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SQEBASTIP: Nine Steps for Deriving a Device Model

In the previous 2 lectures, we have been discussing the 9 steps of deriving a device model

namely SQEBASTIP. S and Q stand for structure and characteristics to scale and qualitative

model. Then in the previous lecture we discussed 4 steps namely E, B, A, S that is equations

and boundary conditions, approximations and solution.

(Refer Slide Time: 00:48)

Now,  in  this  lecture,  we will  discuss  the  next  3  steps  namely  testing,  improvement  and

parameter extraction and then we will summarize the proceedings of this entire module on the

steps for deriving a device model.
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Let us look at testing. The solution is tested for the following criteria over the entire range of

interest.  The criteria  are; generality,  continuity,  accuracy, physical basis and simplicity.  In

order that we remember these criteria lets develop a mnemonic. If you collect the first letters

of  these  criteria,  then  they  abbreviate  to  GCAPS.  So  like  the  9  steps  of  device  model

abbreviate to SQEBASTIP.

The 5 criteria for testing a device model abbreviate to GCAPS.

(Refer Slide Time: 02:05)

Let us look at the details of the criteria for physical basis of the solution and for solution

accuracy. The physical basis of the solution can be tested using the following approaches. We

test for dimensional correctness and ability of the model to predict limiting cases. Then we



check for consistency of the solution with approximations and we look for the number of

empirical parameters in a model.

If the number of empirical parameters is small, then we say the model has a strong physical

basis. On the other hand, large number of empirical parameters would imply weak physical

basis.  For  solution  accuracy,  you  compare  the  model  results  with  accurate  computer

simulation and finally you compare the model results with measured data. The comparison

with measured data is ultimate test of the success of a model.

In the absence of measured data computer simulations may be employed. However, please

note that computer simulations depend on the type of models and boundary conditions we

provide where we may make approximations without our proper understanding of the actual

conditions and therefore comparison with measured data is ultimate test for the correctness of

any model.

Now, as far as other criteria are concerned such as generality, continuity and simplicity, these

criteria are quite evident from the model equation. For instance, generality means that the

model equation should be able to encompass various regimes of device operation or various

types of devices of the same class. So a general model for a bipolar transistor would imply

that the model is able to capture various bias operations of the device.

As well as various types of bipolar transistors, similarly for general models for MOSFETs

and so on. Now as far as continuity is concern, the continuity is a mathematical property that

one can always test by looking at the values of the functions over the bias range of interest or

the derivatives of the function in the bias range of interest. Now, whether the model is simple

or not is also evident from the form of its expression.
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An assignment,  derive  the  dimensions  of  the  following  expression.  So here  I  stands  for

current,  epsilon stands for permittivity,  delta  and T are geometrical dimensions.  So, these

dimensions correspond to the spreading resistance example that we have chosen to list at

various steps of the model. Similarly, G also corresponds to a geometrical dimension of this

spreading resistance.

Mu is mobility, N is doping and q is the physical constant namely the electronic charge.

(Refer Slide Time: 05:48)

Let us look at improvement, some general comments. The solution is modified to improve

one or more of the GCAPS criteria. So in the testing step we will test for the GCAPS criteria

and  we  might  find  the  model  is  wanting  in  one  or  more  of  these  and  therefore  in  the

improvement step we would like to correct those lacunae.



(Refer Slide Time: 06:18)

Now,  let  us  illustrate  the  testing  and  improvement  steps  using  our  spreading  resistance

example. Let us start with checking the physical basis, correctness of dimensions. Here is

your model expression. One can easily check that this dimensionally correct because R0 has a

dimensions  of  a  resistance  it  is  rho into  our  distance  divided by an  area  and delta/G  is

dimensionless. Therefore, the formula for R has a correct dimensions of ohms.

The parameters G, T and delta are indicated here.

(Refer Slide Time: 07:02)

Next test of physical basis is prediction of limiting cases. Does this model predict limiting

cases correctly? So one limiting case for example is delta = 0, here R = R0. One can easily

check that  if  I  said these extensions  to 0 it  will  become a 1-dimensional  resistor and its



formula will be given by this. Which is correctly predicted by this model. Let us take the case

delta 10 into infinity.

So, in delta 10 to infinity in other words these bottom contact extents further and further

away from the top contact.  You find  the  resistance  is  approaching 0.  Now is  that  really

correct? Let us check. Here is the current flow pattern. The actual current flow pattern and

our approximate pyramidal current flow that we have assumed. Further while deriving this

model we have assumed that over any horizontal area of cross section the current density

normal to the area is uniform.

Whereas, the actual current density may have a non-uniform shape, I have shown here for the

bottom contact. Now see what happens when delta tends to infinity. In our model since the

current density normal to the contact is found to be uniform the total current will approach

infinity in our model and that is why the resistance is going to 0. Whereas, in practice or in

actuality the current distribution is non-uniform I have shown by this shape.

You can see that the current density is approaching 0 as you move away more and more away

from the center of the contact, right. Therefore, if you are more extending the bottom contact

to infinity the amount of current will really not change because the area under this curve will

get saturated. Therefore, we anticipate that in reality the resistance would approach a non-0

saturation value, whereas, our model predicts the resistance to approach 0.

So, it does not seem to be a predicting the delta attains to infinity case correctly.
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Let us look for the consistency of the solution with approximations. The approximations we

have  made  are  space  charge  neutrality  which  implies  that  the  electron  concentration  is

approximately equal to the doping concentration. Then the current at any Y, so here is the Y

direction when I say current at any Y it means that current over the horizontal area of cross

section of this pyramidal current flow.

That is given by Jy into Ay, where Jy is the assume approximately uniform current density

over Ay and what is Ay? Ay is given by this formula. So, if you take any distance Y from this

top contact and find out the area of cross section of this pyramidal part of the current flow for

that why it is given by this formula. This Jy is nothing but the electron current density normal

to the Ay. So, these should be J suffix Ny.

Now these approximations have yielded us the solution for Ey in this form. This solution is

repeated  from  our  previous  slides.  Now  the  consistency  of  this  Ey  solution  with  these

approximations can be checked in different ways. One of the ways that we will adopt is the

following. So, we check the consistency of Ey with the approximation electron concentration

is approximately equal to the doping concentration.

That is the special neutrality approximation in the following manner. So, we use Ey to get the

magnitude of the space charge which is given by q times the magnitude of the difference

between the doping concentration and the electron concentration from Gauss’s law. It says

that modulus of rho = epsilon times the modulus of diversions of E and we check whether

this value of modulus of rho is indeed much < q times N.



Which is the doping concentration because if that is true then our space charge neutrality

assumption is correct.

(Refer Slide Time: 12:08)

Now let us see how we follow this through. So, Gauss law says modulus of rho = epsilon

times modulus of diversions of E where diversions of E is given by dou/dou x of Ex+dou/dou

y of Ey+dou/dou z of Ez. Here is our cross section of the spreading resistance and here are

the x, y, z dimensions. Now over the electrode areas that is over this area and this area which

correspond to the XZ plains at y = 0, L. Ex and Ez are 0.

So, by the very definition of an electrode it is equipotential and therefore it cannot have a

field in the plain of the electrode. So, Ex and Ez are components of the electric field along the

plains of this electrodes. So, since these are 0 over the entire electrode area therefore their

derivatives dou Ex/dou x and dou Ez/dou z are also 0 and therefore over the electrode areas

diversions of E simplifies to simply the formula dou Ey/dou y.

Because this other 2 terms have gone to 0. And therefore modulus of rho = epsilon times

modulus of dou Ey/dou y. Now let us take our Ey expression and differentiate it with respect

to y to obtain epsilon times dou Ey/dou y. You can do the differentiation yourself and the

result would be as shown here. It is 2 times epsilon into I into delta/T divided by q times N

into mu n into G+delta/T into y whole power 3.



So, I leave it you as an assignment to perform this differentiation. Now if you take the ratio

modulus of rho/q times doping concentration that will turn out to be at y=0 this expression.

So, you take this formula and then divide by q times N and set y = 0. So, when you said y = 0

the delta/T term vanishes in the denominator. So, that is why you have only G cube here from

this expression.

Now let us evaluate this expression for some typical values of variables and parameters.

(Refer Slide Time: 14:49)

So,  using  the  values  from the  table  this  is  our  table  for  the  various  parameters  of  this

spreading resistance and typical current of 0.1 mA. So, the voltage that will result for this

current would be of the order of a volt  or less. We will take 2 values of bottom contact

extension delta 1 is 15 microns and other is 16 microns. That is a large extension and a

smaller extension.

Now, substituting the values, we find that the ratio modulus of rho divide by q times N has

the values of 0.0625 for 15 microns of delta and 0.25 for 16 microns of delta. Evidently,

while 0.0625 is much < 1, 0.25 cannot be regarded as much < 1. So, what does it mean? It

means that our model is inaccurate for large values of delta.  So, Ey solution is inconsistent

with the negligible space charge approximation.

At least at y = 0 for large delta these what we gather, okay, from our consistency check and

therefore the model needs improvement. Definitely the model is predicting in correct result

for large values of delta. Now, this particular corollary offer consistency check matches with



our earlier discussion of the limiting cases of our model expression wherein we found that for

delta turn into infinity our model is predicting 0 resistance.

Whereas in practice the resistance should saturate to a non-0 value for large values of delta.

(Refer Slide Time: 16:49)

Now let us compare the model result with stimulation to check its accuracy. Now, here is our

cross section of the device structure with normalized values of the various dimensions. This is

the actual current density distribution normal to the horizontal area of cross section and this is

the  approximate  distribution  constant  distribution  assumed  in  our  model.  Now,  here  are

results of stimulation and the model calculations.

Stimulations have been performed by the ATLAS stimulator from Silvaco. Stimulations are

indicated by the points and the model is indicated by the solid line. So, the 2 differences

between the model and the stimulations are that the stimulations saturate to a non-0 resistance

value, whereas our model goes to 0 for large values of delta and secondly our model predicts

no dispersion as a function of the distance between the electrodes or small t.

Whereas the stimulation results  clearly show that the saturation value of the resistance is

different for different values of small t which are indicated here. You also find that the model

is somewhat inaccurate even for small values of delta, although it matches for delta = 0 with

the stimulation. So we have understood the weaknesses of our model in the testing process.

Let us see how we can improve our model to remove all these lacunae.
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First, let us try to include resistance saturation and T/G aspect ratio dispersion in the model.

How do we do that?  Let  us  take  resistance  saturation.  So the green lines  here show the

saturation values of the resistance. For t = 3 the saturation occurs somewhat later than the

values of delta shown here. You can come up with an empirical condition for the saturation.

The  value  of  delta  beyond  which  the  resistance  saturates  normalize  to  the  value  of  t  is

approximately = 2.2.

This is an empirical observation. Let us check here, how do we get this. So, for t = 1 you find

that the resistance saturates beyond delta = about 2.2, okay. So, we take the saturation point

as the point of intersection of the model with the stimulation. When you take t = half this is

the point of intersection of the model with the stimulation and you find the value here.

Then you take the ratio  of  this  value to  half  and you once again find it  is  close to  2.2.

Similarly, you do for t = 1/3. The point of intersection occurs here and this is the value of

delta beyond which the resistance saturates. So, this value divided by 1/3 and you will again

get the value of about 2.2. Note that this value of 2.2 has been determined empirically. We

have not done a derivation from the fundamentals.

Therefore, now using this information we can modify our model as follows. We say that our

model is given by the formula r = 1/1+delta which is the normalized form for delta < 2.2 t.

So, in other words we use this solid line up to delta = 2.2 t for the model. Whereas beyond 2.2

t we use the value corresponding to the point of intersection of the model with stimulation

result which is nothing but r = 1/1+2.2 t.



So,  delta  = 2.2 t  is  the point  of  saturation.  For  delta  > 2.2 t  we assume that  the model

saturates, okay. So this is what is the pictorial depiction of the model once the resistances are

saturated. So, we assume that the current flow is limited to only a part of the bottom contact

where the extension of this current flow from the top contact  is limited to 1.1 times this

dimension, normalized dimension that is small t.

So, the 2.2 t is obtained by taking 1.1 t on either side of the top contact.

(Refer Slide Time: 21:49)

Now,  let  us  consider  replacing  the  2-piece  approximation  with  an  accurate  single-piece

function  with  good  continuity  properties.  Note  that  in  the  process  of  incorporating  the

saturation resistance we have also incorporated the t/G dispersion because the value of the

saturation resistance depends on t. So, as t changes the saturation resistance also will change.

So, in 1 shot we have incorporated resistance saturation.

As well as the so called t/G or small t dispersion. Now we want to improve the model further

to  get  a  single-piece  function  instead  of  using  2 segments  one  for  below saturation  and

another for beyond saturation, we want a single segment which will cover both regions. How

do we do that? So, this is the kind of segment we are looking for, a red curve.

Which follows the segment for delta < 2.2 t as well as the constant segment for delta > 2.2 t.

The dotted line here indicates the initial slope of this red curve.
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Now if expression which is again empirically determined which has the shape is given by this

formula r = 1 - saturation value of r into exponential of - gamma into delta+r sat. Note that as

delta turns to infinity this quantity goes to 0 and r becomes r sat. So, that is how you get this

constant  segment.  On the other hand, for delta = 0 this  quantity becomes unity the r sat

cancels and you get r = 1 that is how you get this value.

The r sat values given by 1/1+2.2 t, so that you can capture the saturation resistance values

for different values of t. Now what is gamma? You can show that if you assume gamma = 1/1

– r sat then that will yield the value of r to be 1/1+delta for small delta. So, this expression for

small  delta  will  reduced to  r  =  1/1+delta.  In  other  words,  it  will  match  with  our  model

expression.

So, this empirical expression which we have conceived will match with the segment of our

model  for small  values of delta  if  you assume gamma = 1/1 -  r sat.  This left  you as an

assignment.  Now you see that even after we have got this single-piece function it  is  not

entirely  accurate  because  you  find  that  this  single-piece  function  is  over  estimating  the

resistance as compared to the accurate simulation results for small values of delta.

Though for large values of delta it  seems to saturate at  the simulated value.  So, you can

improve matters if you slightly increase the slope of the initial portion of this curve so that

your curve will become something like this and it will follow the simulated points. Now that

amounts to modifying the value of gamma as follows.
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So, if you increase gamma by changing this factor unity to 1.7 it turns out that your curve

which is this expression matches the stimulated results quite well. This 1.7 factor is again

determined  empirically  it  is  by  curve  fitting.  So it  is  an  empirical  constant.  If  you now

calculate the model results using this expression and this value of empirical constant it turns

out as shown by this red lines. that the model now matches the simulated data extremely well.

Therefore, this is now our final model after improvement.

(Refer Slide Time: 26:31)

So, let us put our various features of our accurate single-piece continuous model together.

Then these are the model expressions and in these model expressions you have the variables

constants and parameters indicated in this table. We had put down this table earlier before



improvement. The addition you can see after improvement is these empirical constants 1.7

and 2.2.

So, prior to improvement the model had no empirical constants. However, we found that it

was inaccurate particularly for large values of bottom contact extensions and to some extent

also for small extensions. So, we have improved the model by adding 2 empirical constants

and made it accurate. Now this is how you can see that to achieve model accuracy empirical

constants are introduced into an analytical model.

In the process the model loses the physical basis somewhat but it gains accuracy.

(Refer Slide Time: 27:50)

An assignment shows that the model r = 1 – r sat into e power - gamma delta+r sat reduces to

r = 1/1+delta for small  delta if gamma = to 1/1 – r sat.  Let us come to the final step of

parameter extraction. First we will make some general comments about parameter extraction

and  then  we  will  illustrate  the  procedure  of  parameter  extraction  using  our  spreading

resistance example.
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Parameter extraction is the process of determining parameters in a model so that the model

fits the measured data as best as possible. Parameters should preferably be determined using

the specific model equation where they are employed and using the device geometries, biases

and measured quantities  relevant  to  the application.  These points  are very important.  For

example, supposing you are deriving the mobility of a MOSFET, to use a particular model.

Now you are aware that different models are available for the same MOSFET phenomena.

So, different types of expressions are available and all these different types of expression will

contain the mobility. So, what is being said here is that if you derive the value of mobility to

fit a particular type of model to the experimental data you should not use the same value of

mobility in another model expression.

So, if you do that the other model may not fit exactly to the measured data. Second point is

about  device  geometries,  biases  and  measured  quantities.  Suppose  for  example,  your

MOSFET is a small geometry MOSFET then the mobility that you want to extract for a small

geometry MOSFET should not be extracted on a large geometry MOSFET. So, if you extract

mobility for a large geometry MOSFET.

And tried to use it in a small geometry device again the model may not match the measured

data. Same things, similar comments applied to biases. So, you must use the same biases

which are used with the device in practice.
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Now before  we  illustrate  the  parameter  extraction  process  with  our  spreading  resistance

example, here is an assignment. We had talked about the current voltage model, the static

current voltage model of a real diode and we have put down this expression in the module on

introduction. Identify the parameters namely the geometrically process and other parameters

constants physical and empirical and variables dependent and independent of the real diode

model used in SPICE.

That is the one that is shown here and tabulate their units and typical range of values. So, you

may have do some search to tabulate the typical range of values of the parameters.
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Now let us come to the example of parameter extraction.  Let us say you want to use the

spreading resistance  formula  for  a  situation  like  this  where  you have a  contact  a  square



contact on an epitaxial wafer. The contact size is small, so that the bottom of the epitaxial

wafer which is used as the other contact approaches infinity in a relative term to the contact at

the top of the wafer.

Let  us  assume  that  is  our  situation.  So,  the  application  is  prediction  of  the  spreading

resistance between 5 to 30-micron top contact and the bottom contact of an epi-wafer. We

assume the bottom contract to be very large. The dimension G varies between 5 to 30 microns

in our practical example. So, what we mean is we should extract the parameters using values

of G in this practical range.

We should not use let us say value of G = 1000 angstroms or 1000 microns. So, the formula

for R sat is given by this expression which is repeated from our previous slides and this can

be recast in the form of this equation. You can easily see that. Now based on this expression

you can anticipate that the above model can be used that is this expression, if parameters rho

and T.

So, the rho here and T of the epi-wafer are extracted from measured values of saturation

resistance for at least 2 different values of G. So, this T here is the thickness of the epi-wafer.

You have a bulk wafer which is however heavily doped. Evidently, the effect of the resistance

of this wafer will be absorbed in an effective value of T in this case because our contact is not

here at the distance T from the top contact.

But it includes the heavily doped wafer between the top contact and the bottom contact. Now

if you want to solve for 2 values T and rho evidently you need 2 expressions. So, that is why

you have to measure R sat for 2 different values of G. In practice more values of G may be

used to reduce the random errors in measurements so that is what is shown here. So, you can

use different values of g in the range 5 to 30 microns.

So, for each pair of G values you find out the values of rho and T and then you average all

these values so that any random errors in the measurements are removed.
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So, transform the R sat expression given here as R sat into G = rho T/G+2.2 T. Now this is an

important aspect in parameter extraction. The model expression will have to a transformed so

that  you can plot  the data  in  a simple  graph preferably as  a straight  line.  So that  is  the

intension of transformation. So, we have moved G to the left hand side and taken the product

R sat into G. It turns out to be of this form.

You can further transform this as 1/R sat G = to 1/rho T into G+2.2/rho. Once you transform

it like this as shown in this graph 1/R sat into G as a function of G is a straight line because

rho and  T are  constants.   So,  1/rho  T becomes  a  slope  of  this  straight  line  and 2.2/rho

becomes the intercept. The values of G range between 5 and 30. To measure the resistance

you will use a small voltage.

Because if we use the large voltage you may have velocity saturation effects and so on which

are not included in the resistance expression. So, our resistance assumes that the mobility is

not varying with the applied voltage or field. From the slope and from the intercept one can

get the values of rho as follows. So, rho in Ohm centimeter  = 2.2 into reciprocal  of the

intercept and T in micrometers = reciprocal of the product of rho into the slope.

So, please note here that R sat G is expressed in ohm centimeter and G is in microns. Only

when you plot it in this form your rho and T will be having the dimensions shown here. Now

fitting a straight line to these different points is a graphical method of averaging the results of

rho and T, right for a large number of data points.
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Now we have completed the discussion of various steps of deriving a device model. Let us

look  at  the  criteria  for  elegant  model  GCAPS  criteria  for  model  elegance.  So,  we  had

introduced  the  GCAPS criteria  in  the  testing  step  where  G  stands  for  generality,  C  for

continuity, A for accuracy, P for physical basis and S for simplicity. So, a model is set to be

elegant if it satisfies all these criteria.

Now what is the definition of elegance? The thing is said to be elegant if there is nothing

more left to add and nothing more left to remove. So, nothing left  to add nothing left to

remove that thing is said to be elegant. Come into the model, a model which satisfies GCAP,

generality, continuity, accuracy and physical basis if at all these and nothing left to add and if

it has simplicity then nothing is left to remove and therefore the model is elegant.

Note that these criteria can be conflicting as we have seen empirical quantities appear while

achieving  accuracy  or  continuity.  We  have  seen  this  in  our  example  of  the  spreading

resistance.  Now  the  continuity  criterion  is  very  essential  for  circuit  simulation.  This

something that we have not discussed very much, however device models used for circuit

simulation have to satisfy the criteria of continuity.

In other words, the model function should be such that all its derivative of any order, right

should be continuous over the range of variables  of interest.  Now what is  physical  basis

mean? It means quantities as well as their arrangement appeal to physical intuition. So, if you

take the example of the spreading resistance all the quantities in the model expression should

have physical basis but that is not sufficient.



We should arrange the model so that it appeals to physical intuition. For example, when you

write the model expression as r = to r0/1+delta/G then it appeals to physical intuition and also

it is very easy to remember. Why does it appeal to physical intuition because you see that the

effect  of the bottom contact  extension is to reduce the resistance from the 1-dimensional

resistance value r0.

P and S together include amenability to easy parameter extraction. So, a model is said to be

simple on the physical basis if its parameters can be extracted very easily. Finally normalized

representation in terms of dimensionless quantities satisfies the physical basis and simplicity

requirements very well. So, you must always try to express the model in a normalized form.

It is compact easy to remember, it is simple and appeals to physical intuition.

(Refer Slide Time: 40:31)

Finally, about model coding, although not addressed in this course coding of the model into a

software  programme.  Example  device  simulator  or  circuit  simulator  to  execute  the

calculations  is an important  part  of modelling.  We have not addressed this  coding of the

model, unless you code the model it does not become a product that can be used by others. In

this course however, we are not discussing about model coding.
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Now with that we have come to the end of the module. So, let us summarize the important

points that we have understood in this module.

(Refer Slide Time: 41:17)

So we began by specifying the 9 steps of deriving a device model which are abbreviated as

SQEBASTIP.
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To emphasise that the structure and characteristics should be drawn to scale and in this step

we must have an idea of the steps in which the structure is fabricated and we must visualize

to scale the cross section top view and 3D view of the real device as well  as the doping

profile  and  the  characteristics.  The  above  information  helps  in  developing  qualitative

understanding making approximations and parameter extraction.
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The step of qualitative modelling which is intuitive visualization of phenomenon by logical

reasoning without intricacies of equations. The phenomenon that we decide to model in our

course  can  be  explained  in  terms  of  the  following  steps.  A slowly  time  varying  VAB

modulates the potential psi in a device as a function of space and time. Psi modulates and is

modulated by the electron and hole distributions as a function of space and time.



Gradient of psi sets up drift and gradient of n and p set up diffusion currents. And finally we

assume that the lattice temperature remains spatially uniform throughout the device.

(Refer Slide Time: 42:41)

Qualitative  modelling  begins  with  the  approximations  of  the  device  structure  which

comprises of the bulk regions and surface or boundaries and approximations of n, p, psi and

the  associated  flows  of  Jn  and Jp  and E.  The  bulk  regions  can  be  partitioned  based on

material  composition and space charge as shown here in this  figure.  And the surfaces or

boundaries can be contacted or non-contacted.

Here you have this contacted boundaries and these boundaries are non-contacted.
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Approximations of n, p and psi and the associated flows Jn, Jp and E. So we discussed 7

approximations associated with this n, p, psi, Jn, Jp and E.
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We remarked  that  approximations  begin  at  the  earlier  stages  of  model  development  and

continue until the solution step prior to which all of them are summarized. In order that a

device model represent the reality faithfully, the inclusion of all the significant effects is more

important than the intrinsic accuracy of the mathematical solution.
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We described 5 ways of expressing a qualitative device model.  First,  tabulate  the factors

responsible for creation and continuity of Jn, Jp and E and for boundary condition on n or Jn,

p or Jp, psi or E. Then you sketch the solution anticipated from the qualitative model in the



following form. Flow lines for jn, Jp, E equi-potential lines of psi and plots of n, p, Jn, Jp, E

an psi and energy bands with space and time.

Above could be done separately for the various regions and boundaries.

(Refer Slide Time: 44:35)

And the fifth way of expressing a qualitative model is to tabulate the variables constants and

parameters of the model in the following tabular form.

(Refer Slide Time: 44:46)

About the equations, we said that we used the equations of the drift diffusion model in this

course.

(Refer Slide Time: 44:55)



Boundary  conditions,  these  are  the  factors  which  affect  the  boundary  conditions.  The

boundary conditions dependent on this factors were discussed in the module on drift diffusion

transport. We said that we shall use in our modelling the boundary conditions corresponding

to ideal contact which are described by these conditions of the factors and for ideal non-

contacts they are described by these conditions.

The ideal contact the electron and hole concentrations are equal to equilibrium value and the

potential is equal to built-in potential plus the applied voltage. While at ideal non-contact

normal gradients of electron and hole concentrations and potential are 0.

(Refer Slide Time: 45:44)

Coming  to  the  approximations,  we  said  you  have  approximations  associated  with  the

qualitative model as well as with the quantitative part.



(Refer Slide Time: 45:53)

So, the approximations set 1 employed in the qualitative model lead to the equations and

boundary conditions. While additional approximations are required of these equations and

boundary  conditions  if  you  want  to  derive  an  analytical  model.  On  the  other  hand,  the

approximation made in qualitative model suffice, if you are interested in a numerical solution.

In  many  practical  situations  uncertainties  in  device  behaviour  resulting  from  process

variations outweigh the errors from an approximate solution and that is why one goes in for

an analytical solution with many approximations.

(Refer Slide Time: 46:30)

Now approximation leading to the drift diffusion equations, we listed them for the electro

static equations for the formula J = Jn+Jp wherein we neglect the displacement current.



(Refer Slide Time: 46:44)

And  a  number  of  approximations  associated  with  the  current  density  and  continuity

equations.

(Refer Slide Time: 46:53)

Approximation leading to the boundary conditions,  so these were the approximations and

these were the boundary conditions for ideal contacts and non-contacts.

(Refer Slide Time: 47:06)



Approximations of the drift diffusions equations we said can be organized in a tabular form

where the rows are the equations of the drift diffusion model and the columns are space-

charge and quasi-neutral regions in various materials.

(Refer Slide Time: 47:24)

Coming to the solution we said there are 2 types of solutions numerical and analytical or

closed-form. Numerical solutions require the use of finite difference, finite element, Monte-

Carlo, Newton-Raphson techniques. Whereas analytical or closed-form solutions are obtained

from manipulations involving algebra, geometry, trigonometry, calculus, etc.

(Refer Slide Time: 47:45)



Regarding the testing step we said we test the solutions for the GCAPS criteria.

(Refer Slide Time: 47:54)

The criteria for physical basis where dimensional correctness, prediction of limiting cases

consistency  of  solution  with  approximations  and number  of  empirical  parameters.  While

those for accuracy of the solution were comparison of the model with accurate simulation and

measured data. Comparison with measured data being the ultimate test of a model.

(Refer Slide Time: 48:21)



In that testing step if we find that some of the GCAPs criteria are not met satisfactorily then

we try to improve them.

(Refer Slide Time: 48:30)

And finally we try to extract the parameters of the model, in order to use the model to fit with

measured data. Here the important thing to be borne in mind is that the parameter should be

determined using the specific  model equation where they are employed and using device

geometries biases and measured quantities relevant to the application.

(Refer Slide Time: 49:00)



Finally, although not addressed in this course, coding of the model into a software program

for just device simulator or circuit simulator to execute the calculations is an important part

of modelling.

(Refer Slide Time: 49:11)

GCAPS criteria for model elegance, we made several comments about it as to why these

criteria imply that the model is elegant and we pointed out some of the features associated

with the criteria such as the continuity is essential for circuit simulation and the fact that the

criteria can be conflicting that is in order to then one criterion you may lose the other to some

extent.

Also normalize representation in terms dimensionless quantities is very important because it

satisfies the physical basis and simplicity requirements very well.



(Refer Slide Time: 49:50)

We illustrated the various steps of device modelling procedure using the model of a spreading

resistance. First we discussed the qualitative model, which involve tabulating the factors for

causing creations and continuity of Jn, Jp and E and this tabulation looks something like this.

(Refer Slide Time: 50:14)

Then we tabulated the factors causing boundary conditions on n or Jn, P or Jp and psi or E.

This table had the appearance shown on this slide.

(Refer Slide Time: 50:29)



Next as a part of qualitative modelling we sketch the solution anticipated in the form of flow

lines of Jn, Jp and E and equi-potential lines for psi. So, these red lines are the flow lines in

the spreading resistance and the green lines are the equi-potential lines.

(Refer Slide Time: 50:49)

Next we anticipated the solution as plots of n, p Jn, Jp, E, psi or energy bands with space and

time.  Now, we did not bothered about energy bands because energy bands are not required

for understanding the operation of a spreading resistance.  We did not sketch the n and p

concentrations because they were uniform throughout the device. Further, we did not bother

about the hole current density.

Because  we  are  neglected  the  hole  concentration  and  contribution  of  holes  to  device

phenomena. Therefore, we sketched Jn, the electric field and psi. The y component of the



electron current density Jn or the electric field had this appearance over the top and bottom

contact as a function of distance. The edges had higher values near the top contact because

the field at the sharp corners or edges is higher than in the centre.

In the bottom contact however, the current density or electric field drop to 0 as we moved

further  away from the  centre  line  because  the  length  of  the  field  or  flow line  went  on

increasing  as  we  moved  away from the  centre  of  the  bottom contact.  And this  was  the

distribution of psi as a function of y along the centre line.

(Refer Slide Time: 52:34)

As a part of qualitative model we finally tabulated the variables constants and parameters.

(Refer Slide Time: 52:43)



Next, we considered equations and boundary conditions. The equations were Delta square psi

= 0. Electron concentration = doping concentration and electron current density = - q, doping

concentration into mobility into gradient of psi, because the current was only due to drift.

These  equations  followed from the  qualitative  model.  Similarly,  the  boundary  conditions

shown here also followed from the qualitative model.

And these boundary conditions were responsible for the electric field or current flow lines

and equi-potential lines shown here. Coming to the solution these equations and boundary

conditions particularly the boundary condition on the top contact only allowed a numerical

solution of this spreading resistance.

(Refer Slide Time: 53:34)

A change in the top contact boundary condition allowed us to obtain an analytical solution.

However, the analytical solution was of infinite series form and therefore computationally it

was intensive for a model to be used in circuit simulation.

(Refer Slide Time: 53:58)



Therefore, we went in for a closed-form solution in which the following assumptions were

made. Firstly, that the current spread at a constant angle from the top contact to the bottom

contact. And secondly the distribution of electron current density or electric field normal to

the horizontal cross sectional area of the device was assume to be uniform over the current

flow cross section.

(Refer Slide Time: 54:36)

Now based on this, we obtained the model shown here after attempting the improvement of

the basic model based on the constant angle current spreading approach.
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The  variables,  constants  and  parameters  of  the  model  were  as  listed  in  this  figure.  The

empirical constants of 1.7 and 2.2 were necessary to improve the continuity and accuracy

properties of the model.

(Refer Slide Time: 55:17)

So towards the end of the lecture,  let us just review the achievements. At the end of this

module, I hope that you should be able describe the 9 steps for deriving a device model.

Apply the 9 steps to derive the model of a spreading resistance. Name the requirements of an

elegant model and identify the variables constants and parameters of a model.

(Refer Slide Time: 55:44)



In addition,  you should  be able  to  organize  the approximations  associated  with a  device

model into a specific tabular form and express and equation in a normalized form. So, with

that we have come to the end of this module and we will start a fresh module namely the

types of models in the next lecture.


