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Lecture - 24
Characteristic Times and Lengths

In the previous lecture, we discussed the transit time and diffusion length. The transit time is the

time duration taken by an average carrier to traverse the device length. This transit time was

given by modulus of Q/I where I is the current flowing in to the device and the Q is the charge

within  the  device  volume.  This  formula  is  valid  independent  of  the  mechanism  of  carrier

transport. It could be drift, it could be diffusion, it could be combination of different diffusion

and so on.

As far as diffusion length is concerned, the diffusion length is the average distance a carrier

moves  by  diffusion  before  it  recombines  in  a  situation  where  the  carriers  are  diffusing  and

recombining.  This  diffusion  length  is  associated  with  minority  carriers  because  it  is  only  a

minority carriers which travel purely by diffusion or mostly by diffusion, not by drift. 

While  deriving  the  diffusion  length,  we  make  3  crucial  approximations,  namely  the  quasi-

neutrality  approximation,  the diffusion approximation for minority  carriers  and the low-level

injection approximation. The low-level approximation, we have in making in the context of all

other characteristic times as well where there was a disturbance of the carrier concentration. The

formula  for  diffusion  length  is  square  root  of  diffusion  coefficient  into  the  lifetime  of  the

minority carriers. 

(Refer Slide Time: 02:00)



In this lecture, we will consider the Debye length and the magnitudes of the characteristic times

and lengths. So the Debye length is associated with relaxation of space charge regions and since

it is very important for us to know what are the magnitudes of the various characteristic times

and lengths, we will do a calculation for each of the times and lengths and see what is the range

of values that these times and lengths take.

(Refer Slide Time: 02:32)

The physical situation which introduces the Debye length is shown here. You have an electric

field impinging on the surface of a semiconductor which was assumed to be n-type. Since the

field is inward, it draws the mobile electrons towards the surface and we are talking about the

width over which the space charge created by mobile electrons and as we shall see, there will be



some very small contribution of holes also, so the space charge region decays to charge neutral

region.

So the conditions are summarized here, a uniform thin semiconductor, thin because we want to

make one-dimensional assumption. Uniform Es at x=0+, so this is the x axis and 0+ is the right-

hand side of this vertical line, so Es represents the field in the semiconductor. You know that the

field in the semiconductor at the surface will be different from the electric field E that is in the

ambient because of the difference in dielectric constants of the ambient and the semiconductor. 

Third  you  will  notice  here  that  we  have  the  equilibrium  state  because  there  is  no  excess

generation or recombination.  Please do not confuse these electrons which are drawn into the

sample, drawn towards the surface as excess carriers because you know that when we talk about

excess carriers, you always have electrons and holes paired up. So you have access electrons as

well as holes and the generation rate is disturbed, okay. So here you are not disturbingly the

generation rate.

So where are these electrons coming from. Well they are coming from the terminal here, okay,

because after all you are applying an electric field in a practical situation, how you do it. Ss it

would be something like this.

(Refer Slide Time: 04:39)



So you have a terminal  here,  let  us say. This is a reference terminal  and here,  you have an

electrode which is creating the field, so this electrode is connected to a cell with reference to this

point. So the electrons which are coming here, will come from this terminal, okay. That is what is

happening and the positive charges pile up creating this electric field E.

So you will find in fact that the whole concentration reduces here, okay. So this is one more

indication  that  these  are  not  excess  carriers,  okay.  Why do the  whole  concentration  reduce,

because it is equilibrium state N into P is NI square. So if electron concentration increases, hole

concentration falls. We will discuss some details of this situation shortly. Now 3 times Ld, where

Ld is the Debye length is approximately the region over which the space charge decays to 0.

The space charge due to disturbance in electron concentration and hole concentration is what is

shown here. The initial value of the space charge, that is the value at x=0 is delta ro. The defining

differential equation, we will establish is the second order differential equation in x, very much

like the second order differential equation in x for the diffusion length, okay. 

So it is interesting to see that while defining differential equations for characteristic times are

first-order differential equations in time except for the case of transit time for which also we can

write a first-order equation but we did not discuss the situation or transit time because we said

that is a little bit more complex. So far characteristic lengths, diffusion length and Debye length,

the differential equation is second order in X. So this d square rho/dx square=rho divided by this

quantity.

Here also in analogy to the diffusion length you have a square root sign in which you have the

dielectric constant of silicon, the thermal voltage coming in here and here in the denominator,

you have the equilibrium concentration of holes and electrons summed up. So you see that this

formula is valid both for p type as well as the n type semiconductor. So this square root quantity

is represented as a characteristic length called the Debye length. 

The boundary conditions would be at x=0, rho is delta rho which is the value shown here and at

x=infinity, the rho goes to 0 because the space charge has decayed. There is another way we can



write the same differential equation that is in terms of the potential okay. So in fact as we will

see, it is easier to write equation in terms of the potential which can ultimately be converted into

an equation in terms of the space charge. 

So the equation in terms of the potential is again a second order differential equation because we

will show that for small disturbances, for small electric fields, the potential and space charge are

linearly related. So the boundary conditions here are Delta psi is a potential at psi equal to 0 here

and finally for x very large, the potential goes to 0. So we are a assuming a 0 reference for extend

into infinity for the potential. So that is what is shown here.

(Refer Slide Time: 08:45)

Let us begin with a qualitative analysis in terms of sketch of N P Jn Jp E psi versus x. There is no

variation with time because this is an equilibrium state which also implies a steady state.

(Refer Slide Time: 09:06) 



So these are the sketches of these various quantities. Not let us look at this sketch and understand

this shape.  So because there is an electric  field,  the mobile  electrons are drawn towards the

surface.  They are piling up at  the surface as compared to the bulk.  We have said that these

electrons have come from the terminal here, right.

Now, how do you account for the shape. At each point, there is a tendency for electrons to diffuse

to the right. However, because this electric field which gets into the semiconductor also, this

electric field pulls the electrons towards the surface. So, there is a drift. This drift and diffusion

are in balance.

So they ensure that there is no net current flow for electrons because this is equilibrium state.

Now that is how you get the shape. You can explain similarly for holes. For holes, the tendency

for diffusion is in this direction. So this is diffusion.

On the other hand, electric field is rightward and this will tend to push the holes away in this

direction, okay. So that is how you get the shape, okay and now you can easily establish. In fact,

if Jn and Jp, each of them is individually 0, then the Pn product is NI square. I will leave it to you

as an assignment. Coming to Jn and Jp, each of them is 0 because for electrons and for holes

separately, the drift and diffusion are exactly balance, okay and they are opposite to each other.



So no current flow. This is again a sign of equilibrium state. Electric field - so you have an

electric field outside that is this electric field E. Now as you get in, the electric field will fall,

okay  to  value  Es  inside  the  semiconductor  and  thereafter  it  will  decay  just  as  the  electron

concentration is falling to equilibrium and the whole concentration is rising to equilibrium. So

these variations are there.

Similarly there is a variation of the electric field over the same length and it goes to 0 because

faraway there are no charges here. Now what is a ratio of E to Es. Well, the formula is Epsilon

ambient into E=Epsilon silicon into Es and Epsilon Ambient, if it is vacuum here, is 1 and there

is vacuum here and Epsilon S, if it is silicon, it is 12. So that is how you know that this quantity

will be 1/12th of this quantity. Because we are not drawing it to scale, I have shown a cut here.

Similarly, here also you notice that I have shown cuts because electron and hole concentrations

are both shown on a linear scale. I really cannot use a single scale to show both electron and hole

concentrations. Electron is majority carrier which will be of the order of 10 power 16, 17, 18, 19

and so on and hole concentration is minority carrier, it would be something like 10 power 4, 10

power 3, 10 power 2, and so on. So I cannot show both of them on the same linear scale. That is

why there is a cut.

Now why not I show it  on a log scale.  You see what will  happen is, we have said that  the

disturbance is small, the electric field we are applying is small; therefore, the variation in the

electron concentration or the amount of electrons which pile up here would be small in number.

That is why on a log scale, I will really not be able to show any variation for majority carriers.

For minority carriers, I may be able to show the variation. However, we would like to see the

variations for both because it is a variation in electron concentration that is really contributing to

the space charge as we shall see.

Minority carrier concentration is so small that any variations there do not contribute to the space

charge. Coming to the potential psi, so if I integrate the electric field, I will get the potential

because electric field is directed from left to right, the potential is more positive on the left and it

is falling. We have chosen the reference as 0 for the right end, okay. The space charge is derived



from the electric field by Gauss' law taking the derivative of the field picture. So you can see that

the slope here is negative that is why the space charge is negative, okay.

Alternately we can also get the space charge from n and P because you know that the space

charge is given by q times P-n+Nd+. These are n type semiconductors. So I can take the variation

in p and n and from here also, I can get the space charge. I will get the same shape. Now based

on this understanding of what is happening inside the semiconductor for the situation, we can

write equations and derive the Debye length.

Now the Debye length is something that is characterizing this width, right. The width over the

space charge region is changing, potentially is changing, or electric field is changing or these

concentrations are changing. So basically this is the length that we are talking about. Now we

will show that this length is what is approximately 3 times that particular characteristic length

called Ld.

So let us move on in that is no one to approximate the 5 coupled drift-diffusion equations based

on qualitative insight gained in the first step.

(Refer Slide Time: 15:13)

These are our 5 equations. Let us begin by considering the conditions of uniform semiconductor.

So because the semiconductor is uniform, for extending to infinity, your space charge is going to



0. So this particular condition is imposing the boundary condition. Rho at infinity=0. Let us look

at the next condition. Uniform Es means the Es is uniform over this surface. Note that E is the

field in ambient, Es is a field in the semiconductor at the surface. So at x=0+. 

Now this condition puts this particular condition on the space charge that is the integral of the

space charge over the length from 0 to infinity is Epsilon S, Es. This is by Gauss' law. So what

we are saying here is, if the field is Es, this is the field in side here is Es, so x=0 + his right-hand

side of this vertical line. Then this Es is related to the space charge picture as follows. So this

area is Epsilon S, Es, okay. That is how the field applied controls the space charge.

(Refer Slide Time: 16:52)

The equilibrium state means very importantly Jn is 0 and Jp is 0. So that is why we are striking

off these terms. This means that here we will substitute 0. Another very important consequence

of the equilibrium state is we do not have to solve the continuity equations because you can see

at each of the terms of this equation is 0, okay. Dou n/dot is 0 because equilibrium means steady

state carrier concentrations do not change with time, the current density is 0, there is no excess

generation, there is no excess recombination.

Small Es, small E, so what does it imply. This allows us to make the approximation that psi, the

potential disturbance inside the semiconductor is much < thermal voltage.

(Refer Slide Time: 17:50)



That is this is the potential variation. Under equilibrium, everywhere potential is 0, when you do

not apply an electric field. When you apply small electric field, we are saying that the electric

field is so small that the maximum value of the potential here is much less than thermal voltage.

Now we will understand why we are using thermal voltage as a metric over there to decide the

smallness of psi. This will become clear shortly.

(Refer Slide Time: 18:17)

The next step is reduction of the 5 approximated equations and the 6th equation to a single

equation defining the characteristic length. Now it is a space charge that we are concentrating on;

therefore, let us begin with the equation for the space charge and look at what are the expressions

for p and n. How do we get the expressions for p and n. 



Well clearly from here we can see that the expression for p would be obtained from this equation

by setting this Jp=0 and similarly the equation for n will be obtained from this equation. Now let

us take the equation for p. It can be easily shown that this equation reduces to Boltzmann relation

that is shown here. That is, it leads to the exponential relation between the carrier concentration

at any x and the potential at x.

Now how do you get this equation. Well very simple, let us put that down on the board.

(Refer Slide Time: 19:35)

So -qDp grad p+qp mu p into E. This is your Jp but this is 0 because it is equilibrium. So you

strike of q/mu P, this will become VT here, so you are left with VT gradient of p is a - sign. So I

can shift this on right-hand side and p into E. Now I can divide by p here, so that I will get this.

Now gradient of p/p in one-dimension what is this, this is nothing but VT into dp/dx into 1/p.

Now dp/p, you are writing it as d of [0:20:38] p, right. So this is how you get the relation electric

field is equal to this and this is what you are integrating.

(Refer Slide Time: 20:17)



Now you can put the dx on the left hand side, remove it from there and you can now integrate

okay. So this is what is being done. So at any x, the hole concentration is p and reduction into

infinity, it is p0. Those are the limits. So p here at any x and p0 for extending to infinity.

So when you integrate, left hand side becomes Vt into [0:21:35] of p0/p and right hand side

becomes psi.

(Refer Slide Time: 21:46)

So you can see that we are integrating from x to infinity, this is p to p0. So this is Vt ln p0/p and

left side is psi at infinity is 0. Psi at any x is psi. So that is why psi is - of integral Edx. So this

quantity on the left hand side will be - of psi infinity -psi x and that is - of - psi that is + psi, okay,



so this is the formal. So this is alright because p < p0, okay, that is why you get psi here. So this

is the result that is shown here. So p=p0 and exponential - psi/Vt, okay.

So you can see that as the potential is rising here, the p is falling. That is why the negative sign in

the exponential.

(Refer Slide Time: 22:55)

So p is p0 into exponential - psi/Vt.

(Refer Slide Time: 23:04)

Now let  us do a similar  thing for electrons  and you will  find,  you can do the manipulation

yourself, n is n0 exponential psi/Vt. So here you have a positive sign because n increases as psi



increase. Look at this here. Your n is increasing when the psi is increasing. Now substituting

those exponentials, your expression for space charge is as shown here, q into p0 exponential -

psi/Vt-n0 into exponential psi/Vt+Nd+.

(Refer Slide Time: 23:48)

Now rho is nothing but diversions of E into Epsilon S or rho/Epsilon S is diversions of E. So you

know that Poisson's equation if you convert diversions of E to psi, it becomes d square psi/dx

square and there is a negative sign because e is  -d psi/dx.  So that  is  why you are getting a

negative sign. So we have converted the Gauss law into Poisson's equation here.

(Refer Slide Time: 24:21)



Now, this  is  where you find we are using the smallness approximation.  Because the applied

electric field is small, your potential which is the consequence of electric field, is small and it is

so small that psi/Vt here is much < 1 and therefore we can approximate E power- psi/Vt as 1-

psi/Vt and we can approximate E over psi/Vt as 1+psi/Vt.

(Refer Slide Time: 24:52)

Substituting those approximations here, this is your equation. Now, one can easily show that this

equation reduces or simplifies to the equation shown here. Now what has happened is the term

p0 into 1-n0 into this 1+Nd+ has been set = 0 because you know that the semiconductor sample

far away from the surface, here, is neutral.

(Refer Slide Time: 25:26)



So therefore, rho when you put p0 n0 is 0, okay. Submitted sample is neutral. At x = infinity.

Now comparing this equation with the Poisson's equation you can easily establish that this term

in the red box represents - of rho because Poisson's equation I dou square psi/dou x square or d

square psi/dx square here because there is no time variation, = - of rho/Epsilon S. Therefore, this

term can be identified as - of rho. Now since according to this rho & psi are linearly related, I

could easily replace the psi on the left-hand side also by rho and the result will be.

This  equation  in  row,  okay because psi  is  some constant  into rho because of this  particular

relation. If I put that on both sides, the constant gets cancelled on both sides and you get this

equation. So you see that both psi as well as rho are characterized by the same spatial,  very

similar spatial variation.

(Refer Slide Time: 26:57)

Now using the fact that dimensionally this quantity can identified as 1/Ld square because left

hand side, you have d square psi/dx square, 1/length square and that length we are calling as

Debye length in memory of the scientist who proposed this length, Debye. So now we need to

solve the equation and interpret this length.

(Refer Slide Time: 27:30)



So the equation is given here. This is a second order differential equation subjected to boundary

conditions. You can easily do the solution yourself and the result would be rho is given by Delta

rho into E power-x/Ld. So it is an exponential decay, okay. Now this is interesting, the decay

associated with excess minority carriers which introduce a diffusion length was also sequential.

Similarly the decay of the various quantities which introduced the characteristic times, except for

the transit time, those were also exponential. Now these exponential variations are valid only for

small disturbances. This is very important to note that is why in each of the slides, the word

small is being underlying.

One can analogously write an equation for psi, it is Delta psi into E power-x/Ld which is solution

of  this  differential  equation  and  it  is  from this  exponential  behavior  that  you  come  to  the

conclusion that by 3 times the length constant entering into the exponential, the quantity should

fall to 5% of its value at the surface by 3 times the length constant.
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Now let us do an assignment. Sketch the distributions of n, p, E, and psi. Jn and Jp are not given

here because they are 0 and rho, the space charge as a function of x within the semiconductor for

the surface field condition shown below. So here your field is output from the surface, that is a

difference between the physical situation we have discussed just now for introducing the Debye

length and this situation shown here. So in this case, the space charge will be due to bound

donors.

Another  assignment  -  sketch  the  distributions  of  psi  and  rho  as  a  function  of  x  within  the

semiconductor when the doping changes abruptly as shown above. So here doping is changing

from n+n suddenly at this point and there will be a space charge region in which left hand side,

you will have some ionized donors being exposed because of electrons being transferred from

the high electron concentration region to low electron concentration region. 

So these  are  the  transferred  electrons  from n+.  So this  assignment,  you have  to  sketch  the

quantities qualitatively.

(Refer Slide Time: 30:32)



One more assignment. Consider a p+n junction under equilibrium. Express the depletion width

Xd in terms of the Debye length Ld of the lightly  doped region and the normalized contact

potential psi0/Vt. Part B, let l denote the distance over which the electron concentration within

the depletion layer falls to 10% of that at the n side depletion edge, okay. Based on the electric

field distribution under the depletion approximation, express this l in terms of the Debye length.

Let me give you a diagram.

(Refer Slide Time: 31:23)

So this is your p+n junction. Let us say this is your space charge region, most of which will be on

the  n  side  and  if  you  sketch  your  electron  concentration,  on  a  linear  scale,  it  would  look

something like this, right. It will fall rapidly. The electric field picture would be something like



this  under  equilibrium,  right.  So  now you have  to  show that  if  this  is  the  point  where  the

concentration falls to 0.1 n0, 10% of the value here, so what is the distance.

This is the distance you have to calculate and this you should express in terms of the Debye

length. So you must relate this distance to this potential drop in this small triangle okay, that is

what you have to do and use Boltzmann relation.

(Refer Slide Time: 32:45)

Based on the expression for ratio l/Xd, so here we are calling this distance as l and Xd is entire

depletion width, however, since the depletion on this side is small, on the p side is small, you

could regard this distance as Xd. So we are talking about the ratio of this length l and this length

Xd, that is related to the area under this triangle to the area under this triangle. You can neglect

the area of the small triangular portion here. 

So  based  on  the  expression  for  ratio  l/Xd,  determine  if  the  validity  of  the  depletion

approximation improves or degrades as Nd is raised. Estimate how many times Ld is Xd of a

Silicon p+n junction with Nd = 1 into 10 power 16 and temperature is 300K.

(Refer Slide Time: 33:56)



Final  assignment  on  Debye  length,  assignment  5.10.  In  analogy  to  the  expression  for  the

diffusion length of minority carriers given by L minority = square root of the D minority into Tau

minority, in terms of the diffusion constant and lifetime, show that the Debye length of majority

carriers can be expressed in terms of their diffusion constant and dielectric relaxation time as Ld

= square root of diffusion constant of majority carriers into dielectric relaxation time, that is

interesting.

So  minority  carrier  lifetime  here  and  dielectric  relaxation  time  here,  right.  These  are  the

analogous  time  constants  for  the  lengths.  So  minority  carrier  diffusion  length  and  minority

carrier lifetime, both of these are related to the same physical situation and Debye length and

dielectric relaxation time are related to the same physical situation, okay, involving space charge

decay.
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Now we come to the important issue of finding out orders of magnitudes of characteristic times

and lengths. So first we shall begin with the characteristic times and we shall do this calculation

for silicon at temperature of 300 K. Now as engineers, we must be aware of numerical values of

various lengths, times and so on and other parameters which we use. This is very, very important.

Let us start with the characteristic times. 

So since our time constants over a very wide range of orders of magnitude, we have chosen the

logarithmic scale here. So the minimum on the scale is 10 power-14 seconds, maximum is 10

power-4 seconds. Let us start with the time constant that emerges from the equation E = h nu, the

Planck's relation. 

So this time constant is analogous to the wavelength that emerges from the equation P=h/lambda,

okay. What does the time constant tau thermal denote, it denotes the average time for which

electron should remain, should be alive, so that you can assign a definite energy to the electron,

okay. So this is something that is emerging from quantum mechanics.  What is the minimum

amount of time for which an entity should remain so that you can assign a definite energy, so we

can regard it as a particle.

So tau thermal is given by h cross/KT where T is the carrier temperature. Since we are talking

about electrons, it is represented as Tn. This temperature is 300 K in our case. So putting down



the value for h cross in electron volt seconds and KTn at room temperature is 0.026 electron

volts. 

You get the value to be about 2.5 into 10 power-14 seconds. This will be the smallest for time

constants. So in order for the particular approximation to evaluate, an electron should remain

without any disturbance from any external sources for at least this much amount of time. If you

want to regard it as a particle. For example, this time between 2 collisions should not be very

close to this time constant if you want to regard the electron as a particle. So this falls here on the

time scale.

(Refer Slide Time: 38:09)

Minority  carrier  lifetime  -  for  silicon,  it  will  be  the  time  constant  given  by  the  SRH

recombination theory and that is = 1 by the capture cross-section into thermal velocity into trap

concentration per unit volume. Now the capture cross-section is 5 into 10 power-16 centimeter

square. The thermal velocity is 2.3 into 10 power 7 centimeters per second. 

You will shortly get an assignment to calculate this velocity and the time concentration ranges

between 10 power 12 to 10 power 17 per centimeter cube. Now by way of example, this time

concentration can represent gold atoms which have been introduced in silicon to kill the lifetime.

So the 10 power 12 and 10 power 17 per centimeter cube represents the concentration of gold

atoms in this example.



So the value turn out to be in the range of 10 power-9 to 10 power -4 seconds. So on a timescale,

this is really a very wide range for minority carrier lifetime.

(Refer Slide Time: 39:30)

Here is the assignment on thermal  velocity.  Using the expression half  of effective mass into

thermal velocity square = 3/2 KTn and Mn = conductivity effective mass which is 0.26 times m0

for electrons. Show that thermal velocity is given by this value at 300 K.

(Refer Slide Time: 39:55)

Let us move on to momentum relaxation time. The maximum value of momentum relaxation

time is Tau M0 that is close to the equilibrium. When you apply electric field, the momentum

relaxation time goes on decreasing. So, the minimum value of momentum relaxation time will be



obtained using this formula which is an approximation of the relation tau M=tau M0 into square

root of TL, the lattice temperature by the electron temperature. So you will recall that we had

presented this formula in our earlier module and we have said that this result is obtained from

quantum mechanics.

We  did  not  really  derive  this  result,  right.  We  simply  accepted  the  result  from  quantum

mechanics. So this ratio of lattice temperature to electron temperature can be cast in terms of the

electric field and the formulae is, if you recall, Tn/Tl=1+ electric field by critical electric field

square, right and therefore when you take a square root, you have square root of 1+E/E critical

square and for large E, it simply becomes E/E critical. So that is what is used here.

E critical is about 1 V per micron. Now, tau M0, we can readily obtain from the measured values

of mobility because you know the formula mu n0 is q times tau M0/effective mass, Mn. So now I

can rearrange that same result to express tau M0 in terms of mu M0 and effective mass and here I

can use measured values of mobility.

Let me use the value of mobility = 1000 centimeter square per volt second which corresponds to

doping level of about 10 power 16 per centimeter cube of phosphorus atoms in silicon. So this

multiplied by effective mass which is the conductivity effective mass that is why the factor of

0.26/q.

This results in the value 1.5 and 10 power-13 seconds whereas the minimum value is calculated

for say E = 6 volts per micron, okay, this is a very high field and since this is much more than 1

volt per micron, we can use this approximation. So it is simply tau M0/6. So the maximum value

is about 0.15 picoseconds and minimum value is one 6th of that. So on the time scale; it appears

like this, here.
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Now the mean free time or the time between collisions is always less than momentum relaxation

time. So the range of tau C would be something as shown here as compared to the Red Line or

tau M.

(Refer Slide Time: 43:14)

Let us look at the energy relaxation time. In this case, the minimum value of energy relaxation

time would be tau is 0, while the maximum value would be given by a formula analogous to that

we used for tau M for high electric fields while tau M decreases, tau E increases according to this

relation,  okay. Now the minimum tau E should be more than the momentum relaxation time

because you recall that energy relaxation time is always more than momentum relaxation time,

okay. Energy relaxes later than momentum.



So the maximum value of tau E, we will choose at 6 times the minimum value which is slightly

more than tau M0. So based on this considerations, you place the energy relaxation time here,

okay. So minimum value of tau E is more than maximum value of tau M.

(Refer Slide Time: 44:31)

Dielectric relaxation time is given by epsilon S/sigma, so 1/sigma is nothing but rho. Now you

know that  the regions  of  interest  in  a  device  have resistivities  ranging from 0.1 to  10 ohm

centimeter. So 1/sigma varies from 0.1 to 10 ohm centimeter multiplied by dielectric constant

and permittivity of silicon. The range is between 10 power -13 to 10 power-11 seconds. So that is

somewhere here.

Just to give you a feel in terms of the doping level, 1 ohm centimeter of silicon has a doping of 5

into 10 power 15 phosphorus atoms, okay if it is n type and if it is p type, doping boron, then the

number of atoms is 1.5 into 10 power 16. So 1 ohm centimeter lies between 0.1 and 10, so from

here you can figure out what would be the doping levels corresponding to these extremes.
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Let us come to the final characteristic time, namely the transit time. So the shortest transit time

will be for drift which is given by L square/mu V and the longest transit time will be for the

diffusion which is L square/2D. Now let us take practical cases. Let us take a 30 nanometer n

type MOSFET in which the electrons will flow by drift and let us take a 2 micron power npn

BJT. 

The 2 micron refers to the base width, okay whereas 30 nanometers here refers to the channel

length. So this 30 nanometer is L over here and this 2 micron is the base width which is also

represented by L, so that we can compare this 2 relations. So putting the mobility of about 150

centimeter square per volt second and the voltage across the MOSFET of about 1-volt drain to

source voltage.

You get a transit time of about 6 in 10 power-14 seconds. On the other hand, for the diffusion

across the base of a Power BJT, for electrons, you are using your diffusion coefficient of 20

centimeter  square per second, okay. This corresponding to doping level  of approximately 10

power 16. This results in a long time of 1 in 10 power-9 seconds. Now you might just wonder

why should you call 10 power-9 seconds which is nanoseconds as long. 

Well, you must compare this with the time constant, the transit time you obtained here which is

of the order of 10 power-13 or -14. So you see the transit time in various devices ranges over a



very wide range. So the minority carrier lifetime and transit times are both varying over a wide

range. So it is the dielectric relaxation time also. However, from here you can easily see the

relative magnitudes of the various time constants. 

Generally  for  many  devices,  minority  carrier  lifetimes  would  be  the  largest  of  all  the  time

constants,  the  transit  time  would  be  shorter,  so  would  be  dielectric  relaxation  time  and the

dielectric relaxation time would be longer than momentum and energy relaxation times or the

meantime between collisions.

(Refer Slide Time: 48:26)

Finally  let  us  look at  the  characteristic  lengths  for  silicon.  Here  we have  placed  the  lattice

constant a which is the smallest characteristic length that we will come across. For silicon, it is

about 5.43 Angstroms or 0.543 nanometers. The minority carrier diffusion length is given by

square root of the diffusion coefficient into the lifetime. Now the diffusion coefficient ranges

from 20 to 25 centimeter square per second considering the various devices in which diffusion

occurs and the lifetime ranges between 10 power -9 to 10+/-4 seconds.

So putting these quantities and finding out the minimum and maximum, you get range of 1.4 to

500 microns for the diffusion length, that is a very wide range as shown here.
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The De Broglie wavelength of thermal  average electron is h/effective mass of electrons  into

thermal  velocity.  So  putting  down  the  various  values  using  conductivity  effective  mass  of

electrons, you get a value of 12 nanometers at 300 K. That is placed here on the length axis.
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Mean free length between collisions is equal to mean free time between collisions into thermal

velocity. Now using the values of momentum relaxation time and the fact that mean free time

between collisions are little less than the momentum relaxation times, we arrive at this range for

tau C. The result is variation from 3.5 to 25 nanometers.



That is somewhere here. Now, this is really interesting which means that sometimes your mean

free  length  between  collisions  can  go below the  de  Broglie  wavelength  of  thermal  average

electrons, which means the particle approximation will not be good, right, in some cases.
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Let us look at the Debye length which is Epsilon S Vt/q times P0+n0 the square root over this

expression. Putting down the values for silicon and using a doping range of 10 power 14 to 10

power 18, it really does not matter whether it is n type or p type because if it is n type, then n0

will be dominating over p0 and if it is p type, p0 will dominate over n0. So this results in a range

of 4 to 400 nanometers.

And that is shown here. Now you see from here that generally the diffusion length is the largest

characteristic length. Debye length is shorter, right, but generally this Debye length will be more

in many devices than the mean free length between collisions which in turn will be more than the

thermal  average of de Broglie wavelength and all  these lengths will  be much more than the

lattice constant.
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Now with that we have come to the end of the lecture and hence a summary of the important

points. So in this lecture, we introduced the Debye length which characterizes the decay of space

charge when there is a small disturbance in the space charge and we said that the decay over

distance occurs over 3 times a length constant called the Debye length. 

The differential equation characterizing this length was the second order differential equation for

space charge as a function of distance X and the formula for Debye length is square root of

Epsilon S that is the Epsilon of the region in which you are finding the Debye length multiplied

by the thermal voltage divided by charge on the electron q into the sum of the electron and hole

concentrations, p0 and n0. So therefore the Debye length decreases as your doping increases and

as thermal voltage increases or temperature increases, the Debye length increases, okay. 

So in heavily doped regions or in regions where the mobile carrier concentration is high, the

space charge region would be really very,  very narrow and then be considered the orders of

magnitude  of  various  characteristic  times  and  lengths,  those  can  be  shown on  the  slide  as

follows.
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Where the minority carrier lifetime is the largest of the time constants and the time associated

with the translation E = h nu, that is the time for which an electron should be alive without any

action on the electron or the electron to be treated as a particle, that is the minimum. Other time

constants  fall  in  between.  Generally  the  order  would  be,  maximum time  is  minority  carrier

lifetime,  then  comes  transit  time,  then  comes  dielectric  relaxation  time,  then  comes  energy

relaxation time, momentum relaxation time tau C, right in that order, maximum to minimum. 

So this would mean, for instance that the dielectric relaxation time is smaller than the transit time

and minority carrier lifetime in many devices so that space charge neutrality can be assumed

even when you have time varying situations. More about this will be discussed later.

For length constants, we discussed the minority carrier lifetime, the Debye length, the mean free

length between collisions, the thermal average wavelength of electrons and the lattice constant

and we said that in many devices, the order of these characteristic lengths would be as follows:

maximum would be minority carrier diffusion length then Debye length would be less than that,

the mean free distance between collisions would be even less but which would be more than the

thermal  average  wavelength  so that  we can  treat  the  electron  or  hole  as  a  particle  in  many

situations.


