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Energy band diagrams

Now, in this lecture, we start a new module on energy band diagrams. This is a very 

important topic in device modelling, so we will discuss this in detail.

(Refer Slide Time: 00:19)

At the end of this module, you should be able to Explain how the wave nature of electrons

restricts the allowed energy E of electrons subjected to a periodic potential to certain energy

bands. You should be able to outline the features, methods of determination and utilities of Ek

and Ex diagrams of a semiconductor. 

(Refer Slide Time: 00:58)



You should be able  to explain the concept  of crystal  momentum,  determine the effective

mass, group velocity and crystal momentum of an electron having an energy E from the Ek

diagram. Sketch and Explain the Ek diagrams of silicon and Gallium arsenide. 

(Refer Slide Time: 01:25)

You should be able to determine and sketch the Ex diagram of a uniform semiconductor

under the following conditions; equilibrium for any doping and temperature applied bias and

uniform volume generation. 

(Refer Slide Time: 01:50)



You should  be  able  to  determine  and sketch  the  Ex diagram of  a  spatially  non uniform

semiconductor under equilibrium, in which the doping and the composition change abruptly

at a point as in a hetero junction and when the doping and composition change gradually. 

(Refer Slide Time: 02:14)

You should  be  able  to  explain  how the  energy  band diagram can  be  used  to  derive  the

Exponential  increase  in  the  diode  current  with  forward  bias.  Sketch  and explain  the  Ex

diagram of a p+n junction under high forward bias and finally you should be able to sketch

the 1-dimensional band diagram that is the Ex diagram and interpret a 2 dimensional band

diagram that is E as a function of x, y of any device. 

(Refer Slide Time: 03:20)



So, you see, we want to really develop the ability to draw and interpret band diagrams under

a variety of conditions that is the goal of this module. Now, let us start with what is an energy

band diagram. In the first level course on solid state devices, you have already drawn energy

band diagrams for pn junction,  bipolar transistor and mass effect,  so whatever those like.

Here is an Example, where we show E0 as a line and in parallel with it lines Ec and Ev. 

So, in this diagram the x represents the distance and the y axis is the energy. Now, you know

that there can be many other lines in the band diagram such as fermi level, donor level and so

on. We shall come to those lines in a moment, here we are only giving an Example of an

energy band diagram and we want to appreciate what this line mean? So, like the field lines

of  force  and  equipotential  lines,  energy  bands  are  a  powerful  concept  which  expresses

physical conditions through a set of lines. 

(Refer Slide Time: 04:28)



So, you have already come across lines of force; equipotential lines, right. For Example, let

us look at a parallel  plate condition like this, where you have a small electrode here, say

positively charged, so here you have positive charge and you have negative charge on this

and if you were asked to draw the field lines, they would look something like this, right.

These are field lines of force. 

One could also draw equipotential lines here; they would be perpendicular to the field lines at

any point, so you have already come across these lines. For example, this is an equipotential

line;  here is  another  equipotential  line,  right  and so on.  So, these lines  indicate  physical

conditions within the device, so for Example if you look at this line, it tells you if I were to

place a test positive charge here, and which direction would it move? 
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It would move in this direction. On the other hand, if I place a charge here, it would move in

this  direction,  okay and so  on.  So,  like  lines  are  used in  this  case  to  represent  physical

conditions, energy bands also consist of a set of lines, which express physical conditions. So,

for example here as you know, Ec is the edge of the conduction band, so electrons which are

in this band of energies participate in conduction that is why it is called as conduction band 

And similarly Ev is the top edges of the valence band, now I could look at the condition at

any x in the device, let us say at this x. Now, the slope of this line indicates the electric field

conditions within the device, you would recall this from the first level course. You could draw

another set of lines giving more information about the behaviour of electrons in a crystal.

Now, this is called an Ek diagram. 

So, as against an Ex diagram, where you plot allowed energies for electrons as a function of

spatial distance. In this diagram, at any x such as this x, you are plotting the allowed energies

as  a  function  of  what  is  called  the  momentum of  the  electron  in  the  crystal.  Now,  this

momentum is called the crystal momentum. The crystal momentum is very different from the

instantaneous true momentum of an electron, which is the momentum as we understand it,

right. So, we will discuss this aspect in detail later. 

Right now, we only want to show, what the different types of lines that are indicated are; that

are used in the energy band diagrams. So, at any x, E verses K could look something like this,

so this represents the energy as a function of crystal momentum. Here, the minimum of this

Ek line corresponds to the conduction band edge and the maximum of the Ek line over here

corresponds to the valence band edge. 

So, this is the behaviour of electrons in valence band, what is the energy of the electron in the

valence band as a function of momentum and this line represents the energy as a function of

crystal momentum in conduction band okay. So, the top of this line here corresponds to the

top of the conduction band. So, we are going to discuss this aspect in more detail, right now

we are presenting the set of lines, which are used energy band diagram to represent physical

conditions. 

The Ek and Ex band diagrams complement each other, so you need to understand both these

diagrams; the Ek and the Ex diagram, right to really derive information about energies and



momentum and velocity and so on of electrons in a crystal. Now, why energy band diagram?

We want to build up a motivation for understanding the energy band diagram, right, so we

need to know why? We need to answer the why question. 

(Refer Slide Time: 09:20)

This is what Herbert Kroemer, who got Noble prize in 2000, for the development of hetero

structure for high speed and optoelectronic applications, said about energy band diagram. If

in discussing a semiconductor problem, you cannot draw an energy band diagram; this shows

that you do not know what you are talking about. With the corollary, if you can draw one but

do not, then your audience would not know what you are talking about. 

(Refer Slide Time: 10:12)

So,  the energy band diagram of  a  semiconductor  device  is  really  very very important  to

understand  the  device  operation  and  also  to  communicate  your  understanding  of  device



operation to others. Let us look at Ex and Ek diagrams separately, the Ex diagram such as the

one drawn here, helps us analyse the distributions of electrons, holes, electron current density,

hole current density, electric field and psi within a device. 

You recall  that in earlier modules, we have said that we can understand everything about

device, if you know n, p, Jn, JP, E and psi, as a function of space and time within a device.

So, the energy band diagram really reflects the variations of these quantities, okay. Now, I

must mention here that not all lines are indicated here and therefore just from these 3 lines,

you would not be able to figure out all these quantities, okay.

So, we will look at this point in more detail later. Now, for example, Shockley, who win a

Noble prize in 1948, used the Ex diagram to derive the exponential increase in the diode

current with forward bias. So, this is an example to show how an important aspect of diode

operation was analysed and concluded based on energy band diagram. 

(Refer Slide Time: 11:40)

The Ek diagram, now what does this give you, now the Ek diagram gives you the group

velocity,  the crystal  momentum and effective mass of a carrier,  which can be hole or an

electron for a given energy E. Now, the electron velocity in a crystal is a group velocity the

electron momentum of interest in a crystal is a crystal momentum and the electron mass of

interest in a crystal is an effective mass, okay. 

And from the knowledge of these quantities, the Ek diagram helps us analyse the interactions

of a carrier  with the phonons, photons, impurities and other carriers in the crystal.  These



interactions are governed by the laws of conservation of energy and momentum namely the

crystal momentum. Now, so we have understood, what do we mean by energy band diagram?

What kind of lines we are talking about? 

Though, we did not mention about all the lines that are used in energy band diagram so far. In

the first level course, you would have come across these lines, however when we discuss

further, we will assume that you are not aware of energy band diagram much and now we

want to develop the concept of energy band diagram from first principles, that is what we are

going to do now. 

(Refer Slide Time: 13:18)

Let us start with the qualitative model, we have discussed this point that any model should

first be develop qualitatively, okay and qualitative model should only follow after qualitative

understanding, which involves logical reasoning without the use of any integrate equations.

Now, we know that an electron subjected to a potential Ux, which varies slowly on the length

scale of thermal average wavelength of an electron in a crystal. 

So, here is an example of a slowly varying potential as a function of distance. Let us assume

that  this  length  represents  the  lambda  thermal,  the  thermal  average  (())  (14:08)  the

wavelength of electron. The slowly varying potential would means that over this length scale

the variation is small, now this triangle indicates the amount of variation the height of the

triangle; it indicates the amount of variation over the lambda thermal. 



Now, this is really very small, therefore this is a slowly varying potential as a function of

distance. Now, if an electron is subjected to such a potential variation, then it can be treated

as a particle governed by Newtons second law. 

(Refer Slide Time: 14:45)

Now, as against this, an electron subject to potential Ux, which varies rapidly on the length

scale of lambda thermal has to be treated as a wave governed by Schrodingers equation. Now,

this is an example of a rapidly varying potential over the lambda thermal length scale. So,

here you cannot treat electron as a particle owing Newtons laws. For instance, if an electron

is  coming from this  side and hitting  this  barrier,  classical  mechanics  would say that  the

electron would just rebound, right.

Whereas, quantum mechanics would give you a nonzero chance of finding an electron on the

other side of the barrier depending on the width of the barrier and the height of the barrier,

right. So, this is the important difference between behaviour based on wave properties and

Schrodinger equation, rather than behaviour based on particle nature and Newtons laws. So,

rapidly varying potentials, you have to use Schrodinger equation treat the electron as a wave. 

(Refer Slide Time: 16:00)



Now, let us come to a crystal, which is what is of interest to us, so an electron subjected to a

crystal potential Ucx, which varies periodically on a length scale of A much less than lambda

thermal, where A is a inter atomic distance, so this is an 1-dimensional crystal in a real crystal

which is a 3 dimensional, A normally represents the lattice constant. So, this A is much less

than lambda thermal. 

Now the way the  diagram is  drawn here,  A appears  to  be  less  than lambda thermal  but

thought necessarily much less than lambda thermal. So, the diagram is not to scale, if you

really made the A very small then the diagram would not be clear. Now, in this case also the

electron has to be treated as a wave governed by Schrodinger equation. So, if you want to

understand  the  behaviour  of  electrons  in  a  crystal,  you  have  to  start  from  Schrodinger

equation and not Newtons laws. 

Now, I would like you to recapitulate from the earlier modules, what the crystal potential

represents? So, you have a regular arrangement of atoms, each atom has a positively charge

core which gives rise to this kind of a potential variation. So, a series of positively charged

cores  of  atoms  regularly  arranged  give  rise  to  this  potential,  right  periodic  potential.

However, there are other electrons apart from the electron that you are concentrating on.

And the effect of all the other electrons is also absorbed in this periodic potential by making

an adjustment in its value, right. So, the crystal potential includes the periodic potential due to

the positively charged ionic cores of all atoms adjusted to accommodate the potential of all



the electrons other than the electron that you are focussing on, right. So, this is an important

point, one must there in mind. 

(Refer Slide Time: 18:22)

So, in such a case, we need to use Schrodinger equation to develop the behaviour of the

electron. Now, let us see how do we develop the behaviour of electrons in a crystal.  One

approach is to start from electrons in an isolated atom, so in an isolated atom, your potential

variation, electronic potential variation would look something like this. We have discussed

this point in sufficient detail in earlier modules.

So, this is the single atom, okay location of the single atom and this is the potential due to the

atom. The maximum value of the potential here is referred to as the reference potential and

we call it as E0, also referred to as vacuum level and as you move close to the electron, the

potential goes to minus infinity, okay. Now, a quantum mechanics tells us that electron in any

such potential well have only discrete energies allowed, right.

The electrons can only occupy discrete energies. Now, this you already know from the many

courses that you have done in physics, chemistry and may be even the solid state devices at a

fundamental level, that when the electron is in a potential well,  only discrete energies are

allowed. Let us move on to electrons in a crystal and build up this picture from the picture of

an electron in an isolated atom. 

Now, the crystal is obtained by bringing in a large number of such atoms close to each other

and in a regular arrangement. Now, this is what is shown here, so here are a larger number of



atoms regularly arranged, the inter atomic distance being A, so you can regard this isolated

atom as a limiting case in which this A has become infinite, okay. On the other hand, you can

build up a crystal by bringing together isolated atoms so that is what is indicated here. 

So, as you progressively decrease inter atomic distance between various atoms, then you end

up with a crystal like this from an isolated atom or a set of isolated atoms. Now how do you

built  up the picture  here from this? Now, when you come to electrons  in a  crystal  each

allowed  energy  level  of  isolated  atom spreads  into  a  band  and  the  energy  levels  which

correspond to electron away from the atom spread into a wider band than the energy level

which correspond to electrons, which are very close to the atom, okay. 

The band width is small, now how do you explain this spreading of a level into a band which

is  what  is  shown  here;  well  this  can  be  readily  done  by  applying  the  Pauli  Exclusion

Principle,  okay.  In  an  earlier  module,  we have  explained  that  all  of  quantum mechanics

related to the behaviour of solids can be explain the quantum mechanical phenomena related

to solids can be explained based on just 2 things that are Schrodinger equation and Pauli

Exclusion Principle. 

So, when you apply Pauli exclusion principle here to electrons in a crystal, no 2 electrons can

have the same energy state  and therefore  the electrons  corresponding to  all  these atoms,

which are very large in number in a practical crystal should all be different from each other

therefore a single energy level spreads into a number of levels, right, but which are all closely

spaced and therefore this appears like a band.

So, the formation of the band from a single level of an isolated atom the formation of a band

of energies, allowed energies in a crystal, form an energy level in an isolated atom can be

explained based on Pauli Exclusion Principle, which requires that electrons in any system

cannot  all  have the same energy state and therefore same energy. Thus,  the formation of

allowed bands from an isolated atom is what we have discussed just now, okay. 

So, the approach we have taken develops the allowed bands from the isolated from energy

levels in an isolated atom. In contrast, you can have an alternate approach, you start from free

electrons,  now  free  electrons  have  a  constant  potential  subjected  to  them,  okay.  While



electron in an isolated atom is subjected to potential well, so these electrons are in a potential

well, free electrons are in a region of constant potential.

Now, we know that for free electrons, a continuous band of energy is allowed, in contrast to

electrons  in  a  potential  well  which  can only occupy discrete  energy levels.  Suppose,  we

subject these free electrons to a periodic potential, Ucx, now the constant potential can be

viewed as a limiting case of Ucx becoming 0. So, this periodic potential as its height becomes

0, it becomes the constant potential, okay.

And therefore, the movement from free electrons to electrons in a crystal can be seen as a

case of increasing the periodic crystal potential from 0 to a finite magnitude that is what is

seen here.  Now, once you have the periodic potential  here,  then you get  what  are called

forbidden  band,  certain  energy  levels  are  not  allowed.  So,  while  for  a  free  electron  all

energies are allowed for electrons in a crystal, certain bands of energies are not allowed. 

Now,  how do  we come  to  the  conclusion  that  any  crystal  certain  energy  bands  will  be

forbidden for electrons. Now, this can be understood from the wave nature of electrons as

follows.  When  an  electron  is  subjected  to  a  periodic  potential,  the  electron  wave  gets

reflected from each of this atomic locations by the periodic potential. Now, the incident wave

and the reflected wave from each of the atoms sum together can destructively interfere with

each other for certain wave lengths, okay. 

(Refer Slide Time: 26:27)



So, it is something like this, so you have these atoms and you have an incident electron wave

and you have a reflected wave from each of this like this. Now, this reflected wave and the

incident wave can destructively interfere with each other and therefore they will cancel each

other, in other words, for certain wave lengths, no electron wave can exist because of the

presence of these multiple atoms and the periodic potential associated with these, which will

reflect the electron wave, right from the location of these atoms. 

Normally, this is refer to as blurred reflection, okay. Now, when the reflected an instant wave

interfere destructively, the wave cannot exist. For all such wave lengths for which the wave

cannot exist, okay, the energy associated with the wave is therefore is not allowed. So, one

find out those wave lengths which will depend on the interatomic distance of the crystal and

find out the energies corresponding to those wavelengths and those energies therefore will not

be allowed as electrons with those energies cannot exist in the crystal.

(Refer Slide Time: 27:58)

And that  is  how you get  forbidden bands of energies.  So,  this  is  the simplified  diagram

representing the formation of allowed bands from allowed energy levels in isolated atom or

formation of forbidden bands from a continuous band of allowed energies of free electrons,

okay. Now, these 2 methods; that is formation of forbidden bands and formation of allowed

bands are referred to as follows. 

So the formation of forbidden bands from the picture of a free electron the continuous energy

levels of a free electron is referred to as Brillouin,  nearly free electron or single electron

approach.  On  the  other  hand,  the  formation  of  allowed  bands  from energy  levels  of  an



isolated atom is referred to as the Bloch, tight binding or LCAO approach, where LCAO

stands for linear combination of atomic orbitals, okay.

The  wave  functions  of  individual  atoms  are  referred  to  as  atomic  orbitals  and  linear

combination,  so you superpose these wave functions to get the picture of a crystal,  okay

where you have a number of atoms. So, consider the wave functions of every atom associated

with every atom and you superpose them, and then you get the picture for a crystal. So, this

approach is referred to as LCAO approach. 

So, Bloch is the name of a scientist and so is Brillouin; the scientist Brillouin proposed the

formation of forbidden bands from picture of a free electron and the scientist Bloch proposed

the  formation  of  allowed bands from allowed levels  of  an  isolated  atom.  So,  both  these

approaches can be used and they have their own advantages. 

(Refer Slide Time: 30:07)

Let us now come to a quantitative model of energy band formation, after a qualitative model,

we discussed the quantitative model. Now, in this we will consider 2 separate types of band

diagrams namely; the allowed energy bands as a function of distance that is called the Ex

diagram, when you consider one-dimension right. 

(Refer Slide Time: 30:36)



So, Ex, y, z so allowed energies as a function of space; spatial variation of allowed energies,

right. This is the one type of band diagram. Normally, we call it and abbreviate it as just Ex

diagram because most cases we consider the diagram in one dimension and the other diagram

is the Ek diagram, okay. The allowed energies as a function of the wave vector, the k; the

symbol k stands for wave vector and from the wave vector; one can get the momentum of

electron in crystal.

(Refer Slide Time: 31:34)

The appropriate momentum that is called the crystal momentum, which we will discuss in

detail  shortly.  Let  us  start  with  the  Ek  diagram,  how do  you  develop  the  Ek  diagram?

Consider an electron in a rectangular well, for an Example, because we are considering the

quantitative model, we have simplified the actual potential picture of electron in an isolated

atom; the actual picture is something like this, right. 



(Refer Slide Time: 31:58)

We have drawn U, a potential in electron; electronic potential as a function of distance, it is

looks like this. Now, the mathematics of solving the Schrodinger equation for this kind of

potential is little more complex than that if I approximate this by a rectangular potential well

and so since we want to keep our mathematics simple, we are going to use a rectangular

potential well to represent the picture in an isolated atom. 

Now, this well has a height E0, so the bottom of the well is potential 0 and the height is E0,

will assume that this height is fairly large, and so that you can approximate this well to be an

infinite well and the width of this is well is L. Now, how will you find allowed energy levels?

You will  solve a  Schrodinger  equation,  so Schrodinger  equation  comes out  in this  form,

because the potential energy U is 0.

The simple form of the equation is; del square psi x+k square psi x = 0, where k square is

related to the energy E, potential U is 0, so only the energy E of the electron enters into this

picture.  So, the k = square root of 2 times the electron mass into the energy of electron

divided by h cross square, where h is the Planck’s constant. Also, whenever we are solving an

equation, you need to construct the boundary conditions apart from the equation. 

So, the boundary conditions here are that the wave function psi is approximately 0 at both x =

0 and x = L, that is the wave function goes to 0 at this end as well as this end. Now, we are

saying approximately 0, because the height of this well is not really infinite, it is large but not



infinite, okay, that is why the approximate sign here. When it is infinite, it will be exactly 0,

okay. So this equation has to be solved subjected to this boundary condition.

And this boundary condition is very very important because as we will see, it is the boundary

condition, which says that the wave function should go to 0 at the 2 ends of the well, which

gives rise to quantisation of energy and momentum. So, the wave function solution for the

simple differential equation is psi x = A*e power jkx+B* e power –jkx, okay; this simple

second order differential equation. 

One can easily see by substitution that if you have an exponential with the complex Exponent

then when you double differentiate okay, you will get the form of psi x and the forms of del

square psi x to be similar but opposite in sign, so that you know you will get the sum of these

to be 0. The complex exponent can be either positive or negative, since you have 2 boundary

conditions, you have 2 coefficients here.

Now, you can get A and B from the boundary conditions and the result will be that psi x is

given by a constant D * sin of kx, where kx is coming in the exponent here, okay and the k is

related to the energy of the electron as given in this formula, okay and this k is coming here

in  the  coefficient  of  the  wave function  in  this  Schrodinger  equation.  Now, the boundary

conditions psi = 0 and psi at 0 and psi at L = 0 will be satisfied, if the k here is the integral

multiple of pi/L.

Now, this can be easily understood, right, from all the courses that you have done, so I do not

need to spend time in explaining this fact. Now, this is where the quantisation of energy is

coming about, so only certain values of k are allowed, these are integer multiples of pi/ L,

note that though the wave function satisfies the boundary conditions with n = 0; n= 0 is not a

solution, this is because for n = 0, k is 0 and the energy is also 0, which means that n = 0

corresponds to a stationary electron, which is physically not acceptable for our problem. 

Now, this is the quantisation aspect coming in as a solution of Schrodinger equation, okay

and this is what is going to give you the quantisation of energy because the k the so called

wave vector is related to the energy E by this formula, so if k is quantised, the E also is going

to be quantised. So, the quantisation of k is what is represented here, let us say this is the k

axis and this represents the 0 value corresponding to n = 0.



So, n can be 0, -1, -2, -3, and so on the negative side and positive side; 1, 2, 3, 4 and so on,

right. So, that is what we mean when you say n is an integer, so that is why we have shown

discrete points of k on both positive as well as negative side of k. Now, putting these value of

k here in this equation, we can get an expression for E as a function of k and that would be E

= h cross square pi square/ 2 m0 L square * n square, where they already use the value of k,

okay.

(Refer Slide Time: 38:52)

If you want to write the Ek relation, well it is just the inverse of this, with the square root sign

removed. Let me write that on the board, so E = h cross square k square/ 2m0,that would be

the EK relation and this you substitute for k, so this k = n pi/ L . So, the allowed energies E

given by this equation are represented here, okay for different values of n. Now, since E as a

function ok k is a parabola.

That parabola is what is indicated here with the dotted line and the discrete points of this

parabola,  which  are  obtained  by intersection  of  these  vertical  lines  showing  the  discrete

values of k given by his formula, okay, represent the allowed energy states of the electron.

These are the allowed energies, the points of intersection, so this formula when plotted on a

graph would look like this set of points, okay shown here by red dots. 

So,  I  removed the lines  to  clear  the  figure  to  indicate  the discrete  values  of  energy and

momentum, which are allowed for electron in a rectangular potential well. So, this is the Ek

diagram, okay of electron in a rectangular potential well, where this k represents the wave



vector or it can be used to represent the momentum. So h cross k; quantity h cross k is like

the momentum of the electron P.

And therefore this can be regard as energy momentum relationship,  okay. You can easily

check that h cross k has a dimension of momentum. Now, if you want to understand this

picture physically, what it means is the electron is moving in this well, in this 1-dimension

with some velocity and it is bouncing of the balls, right. So, the speed of the electron remains

the same as it is oscillating and bouncing off from the walls, right.

And the energy and momentum associated with this,  is what is indicated here.  So, if the

electron has a high energy, it would be moving rather fast and bouncing of more frequently

from the walls, right and for the lower energy this would happens slowly. Now, let us look at

the picture of free electrons, now this picture can be regarded as corresponding to the picture

of an electron in a potential well of width L going to infinity, okay. 

When L tends to infinity, the picture is that of a free electron. Now, let us see what happens to

these formulae, when you put L tending to infinity, so clearly as L becomes larger and larger,

your k values which are allowed start coming closer and closer because pi/L becomes smaller

and smaller, okay. Now, this is indicated here that a large number of k values, which are

allowed will appear on the k line.

And the distance between these k values will start coming closer and closer as L becomes

large and in the limit L tend to infinity, it will become a continuous line, okay. Whereas, here

the k was discrete, when L was non infinite or finite. Now, again you put the relation between

energy and momentum, the parabolic relation,  this is this  line and the points on this line

which are intersecting with this vertical lines tell you all the allowed energies.
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And in the limiting case of L tend to infinity is entire line would be allowed, right and that is

what is shown here. So, Ek diagram, the Ek relation becomes a continuous line for a free

electron  as L tends to infinity,  this  picture  can be obtained from, this  picture of discrete

points. This point all start getting very close to each other and they become a continuous line

and therefore allowed energies also start coming very close to each other and become an

allowed band. 

(Refer Slide Time: 44:03)

Now, this is; what is shown here. Now, we shall just introduce the picture for electrons in a

crystal and stop this lecture and we will develop the picture in the next class. So, let me

introduce a picture of electrons in a crystal, so in a crystal you have a periodic potential that

is approximated here by this rectangular Ux line, this is called; the symbol for this is Ucx, the

crystal potential, it is an approximation of the crystal potential. 



Now, here we will assume that the maximum value is U0 and the minimum here is 0, the inter

atomic distance is a, now if you solve a Schrodinger equation for such a periodic potential,

then we will find this kind of an interesting Ek behaviour, here you have forbidden energy

bands as shown by these shaded lines. This should not be surprising because you did come

across forbidden energy regions here.

However, you have allowed energy bands rather than levels,  okay. So this  entire band of

energies  is  allowed and within  the  band,  their  behaviour  of  energy  verses  momentum is

periodic,  okay.  So, these are  the features  of this  Ek diagram, so E as a function of k is

periodic then there are certain bands of energies which are not allowed and certain bands of

energy which are allowed. 

So, you have alternatively located allowed and forbidden energy bands and another important

thing is for any given k, you have multiple values of energies allowed, whereas if you see

here for Example, for any k, there is a single value of energy, right. For given value of energy,

of course, there are 2 values of k; one in the positive side, other in the negative side, right.

But for any given k, there is only one energy, same if true for the free electron.

For any given k, there is only one energy, but if you come here for any given k, there are

multiple energies allowed okay. So, periodicity of p verses k, E being a multiple function of

k, multivalued function of k and Existence of alternatively located allowed and forbidden

energy bands. These are the features of the EK diagram in a crystal, which we shall develop

in the next class.

This model is referred to as Kronig Penny model after the scientist, who proposed the above

solution for EK diagram, okay and the location which define the periodicity of EK are related

to the inter atomic distance a, that is given here, okay. So, we will develop these features in

the next class. Now, before we close we just show the allowed and forbidden energy bands

existing alternatively here. 

So, this is an allowed band, which is very thin followed by a forbidden band, now below this

you have a forbidden band, now this is an allowed band followed by forbidden band here,

then allowed band and so on. Let us make a summary of important points of this lecture. So,



we have pointed out that like the field lines of force and equipotential lines, energy band

diagrams also consist  of a few lines  which represent  very vividly and in  a  best  possible

manner the various physical conditions in a device. 

It is a very important diagram used in the analysis of devices, so the 2 types of band diagrams

are the Ex diagram, where you plot allowed energy levels or energy bands of electrons in a

crystal as a function of distance and the Ek diagram, where you plot at any location in the

crystal at any x, for example the allowed energy as a function of the crystal momentum of the

electrons. 

So, normally the crystal momentum is represented in terms of the wave vector k and therefore

this  is  called the Ek diagram. The Ex diagram helps us to analyse the electron and hole

distribution; the electron and hole current density distribution and electric field and potential

distributions in the device as a function of space and time. On the other hand, the Ek diagram

helps you to derive the velocity, mass and momentum of the electron, which are referred to as

group velocity, effective mass and crystal momentum. 

Now, this information is important because the interaction of electrons with other carriers,

impurities, phonons, photons etc, are governed by the laws of conservation of energy and

crystal momentum. So, one can study the behaviour of these interactions based on the EK

diagram. We developed a qualitative model for the energy band formation. 2 approaches were

discussed; one approach called the Brillouin approach the nearly free electron approach or the

single electron approach. 

It consists of developing the allowed band picture of electrons from the picture of a free

electron.  For a free electron,  the entire band of energies varying continuously is allowed,

moment you introduce a periodic potential and subject the electron to this periodic potential,

then certain bands of energies become forbidden. So, the formation of forbidden bands is

what is the; characteristic of Brillouin, single electron or nearly free electron approach. 

The formation of forbidden bands was explained based on Bragg reflection of the electron

wave  from  the  various  atomic  locations  in  a  crystal  and  destructive  interference  of  the

reflected waves and the instant waves,  okay. So, certain wavelengths are not allowed for



electrons, they do not exist in a crystal and the allowed and the energies corresponding to this

wavelengths also cannot exist and that is how you talk about formation of forbidden bands. 

On the other hand, another approach called the Bloch tight binding or linear combination of

atomic  orbitals  approach;  here  you develop  the  picture  of  electron  in  a  crystal  from the

picture of electron in an isolated atom. So, in an isolated atom, you have discrete allowed

energies for electrons. Now, when you bring together a number of atoms to form a crystal, we

apply the Pauli Exclusion Principle to this system which says that, no 2 electrons can have

the same energy.

And therefore the electrons of all the various atom should have different energies. In this

manner, a discrete energy level of electrons in an isolated atom spreads into or splits into a

number of levels for electrons in a crystal consisting of many atoms and since this levels are

very close to each other because the number of atoms is very large, we refer to this group of

closely spaced energy levels as a continuous band of allowed energies. 

So,  formation  of  allowed  bands  is  the  characteristic  this  Bloch  tight  binding  or  LCAO

approach. After developing the allowed or forbidden band picture for electrons in a crystal in

a qualitative  manner  we then went  on to discuss  quantitative  model  for the energy band

picture. The quantitative model can be split into 2 parts; a model for the Ek diagram and the

model for the Ex diagram. 

Now, we began with the model for the Ek diagram in which we first develop the Ek picture

for electron in a rectangular potential well based on the Schrodinger equation and we showed

how  application  of  the  boundary  condition  on  the  wave  functions  solution  results  in

formation  of  discrete  allowed k vectors  for  the  electrons  and therefore  the  state  allowed

energies.

And the Ek relation is parabolic but only certain case are allowed and therefore only certain E

is  get  allowed,  so  the  Ek  diagram  of  an  electron  in  an  isolated  atom  or  electron  in  a

rectangular potential  well is a set of discrete points all falling on a parabola,  which talks

about the parabolic relationship between E and k. Next, we showed that the limiting case of

this rectangular potential well is the free electron picture.



Where if you assume the width of the rectangular potential well to go to infinity, you get the

picture of a free electron where all the various points on the EK diagram move very close to

each other and become a continuous line and therefore a continuous parabola for E as a

function of k is the picture of electrons in constant potential or free electrons. Then finally we

introduced the picture of electron in a periodic potential.

And we said that we will develop this picture in detail in the next class and this picture was

that the E verses k reaction for electrons in a periodic potential is periodic in k is multivalued

for  a  given  k,  so  you  have  many  energies  for  the  same  k  and  you  have  an  alternate

arrangement of forbidden and allowed band of energies. So, we shall continue in the next

class from this point onwards.  


