discrete time signal. And we said that, if the 

continuous time signal had a spectrum x of a, and we denote the discrete time Fourier 

transform of the sequence x of K T by x of e to the j omega, which is sigma overall k x 

of K T e to the minus j omega k. 

And to remind ourselves that, this signal here corresponds to continuous time, I will label 

this chap with a subscript x c of f, and to remind ourselves that this is a discrete time 

spectrum, I will call that x d of e to the j omega. And yesterday we saw that x d of e to 

the j omega, can be simply obtained by forming the sum over all k of x c of f minus k by 

T times 1 over T and then, we replace 2 pi f times T with omega. 



Refer Slide Time: 02:47) 

 

And therefore, x d of e to the j omega is simply sigma overall k x c of omega by T times 

2 pi minus k by T. And instead of writing 1 by T all over the place, if I denote 1 by T by 

the symbol f s stands for sampling frequency, then x d of e to the j omega can be written 

as 1 over T times sigma over all k x c of f s by 2 pi times omega minus 2 pi k. And one 

must remember, that x d is periodic with 2 pi, and when a continuous time sinusoid of a 

frequency f 1 is sampled at a rate f s. What kind of sinusoidal will that result in, in the 

discrete time domain, let us say you had a continuous time sign wave with the frequency 

f 1. 

When you sample it at a rate f s, it will become a discrete time signal, what do you think 

the frequency of that discrete time signal would be. 

Student: ((Refer Time: 05:02)) 

It will be f 1 by f s times 2 pi, so in particular D C, will transform to D C I am just 

putting that down here again D C will transform to D C f s by 4 will transform to f s 

corresponds to 2 pi. So, f s by will correspond to 2 pi by 4, which is pi by 2 f s by 2 will 

correspond to pi and f s corresponds to 2 pi, and a very easy way of drawing the 

spectrum is to do the following. If the continuous time signal had this spectrum, how do 

you draw the discrete time spectrum, the first thing would be to make copies of this with 

the period, let us say this bandwidth was B Hertz, I will make copies of this at f s. 



So, let me just do that here, the next step is to multiply all of this with 1 over T and then, 

replace 

Student: Scale 

Scale the x axis where B becomes B by F s times 2 pi, and f s becomes 2 pi 2 f s 

becomes 4 pi and so on, and as we all agreed yesterday, the discrete time spectrum is 

periodic with a period 2 pi. So, it does not really matter which particular period you 

choose, and it is common to choose the range from... 

Student: Minus pi 

Minus pi to 2 pi, is that clear. 

(Refer Slide Time: 08:37) 

 

Now, couple of things I would like to bring to your attention, the first thing is that if you 

had a continuous time signal at a frequency f 1, it will transform to as we discussed just 1 

2 pi times f 1 plus f 1 by f s. Now, what if you had a continuous time signal which was f 

1 plus f s, the frequency of the sinusoid was f 1 plus f s, if you sample it at f s what do 

you think it will look like in the discrete time domain. 

Student: ((Refer Time: 09:11)) 

Please notice that it, may say is 2 pi times f 1 plus f s 



Student: ((Refer Time: 09:20)) 

By f s right which is 2 pi into f 1 by f s plus 2 pi, but we know that the discrete time 

spectrum is periodic, so everything is modulo 2 pi, so you can remove the 2 pi. So, what 

this is telling you is that, a frequency f 1 and a frequency f 1 plus f s when sampled will 

look like the same frequency in the discrete time domain this is nothing but, aliasing. 

And this makes a sense also, because from the Nyquist theorem we know that, if the 

input frequency is greater than f s by 2, then it will result in aliasing. 

This is any illustration of that, it just says that if you have a frequency f 1 plus f s, it will 

look after sampling just like f 1. Now, by the same token f 1 plus k times f s, after 

sampling will also look like 2 pi f 1 by f s, when this is assuming that f 1 lies between 0 

and f s by 2. So, in other words when you sample a continuous time signal, there are 

many frequencies that can masquerade like the, mean there are many signals which kind 

of map down to the same discrete time sinusoid. 

So, if you are not careful before sampling, then you can be thoroughly mistaken as to 

what the continuous time signal is, please note that the idea in the whole the idea behind 

sampling is to be able to eventually reconstruct the input signal in some fashion. If you 

have lost information while sampling or you made errors during sampling, it is very 

difficult to recover. 

(Refer Slide Time: 11:49) 

 



So, which is why as we were discussing yesterday we said that, while it is true that the 

desired signal may be of only a small bandwidth, there is always accompanying noise, 

whose bandwidth could be much wider than the, the bandwidth of the desired signal. 

Now, we should not get into the mistaken notion that, the desired signal is only got a 

bandwidth B, so I will only sample at 2 B. So, if we do not do anything, then noise 

components which are much broader band than to be, as we just saw will all alias to in 

band, there by degrading the in band signal to noise ratio. 

So, the way around this problem is do not sample the signal directly, but to put a filter, 

call the anti alias filter which make sure that the bandwidth of the signal is what you 

think, it should be. And then the output of the anti alias filter is sampled and thanks to 

the anti alias filter that, the signal bandwidth does not exceed B, which means that I am 

safe if I sample at 2 B this is what you have seen in the communication text books. 

And when we are dealing with mathematical abstraction, it is often very convenient to 

assume brick-wall type filters and so on. So, in your communication classes very likely 

that you have seen a block diagram, where you have an ideal low pass filter, whose 

bandwidth is B, in other words it allows everything to pass through below B, and cuts off 

everything beyond a bandwidth B. And by now you should know that this is not possible, 

any practical filter that you build with a finite order will only have a, only thing you can 

do is make the transition band narrower and narrower. 

You cannot make the pass band absolutely flat, you cannot make the stop band at 

attenuation infinite, which is what one would tend to believe; if we saw the ideal block 

diagram of a anti alias filter, it would look like a brick-wall filter with one say ideal anti 

alias filter. 



(Refer Slide Time: 14:31) 

 

You would expect the frequency response to look like this, where this is 0 and this is 1 

this is the bandwidth B, a practical filter can only approximate this in some sense. So, 

you will find that a the pass band is not as flat as you would want, the transition band is 

not as sharp as you would want and the stop band attenuation is not as large as you 

would want. Now, given this information can you comment on a other any 

considerations you think for the sampling rate, in other words we know that if a signal 

has a bandwidth B, we need to at least sample at 2 B. 

And we also know that we must put an anti alias filter, now the question I am asking you 

is, do you think it makes sense to sample at not at 2 B, but at 4 B, 2 B satisfies an 

Nyquist criterion, 4 B satisfies the Nyquist criterion, 40 B satisfies the Nyquist criterion. 

It is natural to wonder whether should I just sample at Nyquist, after all Nyquist is telling 

me that, if I sample it at least the twice the bandwidth, I will be able to reconstruct no 

problem. 

The question is should I sample only at 2 B is, 2 B good enough or I am doing better, if I 

sample at 4 B or am I doing even better if I sample at 8 B, do you have any comments, is 

there anything we gain, it seems like it is more difficult to sample at a higher rate. So, 

question is do we gain anything at all in this bargain. 

Student: ((Refer Time: 16:58)) 



Very good, so the suggestion is the following, so let me draw spectrum let us say this is 0 

I will only draw the positive half, this is f I will draw the characteristics of the anti alias 

filter in red here ((Refer Time: 17:22)). And let me draw this on a log scale, so this is log 

magnitude of the anti alias filter response and because, the filter has got a finite order as 

you move away from the band edge, this frequency below B is the, so called pass band of 

the filter. 

The portion beyond B is the stop band of the filter, because the filter is a practical 1, it is 

a real 1, the order is finite which means that you can never have infinite sub band 

rejection, over a band of frequencies. You can have it at one frequency or two 

frequencies, but not over a over a band, and if you have an all pole filter and all pole 

filter is 1 where, the numerator is 1, H of s is of form 1 by D of s. So, if you have an n-th 

order filter for large frequencies, how does the how do you think the attenuation will go. 

Student: ((Refer Time: 18:47)) 

For frequencies far away from the band edge, it must go down as 1 by omega to the 

power n which is 20 N D B per decay correct. So, if this is a linear scale on the x axis 

and a log scale on the y axis it will look like this, if I plot a log log plot it will be a 

straight line with a slope of minus 20 N D B per decay. Now, let us consider two 

situations, one the signal frequency is the desired signal is here, let us consider two 

sampling rates, one where the sampling rate is f s, and other one where the sampling rate 

is let me call this f s 1. 

And the other one where the sampling rate is f s 2, so now, can you comment on the 

consequences of these choices f s 1 versus f s 2, what do you think becomes more 

simplified, if you chose f s 2 versus f s 1. 

Student: ((Refer Time: 20:26)) noise component will the higher frequency component, 

the aliasing of the i 

So, the first thing we need to understand is that, if there was no noise at all we would not 

have to worry about the anti alias filter, because the sampling rate evidently is much 

higher than twice the bandwidth. The problem or the reason why we need to have an anti 

alias filter in the first place is to filter of noise, and where do we want to specifically get 

rid of noise, what is the job of the anti alias filter. 



Student: Within the bandwidth of the same thing 

See you cannot 

Student: ((Refer Time: 21:09)) 

Where outside the required band, the question is it important to get rid of noise all 

outside, I mean completely outside the signal band or at their specific locations where 

you really want to get rid of noise. 

Student: B and f s 

Between 

Student: B and f s 

No, it will be a little more specific B and f s of course, it is good but 

Student: ((Refer Time: 21:35)) 

Where do we want to get rid of noise, we want to get rid of noise at all those frequencies 

which can potentially alias to the in band frequencies, which is that in band frequency 0 

to B. So, now we need to figure out which all frequencies will alias to the range 0 to B, 

let us start with 0, which all frequencies were alias to 0. 

Student: ((Refer Time: 22:03)) 

Obviously 0 will translate the 0, then 

Student: f s 1 

F s 1 

Student: F s 2 

Twice f s 1 

Student: 3 f s 1 

All my integer multiples of f s 1 will all alias to 



Student: D 0 

So, we need to definitely get rid of noise at f s 1, now what frequencies will alias to B 

Student: ((Refer Time: 22:31)) 

F s 1 

Student: Plus B 

Plus B 2 f s 1 plus B and so on, must remember also that there is minus B, so what will 

alias to minus B 

Studded: ((Refer Time: 22:40)) 

Minus B plus f s 1 minus b plus 2 f s 1 and so on, so now we know what all frequencies 

alias to 0, what all frequencies alias to B. So, we know I mean now all the range between 

also will alias to something between 0 and B, so f s 1 plus B, this is f s 1 plus B and f s 1 

minus B is this range here. So, this is a band of frequencies where signal will alias to 

minus B to B you understand, while it is true that it will be great, if we had an anti alias 

filter which would just cut off everything beyond B, we know that in practice it is not 

possible. 

So, the next question is where do we really want to cut off noise, and we really want to 

cut off noise at frequencies which can alias down to the range. 

Student: Minus B to 

Minus B to B and that will be in the if we chose f s 1 as the sampling rate it, will be f s 1 

minus B to f s 1 plus B, now if instead we had chosen f s 2 as the sampling rate, what do 

we see which all frequencies will now alias to base band... 

Student: F s 2 minus 

F s 2 minus B to f s 2 plus B, now can you comment on which of these is a better choice 

of sampling frequency and why? 

Student: ((Refer Time: 24:36)) 



F s 2, why is f s 2 is a better choice 

Student: ((Refer Time: 24:38)) 

So, if we see that if we chose f s 2, then the rejection, for a given anti alias filter, the 

rejection of the anti alias filter 

Student: Is higher 

Will be higher for a higher choice of sampling frequency, so even though it appears that 

it is harder work to do to sample at a higher rate, while Nyquist just dictates it twice of 

the bandwidth is enough. We see that choosing a sampling rate, which is much higher 

than what was dictated by Nyquist is advantageous, in terms of the design of the anti 

alias filter. Now, let us take this argument the other way, if I insisted that I want to 

sample at Nyquist, in other words my sampling rate is 2 B, what do you think the 

characteristics of the anti alias filter must be. 

Student: ((Refer Time: 25:48)) 

It has to be 

Student: Sharper 

Lot sharper than what we have now does it make sense. 

(Refer Slide Time: 26:07) 

 



So, choice to sampling frequency relative the Nyquist frequency, what is the Nyquist 

frequency? 

Student: ((Refer Time: 26:36)) 

The Nyquist frequency is the minimum sampling rate you require, to sample a signal of 

bandwidth B, so the Nyquist frequency in this particular example is 2 B. So, the choice 

of the sampling frequency related to the Nyquist frequency, has implications on the 

design of the anti alias filter. So, to compare different sampling rates, it makes sense to 

only compare it with respect to the Nyquist rate, so 2 B is the minimum sampling rate 

required to be able to reconstruct a signal with bandwidth B. 

If you are sampling at a rate over and above 2 B, it means that your, because sampling at 

Nyquist your sampling, if you are sampling at a rate higher than Nyquist your 

oversampling over. So, the ratio f s by 2 B is called the oversampling ratio or the 

abbreviated as the OSR, so we will repeatedly keep using these things, this abbreviation 

later in the course, you understand why this definition makes sense. So, now to rephrase 

all that we have discussed with this new jargon, if my oversampling ratio is high, what 

does it mean is my anti aliasing filter design easier or more difficult. 

Student: Easier 

It is easier, and other thing we need to bear in mind is that, it is only in the text books 

that you have an ideal filter, it is only in the text books where you say you have a filter 

with the bandwidth B, and the bandwidth is actually B. In practice whenever you say I 

am going to have a filter B, you must be prepared to take variations in the bandwidth. 

Because, no real system will have a bandwidth which is absolutely fixed, it is bandwidth 

will vary perhaps, because of temperature variation, because of manufacturing tolerances 

and so on. So, in practice it is never possible to ensure a bandwidth which is exactly what 

you want. 



(Refer Slide Time: 29:34) 

 

So, one high OSR means that the anti alias filter, need not be very sharp why, because if 

you want to reject the alias band to a certain level, if you increase the oversampling ratio, 

which is the ratio of the sampling rate to twice the signal bandwidth. Then, your anti 

alias filter must satisfy, in the pass band you want your anti aliasing filter to have a gain 

of 1, in the alias band you want it to have a gain of 0. Of course, we do not really expect 

that gain to be 0, we want it to be some small number, so if we say we want the gain in 

the alias band to be at least smaller than in at most some number like this. 

Then the filter design problem becomes a lot simpler, because the filter needs to have a 

transition band which is doing this. On the other hand, if my oversampling ratio is small, 

then what happens I need to have the same rejection in the stop band, and I need to have 

the same transmission in the pass band. So, this means that my transition band from pass 

band to stop band must be very sharp, and designing sharp filters is more difficult than 

designing filters which roll off gently, without good getting into the theory, I mean while 

this seems at least intuitively satisfying. 

Not only that can you comment on the effect of variation of this filter corner, as you 

change OSR, in other words do you think I can tolerate a bigger variation of the band 

edge, the motivation being that no practical filter will have a band edge, which is fixed in 

frequency, it will vary. The question now is, does it make any difference if I increase the 



OSR, in other words can I tolerate the larger variation of band edge frequency with the 

higher OSR. 

Student: Yes 

Any do you understand the question no, see we know that the anti alias filter bandwidth 

cannot be fixed, there will be some tolerance it will move. And you want to make sure in 

spite of this the band edge moving, you want to make sure that it rejects the alias band to 

some degree. Now, the question is will you be able to tolerate a larger variation of this 

band edge, when the oversampling ratio is small or when the oversampling ratio is large, 

so it is a its very straight forward. 

So, if the oversampling ratio is large, not only is the filter design easier from a point of 

view of the width of the transition band, it will be lot more tolerant to variations in the 

band edge frequency to see this, imagine what happens if you have Nyquist sampling, 

the filter must be really really sharp. And now if the bandwidth even moves a little bit, if 

the bandwidth reduces what happens, it will get rid of the alias for sure, but it will also 

cut off some of the desired signal. 

On the other hand, if the bandwidth increases, then what will you see some of that alias 

band is not properly rejected, so while it is true that Nyquist sampling will is all that is 

necessary to be able to reconstruct the signal properly, there are some very very practical 

reasons, why you would want to actually over sample the input signal. So, and typically 

you would never have a system where the signal bandwidth is say B Hertz and you 

sample exactly at 2 B. 

This would make the job of the filter designer very very difficult of course, you can say 

some of my problem is somebody else problem, but you could I mean, in the next project 

you could be that somebody else you understand. So, it is very common to have little bit 

of oversampling, so that the job of the filter designer is made easy. Of course, pushing 

the sampling rate high is also not at all trivial effect, that basically means that your 

circuits have to work that much faster. 

But, system design is trade off between these possibilities, if you try to make your job 

easy somebody else’s job becomes a lot more difficult to do, if you want to make that 



guys job easy then your job becomes very difficult to do. So, both of you sit together and 

figure what works best for both of you. 

Student: ((Refer Time: 35:39)) 

Meaning 

Student: On the transition band what we are talking about, suppose we are having the 

low sampling rate 

Correct. 

Student: And transition has 

Will be very sharp 

Student: So, whether any chance of that stability criteria 

Well, it is true that if you have the comment we made was, that if your oversampling 

ratio is very small then the filter has to be extremely sharp. And the comment he made 

was that, if the filter has to be extremely sharp, then that response must only be possible 

by poles whose quality factors are extremely high, only then you can get a sharp roll off. 

And yes, that is indeed a challenge, once you are very high cube poles it turns out that 

the sensitivity of the circuit to component variations also becomes high. 

As you might have seen in perhaps your digital filter design class, the same thing also 

holds for analogue filters. So, whenever you want to make something very rapidly in the 

frequency domain, sensitivity to component tolerances, noise etcetera at those 

frequencies becomes large. And therefore, you would like to try and avoid very sharp 

filters if possible. 

Student: Sir 

Yes 

Student: Bandwidth criteria whatever we are talking tolerance, how much percentage we 

will take in this, suppose we are having the say for your audio signal 20 kilohertz 

suppose we are talking, how much we can go for the sampling ratio. 



The question he asked was, if you have a signal with the certain bandwidth how will you 

choose your oversampling ration, so will you choose a very small number or will you 

chose a very large number, this is very situation specific. When you are dealing with low 

signal bandwidths for example, audio it is very easy to sample at a higher rate given 

today’s technology constraints. For example, 24 kilohertz audio signal. a common 

sampling rate to use is say 6 Megahertz. 6.144 Megahertz. 

(Refer Slide Time: 37:52) 

 

So, if let me just take an example since he has brought it up, so the signal bandwidth is 

24 kilohertz, the Nyquist bandwidth is what Nyquist rate is 48 kilohertz and if the 

sampling rate is 6.144 Megahertz, what is the oversampling ratio. 

Student: Around 120 

It is 128, and this turns out that is a fairly common thing to do, as you can see the alias 

requirements given that the oversampling ratio is 128, the anti alias filter is to have can 

be actually very very gentle. Because, it needs to pass it needs to have a flat gain up to 24 

kilohertz and it needs to have an attenuation at 6 point something Megahertz. So, very 

often a simple R C or a combination of RC, a passive RC filters all that is needed and 

one might also ask given that, I am doing all this extra work I am, I need to sample only 

at 48 kilohertz, but now I am sampling at much higher rate. 



Can I exploit this to improve circuit properties, can I exploit this to a larger degree than 

simply saying anti alias filtering becomes easy, it turns out that this is the subject or what 

is called the oversampling form in the family of weighted e convertors, called 

oversampling analogue digital convertors. Where we exploit the fact that, there is your 

oversampling significantly, oversampling significantly means that you are sampling at a 

much higher rate than is necessary which means, there is a lot of correlation between 

successive samples of the signal. 

In other words, if you are watching a movie it is like watching slow motion there is or if 

you are one of those T v soap box, it is like [FL] you watch today and you watch 

tomorrow and it will looks like the same thing. There is no difference between 

successive samples, which is basically telling us Nyquist state is very low you come back 

2 years, later and watch and you will know perfectly well what is happening. 

So, later on this course, we will see how oversampling can be exploited, not only to 

simplify the bandwidth of, I mean simplify the requirements of the anti alias filter, you 

can also use it to like to improve the performance of the A to D converter. So, of course, 

now if the signal bandwidth becomes very high, it may become impractical to be able to 

sample it at in an oversampling ratio this large. In which case you have to settle for more 

modest values of oversampling ratio and then, simply because you are not able to build 

circuits, which can sample this fast. 

Now, the next thing I wanted to talk about is related to what I just said, sometimes you 

want to sample a signal at a very high rate, that could be A, because you want to 

oversample or B, simply because the signal bandwidth is extremely high. A case in point 

being front ends of oscilloscopes, today to test your high speed circuits you need an 

oscilloscope, which is much higher in speed. Only then, you will be able to test 

something which is high speed to begin with, so oscilloscope for front ends have been a 

big application area for requiring, higher and higher and higher sampling speeds. 

Unfortunately device technology is may not be advancing at the rate you require. let us 

say you want to build a sample and hold which samples at say 40 Gigahertz, because you 

want to test something. Then, it may not be possible first of all to be able to build sample 

and hold, which can operate at such high speed. So, one way around that what do you 



think you can do, if one fellow cannot do the job quickly enough, what do you think you 

will do, you put two guys on the job, so it is the same thing here. 

So, you can have many sample and holds which are working at a lower rate, and put 

them together and make it look like a single sample, and hold working at a higher rate. 

(Refer Slide Time: 43:25) 

 

So, let us take and this technique is called time interleaving, where you have many 

sample and holds working parallelly at lower speeds making, a single unit which appears 

as if it is working fast. So, now you say then, I do not know how to design a really high 

speed sample and hold, however I know how to design a low speed sample and hold, if I 

put many of the sample and holds together in some fashion. I will be able to hopefully 

combine the outputs, in such a way as to make a sample and hold which looks like a high 

speed, it seems like a reasonable idea. 

So, this is the principle of what is called time interleaving and the basic idea is like this, 

let us say we had a signal here something like this, and you want to sample this at some 

rate. However, you are not able to build a sample and hold which travels at that high rate, 

so the simplest case I am going to use two sample and holds, one which samples all the 

even samples. And one which samples the odd one, so the circles and the crosses 

represent, outputs coming from in different sample and holds. 



So, please note that, even though the effective sampling rate is f s each individual 

sample, and hold is working at the rate in this particular case, f s by 2 this can be 

extended to n sample and holds sampling systems operating in parallel. So, let us try and 

first analyse this also serves as a good way of seeing, if we understand this continuous 

time, to discrete time conversion and spectrum and all that properly. 

(Refer Slide Time: 46:07) 

 

So, if I had a continuous time signal, one equivalent way of representing this system 

mathematically, is to say I have two samplers operating at a sampling rate of f s by 2 

which means that, they are sampling at 2 T. But, mathematically I can get the samples if 

I take the signal advance it by T and sample it at 2 T, so both the sample and holds of 

these sampling systems the switches are being closed simultaneously. It is equivalent to 

it you can either skew the input signal, or you can skew the stamping clocks, I have 

chosen simply for mathematical convenience. 

I have chosen to advance one of the signals, it does not I mean have a advanced version 

of the signal, it does not as long as mathematically equivalent it does not matter. So, now 

here I have a discrete time signal, which is the samples of the continuous time signal 

taken at even instance of time. And here what do I have, I have again a discrete time 

signal, where the samples are taken at odd instances of time. Now, how do I reconstruct 

when I want to use these two signals, to make the output look like a sample and hold 

which was operating at f s. 



So, what do you think I should do to these two output discrete time signals, no please if 

you if you simply add these two signals what will happen, you need to switch before I 

what is the rate of these samples f s by 2, if I simply add the two sequences what will be 

the rate be 

Student: ((Refer Time: 48:48)) 

It will still be 

Student: F s by 2 

F s by 2, but I need to eventually get to a rate of 

Student: F s 

F s, so what do you think I should do 

Student: Multiply, during one time period and during the second, set at the next second 

signal of some sample 

See these samples are 

Student: ((Refer Time: 49:17)) 

No, once you sampled only I have list of samples there is no more time, so only sequence 

of numbers how will you generate the 

Student: ((Refer Time: 49:40) interpolate it, one signal interpolate 

I am understand what you are saying, but what technically needs to be done is you must 

first insert you must increase the sampling rates of 

Student: Individually 

Individual strips that means, you must 

Student: Inside 0 

Up sample each of these sequences, so now up sampling means you insert zeros, every 

your up sample were factor of 2, so you insert zeroes and then, what should you do, you 



must put a delay here and now what should you do, you simply add these two. So, now, 

if I put all of this in a big box this should look exactly like 

Student: Sample 

A sample and hold 

Student: F s 

Operating at f s, so obviously, the first question that would come to you is apart from 

here ((Refer Time: 51:00)), why would you want to do this, and the answer is that the 

sampling operation which I claim to be difficult to implement is now happening at half 

the rate. And so let us try and figure out the spectra at various places in the signal chain, 

this is also good exercise to do to see if we understand, I mean you already know the 

final answer, we know what the spectrum must be at h. 

(Refer Slide Time: 51:55) 

 

Let us remind ourselves with that the x d of e to the j omega at h must be 1 by T, it looks 

mind you like a sample and hold which is running at f s, so it must look like 1 over T 

sigma k x c of what did we see just now f s by 2 pi times omega minus 2 pi k. This is 

what we must get at h, so the spectrum at a is simply, the signal at a discrete time or 

continuous time? 

Student: Continuous time 



Continuous time, so this is x c of f at B how do the signal look like, please note that the 

signal at B is sampled at f s by 2, so all we need to do is replace T with 2 T. So, is that at 

b is it a discrete time signal or a continuous time signal, after sampling it is discrete, so 

this is nothing but, sigma k x c of what should I do now, f s by 4 pi times omega minus 2 

pi k, which I will write as f s by 2 pi. And pi times k, but actually I think I made a 

mistake, I think it is. Now, what is the spectrum at C, C mind you is this signal here, 

what do you think that is, it is up sampled so you are inserting 0, so what is. 

Student: ((Refer Time: 55:04)) 

It is simply scaling of the 

Student: Axis 

Student: Frequency axis 

Frequency axis 

So, what should I do I replace, 

Student: ((Refer Time: 55:14)) 

F s by 2 pi I must replace 

Student: ((Refer Time: 55:26)) 

No 

Student: ((Refer Time: 55:29)) 

Omega with 

Student: 2 omega 

2 omega 

So, what must this become 

Student: ((Refer Time: 55:48) 

Omega minus 



Student: Pi k 

Now, what about the spectrum at d, d is this signal here is it continuous time or discrete 

time? 

Student: Continuous time 

It is continuous time, so what is the spectrum at d, x of f e to the x e of f e to the minus, e 

to the j 2 pi f times T, because it is advancing it is plus T, now what is the spectrum at e, 

e is nothing but, the sampled version of the continuous time spectrum. So, it must be of 

the form 1 by 2 T sum over all k x c of f s by 2 pi times omega by 2 minus pi k times e to 

the j 2 pi. And what should be do, mean how do we get the discrete time expression, you 

now you form the term f minus k times f s, and replace f with please note that you must 

replace 2 pi f T with here, the sampling rate is 2 T. 

And therefore, sampling rate period is 2 T, so sampling rate is 1 by sampling rate is f s 

by 2, the delay is T, and I have f and how do I what must I do here I must replace 2 pi f 

times 2 T with omega. So, how does this look like f must be replaced with omega by 2 pi 

times f s by does it make sense, it is the same expressions I am manipulating them with f 

s by 2. 

(Refer Slide Time: 59:11) 

 

Rather than, and which simplifies to recalling that f s times T is 1, we simply see that this 

expression is omega by 2 the first term minus k pi. So, that is the spectrum at e what 



would be the spectrum at f, at f it is simply 1 over 2 T sigma k x c of f s by 2 pi times 

omega minus pi k times e to the j omega minus k pi. Now, what are we doing, we are 

delaying this by one sample, so this is what how does that look like, g is simply a stuff at 

f e to the minus j omega. 

So, what goes away the plus j omega and the minus j omega go away that makes 

intuitive sense, because we have advanced the signal here by 1 by a factor T. And we are 

delaying it by 1 sample, which is also I mean in time it is time T, I mean at c and f what 

is the sampling rate? 

Student: F s 

So, that goes away, so this simply becomes e to the minus j k time times pi and what are 

we doing finally, we are adding the stuff at c with the stuff at f, let me just copy and 

paste this is what we had per things at c. So, now if we add I mean what is so funny 

about e to the minus j k pi, it is minus 1 to the power n, so for even values of k it is 1 for 

odd values of k it is minus 1. So, k equal to 0 how does this look 1 by T x c of f s by 2 pi 

times omega, for k equal to 1 what happens? 

Student: ((Refer Time: 64: 10)) 

For k equal to 1, this argument is the same as this argument, this is 1 where as this is 

minus 1, so when you add the 2, the 2 go away and you get 0, so going the same way for 

all odd k, these things simply vanish you understand. So, this is only valid for, these 

things will be non zero only for, so that h it will be of the form 1 by T times sigma over 

all k, all even k which I can simply say as f s by 2 pi times omega minus 2 pi k, which is 

the same as what we get for a sample and hold, operating at the pole rate. 

Well this is where the maths stops from the communication point of view, or the signal 

processing point of view, when you make a practical system like this, there are a whole 

bunch of problems. For instance, there might be an offset here, which may not be there in 

that path, in other words there is a D C offset which is different in both parts. The next 

thing is that the gains of both the paths may not be exactly the same, the third thing is 

that, in practice you are not going to implement it like this, you are going to one switch is 

going to be sampling at 2 T, 4 T and so on. 



The other switch is going to be sampling at 1 T, 3 T, 5 t and so on, but in practice what 

happens is that 2 independent switches, so the exact sampling instance of both these 

switches may not be may not be exactly T apart. So, you ideally want the first sample 

and hold to sample the second sample and hold must exactly sample the time T later, in 

other words, both of these are sampling at a sampling rate of f s by 2 that is every 2 T, 

but the offset between their sampling instance, must be exactly T. 

Otherwise, it will be like this is a small skew, then it will be like one is sampling here, 

the other one is sampling here, this guy is sampling again here, the other one is sampling 

here and so on. So, this corresponds to some kind of non uniform sampling of the input, 

all these will have will cause artifacts in the discrete time spectrum which must be 

addressed, you understand. So, we will continue with the effect of these artifacts which 

are fundamental things, which will happen every time you implement time sample 

sampling system, we will see this in the next class. 


