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SQEBASTIP: Nine Steps of Deriving a Device Model

In the previous lecture, we have introduced the 9 steps of device modeling. These 9 steps are

abbreviated as SQEBASTIP where S stands for structure and characteristics to scale Q for

qualitative model E and B for equations and boundary conditions A and S for approximations

and solution, T for testing of the solution and I for improvement and finally P for parameter

extraction.

We  said  that  we  illustrate  these  9  steps  using  the  example  of  modeling  of  a  spreading

resistance. In the previous lecture, we detailed the 2 steps namely structure and characteristics

to  scale  and  qualitative  modeling.  We  emphasized  why  it  is  important  to  visualize  the

structure and characteristics to scale. In qualitative modeling we mentioned that is important

to take into account all the different effects.

Because if you want the model to be accurate it is not intrinsic mathematical accuracy of the

solution. But the fact that we are taking into account all the different effects this is more

important. We also said that qualitative modeling begins with a set of approximations and that

is why in an earlier  module you will  recall  we have said that modeling is art  of making

approximations. 

In this lecture, we will proceed further to detail some of the other steps of device modeling.

(Refer Slide Time: 01:55)



These steps are equations, boundary conditions, approximations and solution.

(Refer Slide Time: 02:08)

Let us begin with equations. We have remarked earlier that in this course we will be dealing

with models based on the drift diffusion equations. Let put this equation down here on the

slide. I did not explain them because we have explained these equations a number of times

earlier. The current is obtained by integrating the current density over the contact area and the

potential  between  the  2  terminals  is  obtained  by  the  integrating  the  electric  field  over

distance.

Now in the drift diffusion model the important parameters to be known are mobility, lifetime

and details of generation recombination mechanism. These details we have already given in

the  module  on  drift  diffusion  model  just  by  way of  example  let  me  reproduce  here  the



equation for the mobility which is a very important parameter. So the mobility is a function of

the effective mobility which depends on the perpendicular electric field.

That  is  electric  perpendicular  to  the  direction  of  the  flow of  carriers  then  the  saturation

velocity and the parallel electric field which is the electric field in the direction of motion of

the carriers. Now this particular formula for the mobility is applicable for both electrons as

well  as holes. The effective mobility depends on the bulk mobility for low perpendicular

electric field.

Divided by 1 + an effective value of perpendicular field by a critical field parameter E 0 raise

to the power gamma. The effective mobility is the slope of this drift velocity versus parallel

electric field curve for small values of electric field.  The effective value of perpendicular

electric field is related to the mobility in the inversion charge. So this is the diagram of MOS

capacitors or MOSFET in inversion in which you have the inversion charge and below that

the depletion charge.

So this electric field the effective value is average of the perpendicular electric field at this

surface  which  is  the  interface  between silicon and silicon  dioxide  and at  the  end of  the

inversion layer this electric field is given the symbol E suffix B. So average of these 2 electric

field is what this inversion charge experiences and that is what is given here as the effective

value of perpendicular electric field.

And this formula can be converted into charges where Q1 is inversion charge and QB is the

depletion charge marked here. Now the bulk mobility mu 0 is a function of temperature that

is a lattice temperature and the total  doping that is sum total  of acceptor and donor type

doping.  So  you  can  review  the  expressions  for  lifetime  and  generation  recombination

mechanisms from that module on drift diffusion transport.

And these equations will be used for device modeling.
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Let us look at the boundary conditions. In the module, on drift diffusion transport we have

explained that the boundary conditions depend on all this factors. Now we had said that often

we use the so called ideal conditions for contact and non contact and ideal contact conditions

the description of these factors are given as in this column. Similarly, for ideal noncontact the

descriptions are as given here.

I am not repeating these descriptions because we have already done it in the previous lecture

when we discuss qualitative modeling. Now these descriptions of the factors which govern

the boundary condition lead you to the ideal contact and non contact boundary conditions.

Now after this general comments about equations and boundary conditions to be used for

device modeling.
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Let us illustrate the ideas using the example of spreading resistance. So the equations for

spreading resistance follow from the qualitative model which is repeated here. So this was the

table that we had given in the qualitative model for the spreading resistance. Now each of

these descriptions in this cells of the table will be replaced by corresponding equations. So

the arrows here indicate the following. 

The no space charge assumption leads to the fact that the current can only be because of drift

because the diffusion current is 0. This is the uniform semiconductor and no space charge

means the electron concentration is equal to the doping concentration which is uniform and

electron concentration being uniform there cannot be a diffusion current. We are neglecting

the effect of holes here. 

Similarly, no space charge also leads to the condition that there is no excess generation or

recombination because the carrier concentration is equal to the equilibrium value.

(Refer Slide Time: 08:12)

So converting these 2 equations no space charge means diversions of E is 0 and Q into N

which is  the doping concentration  -  electron  concentration  is  0.  This  means the  electron

concentration is equal to the doping concentration. We have neglected the holes here. Electric

field creation by potential gradient the corresponding equation is E = - grad psi. JN = QN mu

N into E. qDn grad N is neglected.

And the continuity equation for electrons we neglect dou N/dou T because it is steady state

and we remove the terms namely G and delta N/tau because there is no excess generation or



recombination and therefore diversions of JN would be 0.

(Refer Slide Time: 09:14)

So here is the summary of the equations. Now one thing to be noted here is that if I use this

information about the electron concentration being equal to capital N here and then substitute

this equation for Jn into the diversions of Jn = 0 equations. I will end up getting this equation

namely diversion of E = 0. So these 2 equations are not really independent. This is because

our  space  charge  =  0  approximation  has  the  corollary  that  diffusion  is  neglected  and

generation recombination is also not there.

Therefore, one can use any one of these 2 equations in solutions. So I can either use these 4

equations or I can use these 4 equations. Now let me explain how these equations are used. I

can substitute E = - grad psi into diversions of E and I will get the equation del square psi = 0.

So you will recall that we had said that in drift diffusion model there are 3 coupled equations

essentially in Np and psi.

So in this particular example of spreading resistance we have neglected the holes. Therefore,

we have only 2 equations in n and psi. So these are the 2 equations. So small n = capital N

already because of our assumption of negligible space charge and combining this equation

and this equation gives you del square psi = 0. So del square psi = 0 and n = N are the 2

equations for us which will lead us to the model.

The equation Jn = Qn mu N into E is required to find out the current once we have solved the

electric field from the equation del square psi = 0. So this is the summary of the equations.



Here we have used diversions of E = 0 in place of diversions of Jn = 0. Later on we will show

that while deriving a closed form model diversions of Jn = 0 will be more convenient to use

that diversions of E =0. Both are equations of different forms for the same phenomena in this

case of spreading resistance.

(Refer Slide Time: 11:57)

Let us look at the boundary conditions. So we use ideal contact and non contact boundary

conditions which are given here. Note that we have not put any conditions on holes because

we are neglecting the holes. So translating these equations here to the boundaries first contact

boundaries. So at the bottom contact psi = 0 and N = N0 and at the top contact psi = V and N

= N0.

At the top non contact boundaries you have the gradient of psi in the Y solution and gradient

of N in the Y direction = 0. The same thing applies here as well. So this is the Y direction and

this is the X direction for us. So in other words you have no perpendicular electric filed nor

do you have any diffusion current in this direction. In fact, there is no current in this direction

because no field in this direction means no drift current and dou/dou Y of N = 0 means no

diffusion current in this direction.

So  no  drift  and  no  diffusion  together  mean  no  current  in  the  perpendicular  direction.

Following the same approach on the 2 sides noncontact boundaries you have the gradients of

psi and N in the X direction as 0 this is our X direction. So no electric field escapes normal to

this surface no current escapes normal to this surface. Now since we are already using the

equation electron concentration = capital N everywhere and N is uniform. 



Therefore, we really do not have to use the boundary conditions on the electron concentration

because  already  the  electron  concentration  is  equal  to  equilibrium  value  everywhere.

Therefore, the information regarding the electrons or electron concentration at the boundaries

has been removed here because you only have to solve this equation del square psi = 0. The

equation for electron concentration is decoupled from the del square psi = 0 equation.

So this is actually the simple picture that we have to solve. Now just by way of information it

is  this  boundary  conditions  at  the  contact  and  non contact  which  give  rise  to  the  equi-

potential lines we had drawn earlier in the qualitative modeling and the current flow lines. So

the current flow lines emanate perpendicular  to the contact you can see that or terminate

perpendicular to the contact and the equi-potential lines are perpendicular to the non contact

boundaries as you can see here.

(Refer Slide Time: 15:03)

Now let us move on the approximations. Let me reproduce a slide from the second module

that is a module on introduction wherein we talked about the constituents of a device model.

So we said that the device model consists of a qualitative part and a quantitative part where

the  quantitative  part  could  be  equations  in  boundary  conditions  or  equivalent  circuits  or

diagram or table where the diagram also includes graphs.

And  then  we  had  remarked  that  there  are  a  set  of  approximations  associated  both  with

qualitative and quantitative part. Now let us focus on these approximations here. So since

there are approximations belonging to qualitative model as well as to quantitative model.
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Let us describe the relationship between these approximations. So the approximations set 1 is

employed in the qualitative model and these lead to the equations and boundary condition

which can be solved numerically.  It may not be always possible to solve these equations

analytically because even after these approximations the equations can be fairly involved.

And only a numerical solution may be possible.

So if you want analytical solution then you make further approximations of this equations in

boundaries  conditions  to  get  the  analytical  solutions.  So  therefore  you  have  2  sets  of

approximations.  So  the  approximation  set  1  is  the  approximations  associated  with  the

qualitative  model  and the  approximation  set  2  is  the  approximations  associated  with  the

equations and boundary conditions or the quantitative model.

In  many  practical  situations  uncertainties  in  device  behavior  resulting  from  process

variations, outweigh the errors from an approximate solution and in fact this is the motivation

for going in for an analytical solution even if it involves approximations of the equations in

boundary conditions after you already have made approximations in the qualitative stage.

(Refer Slide Time: 17:25)



So let us look at the approximations which lead to the drift diffusion equations. So these are

the approximations made in the qualitative stage. So I am just repeating something that we

have done earlier. So for the electrostatic equations you know that the approximation is that

magnetic field is neglected and electric field has no circulating component that is it arises

from static charges only.

When you write J = Jn+Jp you are assuming that E is quasi-static on the scale of dielectric

relaxation time. And therefore displacement current is small. So otherwise you will have the

displacement  current  adding  on  to  Jn  and  Jp  which  are  due  to  drift  diffusion  and

thermoelectric  currents.  Now  these  are  the  current  density  and  continuity  equations  for

electrons and holes.

A number of approximations are associated with these namely between 2 scattering events

carriers  are  particles  with  an  effective  mass  determined  from their  wave nature.  Volume

average of concentration, momentum and kinetic energy of carriers are used ignoring their

standard deviations. The lattice temperature is quasi-uniform as a function of space that is

thermoelectric current are small.

The current is quasi-static on the scale of momentum relaxation time and the kinetic energy

density W is quasi-static on the scale of energy relaxation time and quasi-uniform over the

space. Further the drift component of kinetic energy of carriers is much less than the thermal

component of kinetic energy. Thermal component of kinetic energy also means the random

component of kinetic energy.
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Now let us look at the approximations leading to the ideal boundary conditions. Again we

will quickly reproduce from our earlier discussion. So these approximations pertain to the

factors  which  affect  the  boundaries  which  are  listed  in  this  column.  And  these  are  the

approximations which we normally make to get ideal boundary conditions. Now if you want

more realistic boundary conditions.

You can refer to the module on drift diffusion transport where the boundary conditions in the

presence of all this factors are described for contacts and non-contacts.  Now here we are

talking about the ideal boundary conditions. So these approximations lead to these boundary

conditions on ideal contact and ideal non-contacts.
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Now let us look at approximations of the drift diffusion equations. These approximations are

used to derive analytical models. So these set of approximations are the approximations set 2

which we refer to in an earlier slide. The best way to remember all this approximations of the

set 2 or the approximations of the drift diffusion equations is in the form of a table shown

here.

We have listed in this rows the electron current density, the hole current density and electric

field for each of this flows you have 2 equations as we know in drift diffusion model. So each

row here is an equation of the drift diffusion model. The columns on the other hand are space

charge and neutral regions of the device. Now the space charge region could exist in different

materials of the device.

So your device may have different materials. Similarly, quasi-neutral regions also may exist

in different materials of the device. So this is a general form of the table which is applicable

to any device. So you can list what approximations you make for each equation of the drift

diffusion model in each region. We will illustrate this idea using an example.

(Refer Slide Time: 21:50)

So here is an assignment for you as an illustration. Map the 11 approximations associated

with the ideal IV diode model into the 24 cells of the table for approximations of the drift

diffusion equation. Note that the mapping could be 1 to 1 to 1 to many and even blank cells

are possible. So here is the diagrammatic representation of what you are expected to do so

these are the 11 approximations.



We had referred to these 11 approximations in the introduction module and we will shortly

repeat those for your convenience just after description of this particular slide. So these 11

approximations each of them have to be mapped into this cells of the table.

(Refer Slide Time: 22:42)

So  these  are  the  11  approximations  reproduced  here  from  the  slide  presented  in  the

introduction section of this course.

(Refer Slide Time: 22:57)

And these are your 24 cells of the table in which you have to put the approximations of the

drift diffusion equations for deriving the ideal IV diode model. So note here the space charge

region as P and N sections. So this P column corresponds to the space region on the P side

and this N column corresponds to space charge region on the N side. Similarly, this quasi-

neutral region the details will appear in this column and the P type quasi-neutral region that is



a red portion the details will appear in this column.

(Refer Slide Time: 23:40)

Let  move on to  the  solution  step  of  device  modeling.  2  types  of  solutions  are  possible.

Numerical or analytical or closed form. Let us distinguish between these 2 types of solutions.

So we often come across this terms numerical, analytical closed form etcetera. So we need to

understand these terms properly. Here, we will give a brief description of each of these 2. In

the next module where we discussed the types of models.

We will develop further on some of the nomenclatures used for different types of device

model.  A numerical  solution requires  a  use of techniques  such as finite  difference,  finite

element, Monte-Carlo and Newton Raphson. On the other hand, analytical or closed form

solution  involves  the  use  of  manipulations  involving  algebra,  geometry,  trigonometry,

calculus etcetera. 

Now in this course we are concerned with analytical or closed form type of solutions.
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Let  us  illustrate  the  steps  of  approximations  and  solution  with  an  example  that  of  the

spreading resistance. So here are the equations and these are the boundary conditions. Note

that the actual resistance is 3 dimensional and we are showing here a cross section only where

you  have  shown the  boundary  conditions  in  the  X and  Y direction.  You will  also  have

boundary conditions in the Z directions that is along this direction here in this 3D view or

along the perpendicular to this slide that is the Z direction.

So I leave it to you to write the boundary conditions on dou psi/dou Z etcetera yourself. The

above equation in boundary conditions are based on the approximations associated with the

drift diffusion model and the ideal boundary conditions listed in the preceding slides. Now it

turns out that for the boundary conditions assumed that is which are shown here the equations

can only be solved numerically. 

So a number of researchers have attempted this problem. I have not been able to find an

analytical solution for this problem in terms of the equations and boundary conditions that we

have defined. They have only been able to obtain a numerical solution and analytical solution

becomes  possible  if  at  the  top  contact  that  is  here  the  uniform psi  which  is  a  Dirichlet

boundary condition is modified to uniform Jny or a uniform dou psi/dou Y which means a

uniform electric field in the Y direction over the contact which is a Neumann condition.

So if you change the uniform potential to uniform electric field uniform normal electric field

or uniform normal current density then it is possible to get an analytical solution it has been

found.
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Now this is a reference which discusses the analytical solutions. So the boundary conditions

has been modified to dou psi/dou Y remains constant at rho is the resistivity of the spreading

resistance, resistivity of these material here. So this rho is nothing but one/Q times capital N

into mu N. So rho multiplied by I divided by J square. So for any given current I that would

be the electric field over this contact.

Alternately,  you can talk in terms of current density normal to the contact that would be

simply the current divided by the area of the contact which is G square because it is a square

contact of dimension G. So this is the square contact.

(Refer Slide Time: 27:57)

Now the analytical solution obtained from the modified boundary conditions has an infinite



series form whose computational burden is too high for circuit simulation. In the next module

we shall see various forms of analytical solution. Here what we are saying is that when you

modify  the  boundary  condition  at  the  top  contact  from Dirichlet  to  Neumann  type  then

numerical solution can be replaced by an analytical solution.

We are not giving analytical solution here you can refer to the paper that I have given in the

previous slide if you are interested in it, but we are remarking is the property of the analytical

solution that it has an infinite series form which mean you have to take a large number of

terms  to get  an accurate  value of  the  resistance.  So computational  burden becomes  high

particularly for circuit simulation where you have a large number of devices and for each

device you cannot make so many calculations to get the current voltage characteristics.
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Therefore, let us look at another method which can be used to get a closed form solution. So

this is the picture of a spreading resistance this is a cross section view and this is the 3D view.

So current flow lines in the cross section are shown here based on this  current lines one

makes the following approximations about the current flow. So you assume that the current

flow expands at a constant angle from the top contact on either side.

So a current flow is restricted to this pyramidal region. In the cross section it is a trapezoid in

3 dimensional view it is a pyramid okay so this is the current flow pattern. So the current

flow is expanding at  a constant angle.  Now how do you decide what is the angle that is

decided by the fact that the pyramidal current flow pattern the area of the top of the pyramid

is same as the top contact area and bottom of the pyramid is same as bottom contact area.



Now let us see if you assume this kind of an approximations for the current flow pattern how

do we proceed further. Now the real picture of the distribution of the current density over the

contact area is as shown here Y = 0 that is a top contact. Your current density is high at the

edges and low at the center. This is because at corners you have high electric fields.

So that is why you have high current density. So what we are plotting here in the vertical axis

is the Y component of the electron current density or the Y component of the electric field. At

the bottom contact however we have discussed this point here the electric field or the current

density normal to the contact is maximum at the center and goes on falling to 0 as you move

away from the center.

Now this is because the length of the electric field or flow lines goes on increasing as you

move away from the center in the horizontal direction and therefore the electric field goes on

falling at the bottom contact. This is in contrast to the fact at the top contact where electric

field  increases  near  the  edges  of  the  contact.  Now the  area  under  these  current  density

distributions represents the total current.

Please note that the current density is per unit area whereas we are plotting that as a function

of distance. So when I integrate this graph over distance I will not get the total current, but I

will get current per unit length because this is current density which is current per unit area

and when we integrate over length you will get current per unit length. So this is not really

the total current. The area under these graphs do not represent total current directly. However,

they are a measure of the total current.

Now we make the following approximations regarding the current flow. So after we have

assumed that  the current flow expands at  a constant angle as shown here in a pyramidal

fashion. The additional approximation we make is that the current density is uniform over

any horizontal cross section of the resistor. If I want the area under this rectangle to be equal

to the area under this curved portion.

Evidently my constant value has to be more than the value at the center otherwise the area

under the rectangle and the area under the curl portion will not be same. So whatever area

you  are  gaining  in  your  approximation  here  is  being  lost  from  these  corners.  Similar



comments apply here whatever area you are gaining at this corners at the approximations you

are losing from these regions.

So in very simple terms therefore in your approximation the electric field or current density is

higher than at the center at the top contact whereas it is lower than the values at the center at

the bottom contact.
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So this is your approximate picture of the current flow pattern and the current density over

the contacts as well as at any cross section, horizontal cross section of the resistor. So what is

the cross section of current flow at any Y? So this is your Y axis this is the origin here the

center of the top contact  is the origin.  So as you move downward from this contact  to a

distance Y your area will be G+delta/T into Y.
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Now  let  us  put  down  those  approximations  in  the  form  of  this  table.  What  are  the

approximations  of  the  drift  diffusion  equation?  So the  first  approximation  related  to  the

current density Jn is Jn is restricted to Ay given by G+delta/T into Y the whole thing square.

You can see that this formula is correct if I put Y = 0 that is the top contact I get area as G

square which is the area of the top contact.

When I put Y = T which is the distance between the 2 contacts then I get G+delta whole

square which is the area of the bottom contact. And the next approximation related to Jn is

that Jny that is a normal component of the current for electrons is uniform over the area of

cross  section  Ay  which  means  I  of  Ny which  is  the  total  current  I  at  any Y across  the

horizontal  plane  is  given  by  the  current  density  over  that  plane  Jny  which  is  uniform

multiplied by the area of cross section Ay.

Now these are the only approximations. So we are not making any approximations related to

the continuity equations, the creation of the electric field that is E = - grad psi equation or the

Gauss Law.

(Refer Slide Time: 35:44)



Not  let  us  look  at  the  closed  form solution  itself.  So  0  space  charge  that  is  N electron

concentration equal to the doping concentration capital N and the electron current density

equation together lead you to these equations for Jm and Jny. So here we have to substitute a

electron  concentration  equal  to  capital  N.  Whatever  we  are  showing  in  red  are  the

approximations  and whatever  we are showing in black here are  the equation of the drift

diffusion model being used.

Similarly, the approximation at any Y the electron current is equal to the electron current

density over that horizontal  cross section at  Y multiplied by the Ay and using this  above

expression for Jny we get the electric field Y component = Iny divided by Q times N mu N

into Ay. Next use the diversions Jn = 0 formula of the drift diffusion equations which amounts

to saying that Iny = I at the contact because it is given by this formula. 

I leave it to you as an assignment to show that Iny given by this formula is = I at the contact

as a consequence of this diversions of Jm = 0. Intuitively it is obvious that if diversions of the

current density is 0 then if I take the current across any horizontal cross in the spreading

resistance at any Y. Then that current should be the same as the current at the contact because

there is no generation or recombination.

There is no kinetic generated or lost and it is steady state. So use this fact and use the above

Ey expression so this expression for Ey. Then we get the Ey formula as shown here all that

we have done here is replaced the electron current at any Y we have replaced by the current at

the contact. Now using the formula for the area of cross section of the current flow at Ay this



equation gets modified to this equation. All that we have done is we have replaced Ay by this

formula here.
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Now using this formula for Ey in terms of the current I and the area at Ay in the formula E = -

gradient of psi/integrating you can get a relation between the applied voltage and the current

as follows. So we integrate both sides so you get integral D psi from V to 0 with a negative

sign = integral Ey Dy from 0 to T. So you are integrating in the Y direction from this contact

to this contact on both sides of this equation and you are substituting for Ey this formula.

So left hand side becomes V you can see that. Right hand side I/Q times doping concentration

to mu this is mu suffix N. Here also this should be mu suffix N. So these are constant so they

have come out of the integral and inside you have D/G+delta/T into Y the whole square.

When you integrate that you get I/Q times N into mu again this should be mu suffix N into

T/G into G+delta.

So this integral over this limits gives you this result. Consequently, you can rearrange this

equation to give I as a function of V. So this is your multiplying constant. 
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Before moving on further let us give you an assignment because you have just finished the

closed form solution of the problem under some approximations. Consider variations of the

field Ey and potential psi as a function of Y along the vertical center line of the spreading

resistance. So these are vertical center line of the spreading resistance. Sketch these variations

from top to bottom contacts as per the closed form resistance model and compare them with

their correct behaviors.

So when we say the correct behavior we are not expecting you to do a numerical solution or

anything like that. We are remarking here the correct qualitative behaviors which you can

derive based on the current density distributions at the top and bottom contact or the normal

component of the electric field distributions at the top and bottom contacts we have discussed

earlier.

So at the top contact the normal electric field distribution is something like this and at the

bottom contact it is something like this so you can use that and the approximate results which

are constant.
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Now let us look at the closed form solution little further as to how you write the closed form

solution this is very, very important. After obtaining the solution it has to be arrange in a form

that  appeal  to  physical  intuitions  and  which  one  can  appreciate  directly.  So  we want  to

convert this into an expression for the resistance. So R = V/I from this equation your V/I

turns out to be of this formula where one/Q times N into mu is the resistivity. Again here mu

is the mobility of electrons.

You can rewrite this same formula in this form which is physically more appealing where you

recognize the fact that rho into T/G square represents the resistance of the spreading resistor.

When the size of the bottom contact is equal to the size of the top contact when delta is 0.

You have 1- dimensional resistor with contact area equal to the top contact area so that is why

it is represented as R suffiX0 where 0 implies the value delta = 0.

So what we have done is we have taken the G outside this brackets here. So inside we have

the  term  delta/G.  So  now  your  resistance  equation  is  written  in  this  form.  R  =

R0/one+delta/G.  So  this  form  is  physically  very  appealing  because  it  shows  that  the

resistance of a spreading resistor decreases as you increase the length of the bottom contact

laterally. Delta is the extension of the bottom contact from the top contact.

So when the extension is 0 the resistance = the 1-dimensional  value otherwise it falls as

reciprocal of 1 + the extension by the size of the top contact. Now this form is physically very

appealing and you can easily see that you prefer this form of the model to the form written

here. Mathematically, this form is same as this form, but physically this is more appealing. 



The form of this resistance expression shows that it is not the absolute value of delta, but the

value of delta relative to G that matters and plays a role in reducing the resistance. Now let us

look at variables, constants and parameters of our model. The dependent and independent

variables are current and voltage. The physical constant is Q there are no empirical constants

G,  T  and  delta  are  the  geometrical  parameters  and  doping  concentration  mobility  and

resistivity are the process parameters. 

Now you would recall that in our table of variables, constants and parameters there was no

R0 earlier. This R0 is another parameters that has entered into the model at this point of time.

Now this parameters has been listed in the other category because if you see the expression

for R0 which is rho T/G square in this T and G are geometrical parameters and rho resistivity

is a process parameters. 

Therefore,  this  term  rho  T/G  square  cannot  be  classified  either  purely  and  geometrical

parameters  or  purely as a  process parameter.  That  is  why it  has been listed  in the other

category.

(Refer Slide Time: 45:43)

Let  us  look  at  the  model  equation  further.  Let  write  it  in  a  form that  is  referred  to  as

normalized form which is very compact form. So R/R0 = 1/1+delta/G can be written as small

R which represents the dimensional less ratio of the resistance to the value of the resistance

when the extension of the bottom contact is 0. So small R = 1/1 + small delta which is the

normalized value of capital delta to the dimension of the top contact.



So this again a dimensionless quantity. So here in this form which is very, very compact the

resistance has been expressed in terms of dimensionless quantities. If you recall the form of

the resistance equation that we wrote down earlier it was a function of T, G and delta, but

when you write in normalized form it is not a function of T at all. It is only a function of

delta/G and R/R0. 

So a single line represents in a compact form the results for all the different values of T delta

G and also resistivity. Now here R0 is given by rho T/G square. Now this is the resistance

geometry in a normalized form where the top contact dimension is taken as unity because you

are normalizing that with respect to its own dimension then the bottom contact is unity +

delta/2 on either side where this is small delta/2. 

A small  delta is normalized value of delta to G and similarly this dimension the distance

between the 2 contacts is normalized with respect to G. This normalized form is very, very

powerful and compact. Since the writing expressions in a normalized form is very important.
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We will give you a few assignments before we close this lecture. Rewrite the expression for

the equilibrium depletion width in a P+N diode given by X0 = square root of 2 epsilon

psI0/Qnd in a normalized form as a relation between the dimensionless variables Z0 and W0

which are given below. So Z0 is the depletion with X0 normalized to the Debye length Ld of

the lighted outside. W0 is the normalized potential.



The built in potential normalized to the thermal voltage and Ld = the Debye length of the

region having a doping Nd. So please write  it  in terms of Z0 and W0 and see how this

expression becomes really very compact.
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Another assignment related so this is a PN junction in which Xp and Xn are width of the

space charge region of the P and N psi and width of the PN is 3 micron and width of the N

region is 60-microns. Now this ND and the minority carrier lifetime in the N region are given

here and Na and the minority carrier lifetime in the P region are having these values. 

Replace the lengths marked in the silicon diode under room temperature and equilibrium by

their normalized value where the lengths of the quasi-neutral regions are normalized with

respect  to  their  minority  carrier  diffusion  length  L minority.  So 3-micron and 60-micron

should be normalized with respect to their minority carrier diffusion lengths and those of the

space charge regions by their Debye lengths. 

So you should normalize Xp with respect to the Debye length in this region and Xn with

respect to the Debye length in that region and see, you know, what kind of dimensionless

numbers you get for these lengths. Comment on the utility of the result.

(Refer Slide Time: 50:05)



Rewrite the real diode equation I = I0 into exponential of V - the current I into the series

resistance Rs divided by the ideality factor into thermal voltage - 1 in a normalized form as a

relation between the dimensionless variables small I and small W given below. Small I =

series resistance Rs into I+I0 where I0 is the reverse saturation current divided by NVt.

And W = V+I0 Rs in brackets divided by N times Vt + natural logarithm of I0 RS divided by

N times Vt. So please rewrite these equations as I as a function of W and you will see that

this equation with so many terms comes out in a very beautiful compact form with very few

terms.  With that,  we have come to the end of the lecture.  Let  us quickly summarize  the

important points.

So in this lecture we detailed 4 steps of the device modeling procedure namely equations,

boundary conditions, approximations and solutions. We said that our equations for various

device models are going to be based on the drift diffusion equation and we are going to use as

far as possible the ideal boundary conditions. In approximations we pointed out there were 2

sets of approximations those leading to the equations and boundary conditions.

And those which are done after you write the equations in boundary conditions to get the

analytical type of solution. So for analytical model the set of approximations will consist of 2

sets. One made during the qualitative modeling stage to derive the equations in boundary

conditions  and  another  set  which  are  the  approximations  of  the  equation  and  boundary

conditions to enable us to derive an analytical model.



For a numerical model however for numerical solution you only have the approximations

made during the qualitative stage which leads to the equations and boundary conditions. The

equations are solved using numerical techniques. In this solutions we remarked that in this

course, we are going to as far as possible limit ourselves to analytical solution or analytical

model and we empathized why these solutions should be cast in a physically appealing form.

And we pointed out one particular form of writing an equation namely the normalized form

which allows us to represent a reasonably complex model equation in a very compact form.

So  that  the  compact  form represents  with  a  few  terms  the  results  for  a  wide  range  of

parameter  values  of  the  model.  We shall  continue  with  the  remaining  steps  of  modeling

procedure in the next lecture.


