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Lecture - 31
Energy Band Diagrams

In the previous lecture, we have begun a discussion of the E-x diagram. We mentioned about

the  various  levels  in  the  E-x diagram with the help of  a  uniform semiconductor.  So we

considered  a  uniform  semiconductor  under  equilibrium  and  under  uniform  volume

generation. So with the help of these situations, we introduce the following levels of the E-x

diagram.

(Refer Slide Time: 00:39)

First  we talked about  the vacuum level  E0.  So E0 x can be obtained from psi  x  that  is

electrostatic potential distribution or Ex that is the field distribution solved from the drift-

diffusion model. The equation is used for this purpose are E0/q = constant - psi or gradient of

E0/q  = E.  Any one of  the  2 equations  can  be used.  Then we can locate  the  conduction

bandage Ec. 

The difference between E0 and Ec is equal to q times chi where chi is referred to as the

electron affinity. So chi of x is obtained from the E-k diagram and crystal potential. Now in

general in a non-uniform semiconductor, the electron affinity can be a function of position x

if the crystal potential changes in this direction. In our case, the lines are flat, E0 is flat, Ec is

flat because we introduce these levels considering a uniform semiconductor.



So all  the  levels  in  our  case will  be flat.  The equations  however  will  also give  you the

variation in the levels okay if they are not flat in some situation.

(Refer Slide Time: 02:16)

We can locate Ev that is a valence bandage the difference between Ec and Ev is energy gap

and energy gap as a function of x is obtained from the E-k diagram and doping profile. So

they have explained that the energy gap with the function of doping for heavy doping energy

gap reduces. For example, if you have a situation where doping increases in this x direction

then the energy gap will decrease in this direction. So that is why Eg can be a function of x in

general.

(Refer Slide Time: 02:48)



The quasi Fermi level for electrons Efn, now this can be located from a knowledge of the

electron concentration as a function of x or electron current density as a function of x solved

from a drift-diffusion model. The relevant equations are gradient of Efn = Jn/n times Mu n or

Ec-Efn=kT ln Nc/n. So this equation gives you the quasi Fermi level in terms of the electron

concentration.

This equation gives you gradient of the quasi Fermi level in terms of the electron current

density and electron concentration.

(Refer Slide Time: 03:30)

So similarly we get quasi Fermi level for holes. These are the equations analogous to the

equations for electrons and Efp x is obtained from hole concentration or hole current density

as a function x solved from the drift-diffusion model.

(Refer Slide Time: 03:49)



You can also locate the quasi Fermi levels Efn and Efp with reference to the intrinsic level Ei.

These are the relevant formulae.

(Refer Slide Time: 04:00)

If you wish you could locate other levels within the energy gap for example the donor level,

the acceptor level, the trap level etc. These are levels corresponding to impurities and defects.

So this is how you can locate the various levels in an energy band diagram, which plots

electron energies as a function of x.

(Refer Slide Time: 04:28)



Now in this lecture, we shall consider a uniform semiconductor under applied bias and then

spatially non-uniform semiconductor under equilibrium. So spatially non-uniform means the

doping may change as a function of x, the crystal structure or composition may change as a

function of x.

(Refer Slide Time: 04:50)

Let us start with the E-x diagram of a uniform semiconductor under applied bias. So this is

our diagram. Whenever you want to apply a bias you will have contacts. So here at x=0 and

x=L, we have shown the contacts. In practice, the contacts are such that at these contacts

equilibrium conditions  are  maintained for electron concentrations  and hole concentrations

such contacts are called ohmic contacts.



So we will assume ohmic contacts in our case whenever we are applying a voltage to any of

the devices that we are considering. Now the length of this semiconductor for us is equal to

L.  We  will  be  concentrating  only  on  the  semiconductor  portion  and  we  will  ignore  the

variations in energy levels near the contacts for the present. We can always sketch the energy

levels at the contacts using the E-x diagram that we draw for junctions later on.

(Refer Slide Time: 06:00)

Let  us  sketch  the  energy  levels  reflecting  psi,  n,  p  or  E,  Jn,  and  Jp  inside  the  n-type

semiconductor. So our x=0 point would be this edge and x=L would be this edge okay and we

will ignore any space-charge regions associated with this contacts.

(Refer Slide Time: 06:24)

The diagram under equilibrium conditions,  which we have already drawn in the previous

class is something like this which shows E0, Ec, Ef and Ev.



(Refer Slide Time: 06:34)

The moment you apply a voltage in this case we are applying a positive voltage to the right

hand contact. All your levels tilt okay downwards to the right in this way. Let us develop this

energy band picture. Now in principle you can start from any of the levels we will start from

E0 in this case. Later on, we are going to lay out a procedure for drawing the levels and there

we will show that although in principle we can start from any of the levels in most of the

devices particularly when conditions are non-uniform inside the semiconductor,  it  is most

efficient to start with the Fermi level.

(Refer Slide Time: 07:25)

In this case however we will start with the E0 because we are not considering a non-uniform

semiconductor. So our starting point is psi = V/L into x because we have applied a voltage V



and the semiconductor is uniform, your potential variation in the semiconductor is linear. So

potential increases from x = 0 to x = L in a linear fashion. This is what this equation shows.

For x=0, psi=0 that is what we have assumed as a reference. Now the E0/q is given by this

formula constant - psi where psi will be this equation and if you sketch this equation on a

graph this is how it looks E0 goes down linearly as a function of x. The difference between

the values of E0 at x=L and x=0 is = q times the applied voltage.

This follows from this equation. Now you can locate Ec a distance q times chi below E0.

Since our semiconductor is uniform chi is constant with x and therefore Ec line is parallel to

E0 line.  You can  locate  Efn at  a  distance  below Ec given by this  formula okay.  So the

distance marked here = kT ln Nc/n. Again since our semiconductor is uniform, n is uniform

with x therefore the Efn line is parallel to Ec line.

Then we locate  Ev at  a distance Eg below Ec and then locate  Efp it  turns out since the

electrons and hole concentrations are equal to the values under equilibrium, the quasi Fermi

level for electrons and holes in this case will turn out to be the same. So when you apply this

relation and locate Efp with respect to Ev, it will turn out to be at the same point as Efn

located with respect to Ec using this formula.

(Refer Slide Time: 09:35)

Now since we are going to move on to more complicated E-x diagrams, it is important to lay

down the various steps that should be used to draw the E-x diagram for any general situation.

So  the  first  step  is  solve  for  electron  concentration  or  electron  current  density,  hole



concentration or the hole current density and electrostatic potential or electric field versus x

from the drift-diffusion model.

Now for  the situations  that  we considered  so far  we actually  did  not  go through all  the

equations of the drift-diffusion model to get n, p and psi. We seem to have obtained n, p and

psi  directly  by  (())  (10:23).  This  was  alright  because  we  were  considering  a  uniform

semiconductor right where the conditions are very, very simple. In general, however one will

have to go through all these 6 equations to solve for n, Jn, p, Jp, psi and E. 

(Refer Slide Time: 10:57)

Just  by  example  let  us  consider  the  situation  that  we  discussed  so  far.  So  uniform

semiconductor under following conditions is what we have discussed equilibrium, uniform

volume  generation  and applied  bias.  Now for  equilibrium n  =  n0,  p  is  equal  p0,  psi  is

constant, Jn is 0, Jp is 0, E is 0. Now we did not specify how we used all these equations to

get these 6 quantities.

So there are 6 equations here and there are 6 quantities. This is because equilibrium says that

electron  and  hole  concentration  should  be  equilibrium  value  and  since  it  is  a  uniform

semiconductor, potential is uniform right or constant. This did not require us to go through

these equations. So equilibrium means Jn=0, Jp=0 and say if psi is constant E has to be 0.

You can however check by substituting these quantities in these equations that these solutions

satisfy all these equations.



For uniform volume generation again n and p are uniform though you do have excess carriers

here that is why you have this delta; however, uniform semiconductor means size going to be

constant  and  E  is  going  to  be  0.  Since  there  is  no  electric  field  and  concentrations  are

uniform, there are no diffusion currents or drift currents. So Jn=0 and Jp=0. So that is what is

given here.

Now in this particular case, you actually have to solve the continuity equations to get this

delta. So for example look at this continuity equation, if n is varying with time, then you can

solve this equation to get n or delta. So here since Jn is 0, this term will vanish, your equation

would simply be dou n/dou t = G this is the volume generation because of light - delta n/tau

where tau is the lifetime.

So you can solve these equations and you will get an exponential solution as a function of

time for electron concentration and for delta. Now similarly one can solve the hole continuity

equation to get this delta; however, delta is the same for both because the sample is neutral.

Therefore, we solve any one of these continuity equations only. As far as electric field is

concerned it is 0 and space-charge is also 0, so these equations are really not required.

So this is how you use these equations to get these conditions. Now let us also lay out the

conditions for applied bias, which we discussed in today’s lecture. So here n and p are equal

to equilibrium values  even though you are applying a  voltage the concentrations  are  not

changing as compared to equilibrium; however, the psi is now a linear function of x instead

of being constant because you applied a voltage and as a consequence you have an electric

field and your Jn and Jp are not 0 okay.

So in terms of this equations if you see because carrier concentration is uniform, the different

currents are absent however you do have drift currents because E is not 0 and you use E equal

- grad psi to get a relation between the constant electric field and the linear potential. The

space-charge is 0 so d/dx is 0 and E is constant.

As far  as  the  continuity  equations  are  concerned you find  that  since  it  is  a  steady state

condition you applied a DC voltage dou n/dou t and dou p/dou t are 0, no excess carriers

therefore these are 0, no excess volume generation and therefore these terms G are 0 and you



get diversions of Jn is 0, diversions of Jp is 0 meaning Jn and Jp are constant with x. So that

is how we use these equations to get Jn and Jp constant with x for this case.

(Refer Slide Time: 15:28)

So that is how the equations are being used. So this was our first step solve for n Jn, p Jp, psi

E versus x from the drift-diffusion model. The second important step in constructing the E-x

diagram is to locate the junction, space-charge, and neutral regions within the device. Now let

us take examples of some devices okay and illustrate how do we locate these various regions

and points.

(Refer Slide Time: 15:59)

This is a p-n junction. This is an ohmic contact at the left end and an ohmic contact at the

right end. Now for this device the junctions are at this location here between the contact and

the p+ region, here between the contact and the n region and here between p+ and n regions.



Then this is a space-charge region near the p-n junction. This is the space-charge region near

the ohmic contact.

We have not shown the region inside the contact because generally the contacts are made of

metal and the space-charge you know is really very, very thin inside the metal. Similarly, this

is  the space-charge  region near  this  junction.  So near  junctions  in general  you will  have

space-charge regions. Now between the space-charge regions you have the neutral regions so

this is a neutral region, this is a neutral region.

Let us take another example. This is a capacitor right so called MOS capacitor. Here the gate

is  made of polysilicon.  In this  case,  your junctions  are located as follows. Now this is a

junction between silicon dioxide and n+ region, this is the junction between silicone dioxide

and p region, this is the junction between an ohmic contact and the p region okay. You have

space-charge regions near the junctions.

This is a space-charge region; this is also a space-charge region. Similarly, you have a space-

charge region near the contact and this region is the neutral region okay. Similarly, here this is

neutral okay and here also this region is neutral. You can similarly show this region also to be

neutral.  So we are saying that  when you want to  draw the band diagram first  you must

identify these regions in the device.

(Refer Slide Time: 18:07)

The next step would be to build up the band diagram or the energy levels in the following

order.  The first  we draw continuous quasi Fermi levels,  Efn and Efp everywhere from a



knowledge of the applied voltage and the current densities of electrons and holes. Now we

may not have actually numerically solved all the equations of the drift-diffusion model to get

exact distributions of n, p, Jn, Jp, E and psi okay.

So we may be doing this solution qualitatively even when we are doing it qualitatively, we

must do a simultaneous solution that is if I am sketching qualitatively let us say n and p as a

function of x I must remember how n and p as a function of x will be affected by psi as a

function of x and how the psi will be affected by n and p. So mentally you have to do a

simultaneous solution while plotting all these okay.

(Refer Slide Time: 19:29)

Now after having done that you can use that information to locate the quasi Fermi levels.

Now quasi Fermi levels  should be drawn as a  continuous line because if  there is  abrupt

change in quasi Fermi level anywhere then we know from the equation, for example gradient

of Efn = Jn/n mu n. So if there is an abrupt change in Efn, gradient of Efn goes to infinity,

this would amount to infinite current density, which is not possible.

Therefore, Efn and Efp should always be continuous. Now since we are asking you to draw

Efn and Efp everywhere this means in space-charge, neutral and junction regions, issue arises

which region do you draw the levels first? So the guideline is first draw the levels in the

neutral region and further since you are drawing both Efn and Efp, which one to draw first of

these 2? So draw the majority carrier quasi Fermi levels first.



So neutral region first and majority carrier quasi Fermi level first. Will illustrate this with the

help of some examples later on.

(Refer Slide Time: 20:27)

Now what is the reason that you start with Efn and Efp. The Efn and Efp have the simplest

variation of all levels this is the reason. Another reason is Efn and Efp can be directly related

to the applied voltage V. We will shortly explain why this is the case. Now before we do that

let us make the point that the above starting point that is starting with the quasi Fermi levels

for  electrons  and  holes  is  particularly  advantages  for  constructing  the  E-x  diagrams  of

semiconductors  in which carrier  concentration or doping and/or crystal  structure are non-

uniform.

So in semiconductors where conditions are non-uniform lot of variations conditions are there,

this starting point proves particularly advantages.

(Refer Slide Time: 21:20)



The next step is Ec and Ev in neutral regions from the knowledge of the energy gap, quasi

Fermi levels, electron concentrations and hole concentrations. Next we draw a continuous E0

everywhere from a knowledge of electrostatic potential psi and electron affinity chi okay. So

because you have drawn Ec and Ev you can locate E0 in the neutral regions above a distance

chi from Ec and Ev.

And then you can connect the E0 in the neutral regions why other space-charge region. So in

the space-charge region then you can use the psi electrostatic potential. We will explain this

point. Now why should E0 be continuous? As we have remarked the gradient of E0 actually

reflects the electric field.

(Refer Slide Time: 22:18)



So this is E, so if E0 changes abruptly at any point it means gradient of E0/q is infinity it

would amount to having an infinite electric field and this is not possible. That is why E0

should be continuous.

(Refer Slide Time: 22:43)

After we have sketched E0 as a continuous line everywhere then sketch Ec and Ev in the

insulator and space-charge regions based on knowledge of electron affinity chi and Eg. So

based on chi you can locate Ec as E0 - chi into q of course and you can locate Ev at a distance

energy gap below Ec. Then you can show other levels such as intrinsic level, donor level,

acceptor level, trap level and so on if required.

(Refer Slide Time: 23:15)

Now let us explain why do Efn and Efp have the simplest variation of all levels? If you take

this  equation  gradient  of  Efn  =  Jn/n  mu n.  Now gradient  of  Efn  is  either  0  in  case  of



equilibrium or unipolar for all x in most devices. Now why is it unipolar? Because the Jn has

to be in a particular direction throughout the device it has to be in the same direction. Jp also

similarly has to be in the same direction.

So this means that gradient of Efn should have the same sign throughout the device. This is a

non-equilibrium case so either gradient of Efn is 0 or unipolar. This means that Efn is either

constant or mostly monotonic for all x. So when you say mostly it is because in most devices

the current Jn is in the same direction throughout the device. In a similar way, we can show

that Efp is either constant or monotonic for all x.

Now if you contrast this situation with for example E0, now gradient of E0/q = E it can

change polarity with x. So while gradient of Efn has to remain unipolar for all x in a device,

the gradient of E0 can change polarity with x. Examples, applied field may oppose the built-

in field.

(Refer Slide Time: 24:55)

So suppose you take this p-n junction, the built-in field here is directed from n to p, so built-

in potential positive at this end, negative at this end, but when you apply a forward bias, p is

positive with respect to n and when the part of this forward bias falls across say n region, then

the  potential  drop in  this  direction.  So you can see that  this  potential  drop opposes  this

potential drop right.

So therefore the field E here is like this, but the space-charge region it is like this so it is

changing sign you can similarly have potential drops here okay. So this is an example where



applied  voltage  opposes  the built-in  voltage.  So applied  field  opposes  the building  field.

Another example is different regions may have built-in field of different polarity.

(Refer Slide Time: 25:53)

Take this bipolar transistor, now here if I take the space-charge region associated with the

emitter base junction, the built-in electric field is like this whereas if I take the built-in field

associated with this space-charge region, base collector it is directed from n to p. So you can

see that the field is changing polarity.

(Refer Slide Time: 26:18)

If  you consider Ec and Ev variations  then Ec Ev versus x can have notches at  a hetero-

junction so you can have sharp peaks or troughs. Now this point will become clear when we

actually draw the band diagram of a hetero-junction, which we are going to do later in this

lecture.



(Refer Slide Time: 26:38)

How are Efn and Efp related directly to the applied voltage? That is the next question we

need to answer related to the statement that Efn and Efp should be used as a starting point for

drawing the energy band diagram. Now consider  any general  device  like this  where this

region may contain junctions, non-uniform conditions and so on. So we make no particular

assumptions regarding the nature of variation in this region.

The device has 2 contacts at x=0 and x=L. Will assume that the contacts are ohmic. This

means that carrier concentrations will be at equilibrium even when you apply a voltage at

these contacts. So ohmic contacts at x = 0 and L. Now we can show that if this is the case if

your ohmic contacts then Efn at x = 0 - Efn at x = L = q times V and the same thing applies

even for the difference between the quasi Fermi level for holes at x=0 and x=l.

Let us see how we can show this. Now we know that Efn as a function of x is nothing but Ec

as a function of x - kT ln Nc/n as a function of x. Now you write Ec x in terms of E0 x and

electron affinity so this is the relation. Now I can take the Efn at 0 and Efn at L in terms of E0

at x = 0 and L, chi at x = 0 and L and so on, n0 x = 0 and L.

So I will get this relation Efn at x = 0 - Efn at x = L = - of q times psi at 0 - psi at L - q times

electron affinity at 0 - electron affinity at L+kT into logarithm of n at 0 divided by n at L. We

are  using  the  equilibrium  values  because  we  have  ohmic  contacts  at  x  =  0  and  L and

multiplied by the conduction band effective density of states Nc at L divided by Nc at 0.



So we are taking a general situation where conditions may change within this region okay. So

that is why electron affinity has been assumed to be different in general at x = 0 and L. Nc is

assumed to be different at x equal L and x = 0. Now one point, how do you get psi here

whereas you had E0? Here what we have done is we have used the relation for E0 in terms of

psi. So they are linearly related E0 and psi we know that we have just seen.

So this fact has been used here except that there is a negative sign because E0 is electronic

potential energy whereas psi is potential of a positive charge. If I write the same equation

under  equilibrium,  we know that  Efn at  0 and Efn at  L will  have to  be the same under

equilibrium because Efn has to be constant because there can be no current Jn at equilibrium

so Jn is 0 means gradient of Efn is 0 this means Efn at 0 = Efn at L.

Right hand side is potential at x = 0 correspond to equilibrium potential at L corresponding to

equilibrium therefore you have the suffix 0 and the remaining part of the equation remains the

same  both  under  equilibrium  and  applied  bias.  So  now  if  you  subtract  this  equilibrium

equation from this equation for applied bias, then these terms will cancel and one can easily

show that right hand side will become q times V.

Now this is seen easily because suppose I assume x = 0 as a reference potential then at x = 0

the psi remains = 0 both under equilibrium and under applied bias so this quantity let us

assume to be 0 for reference then all that we have to show is psi of L - psi of L under applied

bias - psi of L under equilibrium is applied voltage now which is straight forward to see.

So at x=L, the potential under applied bias and potential  under equilibrium the difference

between the 2 will have to be equal to applied voltage if you take x=0 as a reference.

(Refer Slide Time: 31:39)



Exactly similar approach can be used to show that Efp at x = 0 - Efp at x = L is q times V. The

only difference here is that in your equation for Efp you have Ev and you have a positive sign

here when you have hole sensitive of electrons here and this is effective density of states at

the valence bandage and when you want to write Ev in terms of E0 then you will have apart

from electron affinity also the energy gap coming in.

Then this E0 is converted into electrostatic potential just the way we did for quasi Fermi

levels for electrons and you end up with this relation. Now note that the quasi Fermi level at 0

will be higher than the quasi Fermi level at L for both electrons and holes when you apply a

positive voltage to x = L. Now this is because E represents electronic energies whereas V

represents the voltage or potential corresponding to positive charge.
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Now let us redraw the E-x diagram of a uniform semiconductor under applied bias using the

procedure that we have just outlined meaning we start from the quasi Fermi level first and

then build up all the levels. So in this case you start from Efn now you know that Efn will be

varying linearly as a function of x and it will go down in this fashion because this is the

relevant equation.

We know that Jn is constant with x therefore gradient of Efn is constant. The Jn is in the

negative x direction because it is from right hand side to left hand side. Therefore, gradient of

Efn is negative. Now you can locate Ec above Efn using this formula in terms of the electron

concentration. You locate Ev as a distance Eg below Ec and when you locate quasi Fermi

level for holes it will turn out to be the same as quasi Fermi level for electron when you use

this formula.

Then you can locate E0 at a distance q times chi above Ec. The E0 will turn out to be linear in

this  whole procedure because it  simply follows the Efn,  which was linear  because of the

conditions in the device. So this is how you get the E0 variation over the length to be equal to

q times V. Now you might wonder last time you had used an equation for psi what happened

to that? Why have we not used it in this case?

Well as we have said in our procedure we have to first solve for n, p and psi simultaneously

from the drift-diffusion model so moment we have made some assumption about electron

concentration, hole concentration and psi as a function of x in the device, we have in some

way utilized all the equations of the drift-diffusion model okay. So when I used this equation

to locate for example Ec as a straight line above Efn have used information about electron

concentration and in principle since the equations of drift-diffusion model are coupled to get

the electron concentration, I have used the equation for the potential also.

So  this  is  how we  actually  use  all  the  equations  of  the  drift-diffusion  model  okay.  For

instance, when we drift the energy levels starting from E0 we did not write this equation for

current density in terms of gradient of Efn explicitly; however, indirectly one can show this

equation was used in that case.
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Now  here  is  an  assignment  E-x  diagram  of  a  uniform  semiconductor  under  surface

generation. Sketch qualitatively the E-x diagram of a uniform n-type semiconductor subjected

to  surface  generation  due  to  illumination  of  the  left  surface.  So  here  the  surface  is

illuminated. Electron hole pairs are generated at this end, they move in and then recombine.

Display all features of this situation as analyzed in module 5 assuming high injection level

near the illuminated surface.

In module 5, we analyzed this situation completely assuming low injection level so the only

difference now is that you must assume high injection level near the illuminated surface. So

from the analysis you will get n, p, Jn, Jp and psi and electric field as a function of x and use

that information to draw the energy band diagram.
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Let us discuss now E-x diagram of non-uniform semiconductors under equilibrium. So there

are several kinds of non-uniformities that can arise in semiconductors such as non-uniform

doping, non-uniform composition of crystal structure, combination of these and so on.

(Refer Slide Time: 36:55)

Let us say semiconductor with non-uniform doping okay. Crystal structure remains the same,

but doping is varying as a function of x. So here for instance the n-type doping is more on the

left hand side than on the right hand side that is the meaning of these vertical lines. How do

you draw the band diagram? So you start with a constant Fermi level because it is equilibrium

Jn and Jp both are 0 and Efn = Efp = Ef and it is drawn as a constant line.

Then I draw Ec as a function of x. Here I have drawn Ec as a straight line why it should be

straight? Let us come to that in a moment. First let us explain why is the line sloping up when

you move in the positive x direction? This difference is related to the electron concentration

we know that and electron concentration is decreasing as you go from left end to right end

because our doping is decreasing from left to right.

Now the reason the line is drawn straight is that we have assumed an exponential doping so

the doping decreases exponentially from left to right something like this.
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Now as a result your electron concentration if we assume it to be approximately equal to the

doping  that  would  also  decrease  exponentially  okay.  This  is  L,  if  there  is  exponential

variation as a function of x then because of the logarithmic dependence of Ec-Ef on the

electron concentration the variation in Ec-Ef would be linear that is why Ec is drawn as a

straight line.

Then we draw Ev below Ec at a distance equal to energy gap and then we draw E0 above Ec

at a distance of the electron affinity. This difference between E0 at the right end and left end

= q times psi 0 where psi 0 is the built-in potential. So this is how you get a built-in potential

when you have non-uniform doping.
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It will be of interest to compare this non-uniform doping with the applied bias case where

also we had energy level slanting in this fashion right. So what was the difference? The Fermi

level however was not constant in that case so here is the reproduction of the diagram for

applied bias. Specifically, in this case, we have assumed that the applied voltage q times V =

the q times the built-in voltage that we have got here.

So the difference between these 2 diagrams is that the quasi Fermi level is not a constant

because there is a non-zero current flow. Further other differences are constant Fermi level

and  a  slanting  Ec.  A slanting  Ec  means  there  is  an  electric  field,  which  influences  the

conduction electrons and this means there is a tendency for drift in this direction. However,

since this is equilibrium there can be no net current.

And this is because the tendency for drift is balanced by the tendency for diffusion. Because

an increasing distance between Ec and Ef from left to right means the electron concentration

is decreasing from left to right and there is a tendency for diffusion. So at each point the drift

is being balanced by diffusion.  Now this is what is brought out by a combination of the

variations of Ec and Ef, a constant Ef and an increasing Ec. 

On the other hand, here, the same Ec variation implies electric field and therefore a drift

current in this direction right. So this movement of the electron in the conduction band shows

the drift so electron is moving between 2 collisions it has a constant energy, at this point it

undergoes scattering so its velocity is randomized and then it again starts accelerating right so

against the direction of the electric field. 

So this is what is shown by this variation Ec. Here however there is no diffusion current

because distance between Ec and Ef and Efp is constant throughout electron concentration

and hole concentrations of the constant, so no diffusion current, only drift current.

(Refer Slide Time: 41:56)



Towards the end of the lecture, let us discuss semiconductor with non-uniform composition.

Specifically let us take an example, assume that this is a compound semiconductor silicon

germanium. So you are adding more and more atoms of germanium to silicon, left end is let

us say pure silicon, high concentration of silicon atoms therefore and as you move to the right

the silicon is being replaced by germanium progressively.

Let us assume that this is a p-type semiconductor. Let me give you a feel for numbers in this

situation. The energy gap of silicon and germanium are 1.12 and 0.67 electron volt at 300 K.

The electron affinity  of silicon and germanium is 4.05 and 4 so not very much different

mostly the same. Therefore, as a composition changes from left to right there would be not

much change  in  the  electron  affinity  though the  energy  gap will  change significantly  as

brought out by these numbers.

Now typically in a device alpha x varies from say 0 to 0.13 that means 13% germanium at

this end over 0.05 micron. So the width of this sample here this is 0.05 microns, so this

example is related to base width of hetero-junction bipolar transistor causing an Eg variation

of 0.1 electron volt from left end to right end. 

Now the  important  point  to  note  while  drawing  the  band  diagram  is  that  if  the  spatial

variation of the crystal structure is slow as it happens in most cases such as this, the band

structure at any point that means at  any x corresponds to the bulk band structure for the

composition at that point. So now this is important approximation that we made to draw the

band picture. So let us draw the band picture. How do we draw it?
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So going by the procedure that we have outlined, first I draw the Fermi level now that is

drawn on the constant line because it is equilibrium then I can locate either the Ec or the Ev.

In this case, since it is a p-type semiconductor and doping is uniform, I prefer to locate the Ev

at a constant distance from Ef. Now you might say if the composition is varying, the effective

density of states in the valence band would also vary yes.

However, since in the formula which gives you the difference between these 2, which is = kT

ln Nv x by hole concentration p, this Nv x appears in the logarithm so any variation in Nv

does not have that much impact on the difference. Now we sketch Ec at a distance Eg above.

Now left end is silicon, right end is germanium therefore the energy gap is decreasing from

left to right.

So this is energy gap at any x the value of energy gap is obtained from the value of alpha x

okay. So here this is the alpha x okay from the value of alpha. Now we are assuming a linear

grading therefore the energy gap also varies linearly. I have exaggerated the variation in the

energy gap just to make points clear.

So this is your Ec then I take electron affinity above this and then draw E0 so this is electron

affinity as a function of x. Now we have just remarked that the electron affinity does not

change  significantly  therefore  E0  will  be  parallel  to  Ec  though  Ec  is  not  parallel  to  Ev

because Eg x is varying with distance. So that is how you can draw this band diagram for

non–uniform composition.



Now in fact it will not be very difficult for you to draw a band diagram for the situation

where doping also is varying with x because even then you would start with the constant Ef

and then the distance between Ef and Ev would vary right, but you will go in this order.
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Here this  is x and this is electronic energy now let  us give you an assignment  related to

composition graded semiconductors.
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Derive a drift-diffusion like equation for the hole current density Jp due to potential  and

carrier  concentration  gradients  grad  psi  and  grad  p  in  a  compositionally  graded

semiconductor. Start from the general yet compact equation Jp = p times mu p into gradient



of Efp. Note that in this case, the current would also be a function of the gradients of chi, Eg

and Nv.

So a hint is given, sketch the various energy levels and express Efp in terms of the electron

affinity Eg, Nv and hole concentration and then you can apply this equation and substitute it

in this formula to derive the transport equation.
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Now we have come to the end of this lecture. Let us make a summary of the important points.

So in this lecture, we continued to discuss the E-x diagram for semiconductors and devices.

Specifically, we considered the E-x diagram of a uniform semiconductor and applied bias and

then we considered energy band diagram of non-uniform semiconductors under equilibrium.

We considered 2 types of non-uniformities, doping non-uniformity and compositional non-

uniformity.

Another thing we did in this lecture is that we laid out a step-by-step procedure to draw the

energy band diagram of any device. The 3 steps in this were first solve the drift-diffusion

model  to  get n,  p and psi,  next  step is  located  in the device junctions,  space-charge and

neutral regions, third step is to draw the various levels in a specific sequence in which the

quasi Fermi levels are drawn first.

Because the variation in these levels is least complex of all the levels and also because the

difference in Fermi levels at the 2 contacts of the device is equal to the applied voltage if the



contacts are ohmic. The next step after drawing the quasi Fermi levels is to draw the band

diagram in neutral regions. 

Then you draw the E0 as a continuous line everywhere. Finally, you construct the Ec and Ev

levels in the space-charge region following the E0 variation and then you can draw other

levels of interest such as impurity levels and so on. In the next lecture, we will draw the

energy  band  diagram of  a  hetero-junction  under  equilibrium  and  we  shall  also  consider

energy band diagrams of p-n junction under high bias and then some other topics related to

the energy band diagram.


