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Semi-classical Bulk Transport: EM field and Transport Equations

In  the  previous  lecture,  we  have  discussed  the  balance  equation  approach  in  which  we

converted  the  Boltzmann's  Transport  Equation  into  a  set  of  balance  equation  for  carrier

concentration, for current density, for kinetic energy density and so on. This we achieved by

multiplying the Boltzmann's Transport Equation with a function of momentum P and then

integrating the result over various allowed states.

We worked out what will be the various terms of this balance equation. Now in this lecture

we would like to develop the balance equations further, see how the equations can be used to

model velocity saturation, velocity overshoot, velocity field curve and so on. The balance

equations are the ones which are most often used for device modeling and one rarely uses the

Boltzmann's Transport Equation itself.
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Now let us see the arrangement of the balance equation. To solve for the carrier concentration

N we need the information about the carrier current density Jn. This is obtained from the

momentum  balance  equation.  So  here  this  equation  expresses  the  current  density  Jn.

However,  what  you find is  that  you have  got  a  new variable  namely  the  kinetic  energy

density.



So you need to know Wn if you want to solve for Jn. Now where do you get the Wn from,

you get Wn from the energy balance equation, but then this seems to be going on and on

because now you have introduced the kinetic energy flux FW. So how do we get FW? Well,

the way out would be to write another equation. Now there seems to be a problem that you

seem to have infinite number balance equation.

So the equation for carrier concentration introduces the carrier flux Jn. The equation for Jn

introduces  the kinetic  energy Wn. The equation  for  kinetic  energy introduces  the  kinetic

energy flux FW and it goes on and on. So how do we deal with this situation?

(Refer Slide Time: 03:11)

The situation is carrier balance equation introduces carrier flux or momentum. Momentum

balance equation introduces momentum flux or kinetic energy and kinetic energy balance

equation introduces energy flux. The way out is the following. Often the infinite series of

balance equations is truncated after 3 balanced equations of carrier, momentum and kinetic

energy using a phenomenological closure relation for the energy flux FW.

So what you do is you pause or you stop after the 3 equations.  Now you do not have a

relation for FW solved from other fundamental equation. So what do you do you make an

assumption about FW. This assumption is based on your observation of how kinetic energy

flux varies with various quantities. For example, consider the heat flux you can write the heat

flux as proportional to the temperature gradient.



So you write heat flux=a constant into the temperature gradient. Now how do you write this?

It  is  not  as  though  you  have  derived  this  relation  from fundamental  principles,  but  you

observe an Ohm’s law kind of relations or linear behavior between cause and effect. So for a

spring for example you write the force = the constant into the displacement. So the force

exerted by the spring is proportional to the amount by which you elongated.

Now using these kinds of observations you are writing an approximate relation for FW. So

this approach of writing a relation based on some intuitive understanding, but not necessarily

from  fundamentals  is  called  a  phenomenological  approach.  So  you  are  using  a

phenomenological relation for FW to terminate the series of balance equations and that is

why the relation that you use for FW is called a closure relation.

Because now the form is getting closed, the form of equations is getting closed. It is not

going on and on.
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It  turns  that  the carrier  momentum and energy balance  equations  are  sufficient  to  model

device phenomena including non-equilibrium effects of both steady state and transient variety

such as the velocity saturation, velocity overshoot etcetera. These effects we have already

introduced in the context of the qualitative model of the various transport phenomena. Let me

just alert you to some of the synonyms.

Many times some words are used interchangeably to mean the same thing. For instance, the

terms non-equilibrium, off equilibrium, hot carrier is often used to mean the same. Similarly,



the  word transient  means the  same as  non-stationary  and the word non-local  effects  and

velocity overshoot effects are also used interchangeably.
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So let us summarize our picture of the equations and boundary conditions. So at this point of

time our picture looks as shown in this slide. Let us focus on the transport equations because

we already are familiar  with the Maxwell  equations under quasi-static  approximation and

neglect of the magnetic flux B. So you have the carrier balance equation that is dou N/dou T

= 1/Q into  dou/dou X of  Jn+ the  generation  rate  of  electrons  and recombination  rate  of

electron hole pair.

Often derive the recombination rate in this form of carrier concentration - the equilibrium

value divided by the minority carrier lifetime. The momentum balance equation on the other

hand is given by dou Jn/dou T = 2 Q divided by the effective mass electrons the whole term

multiplying the spatial derivative dou/dou X of Wn the energy density +Q square into electric

field into the carrier concentration N divided by the effective mass MN - the current density

Jn divided by the momentum relaxation time.

The energy balance equation is given by a time derivative of Wn = dou/dou X of the energy

flux FW+ the heat generated so called ohmic losses electric field into the current density at

that point - Wn - the equilibrium value of Wn that is Wn0 divided by the energy relaxation

time  +  a  source  term  which  signifies  the  contribution  of  electron  hole  pair  generation

recombination processes to the carrier energy.



Now, you have 3 more equations for holes. We have written down this equation for electrons.

You have 3 more equations for holes. So you have 6 equations here + one must not forget the

equation for heat flux and that is given by the mass density rho into the heat capacity C

multiplied by the time derivative of the lattice temperature equal to the spatial derivative or

diversions  of  the  thermal  conductivity  times  the  gradient  of  the  temperature,  lattice

temperature + the electric field into J the ohmic losses.

So this term is analogous here so this term here E times Jn except that the J here includes the

electron current density as well as the hole current density + the heat that is generated by

excess recombination processes of electron hole pairs. So R - G into the energy gap. So the

Maxwell equations give you the information about the electric field and they in turn require

the input as concentration of electrons and holes because you need to use the space charge

here to get the electric field.

Now these are supplied by the transport equations which also give you the current density Jn

and  the  hole  current  density  JP  and  this  transport  equation  require  the  electric  field

information as the input which is obtained from the Maxwell equation. You impose suitable

boundary conditions to solve the differential equation so that is our picture and this is the

transport model that will be used to analyze various devices.

So in fact, these are the equations which are used very often. We will also see some further

approximations of this equation to derive what is called the drift diffusion transport model

which is much more common than the models based on all the balance equations.
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Now let us look at implications of some physical conditions on transport equations. So very

often we do not have to deal with all the terms of these differential equations. They look

fairly formidable. However, I want to remind you that we have said that all these equations

have a common form because these are all talking about conservation balance for continuity

of some physical quantity.

And they can be related to the familiar whole continuity equation so this you must always

bear in mind. Let us start with the physical condition of equilibrium. So under equilibrium

current density Jn the kinetic energy flux FW both arE0 because the condition of equilibrium

is no net flow of charge or energy so that is what is captured here when you say Jn and FW

arE0. 

Further another condition of equilibrium is that the temperature is uniform throughout the

device. Now this is expressed in the form the gradient of TL lattice temperature is 0. Further

you do not have generation or recombination processes, excess generation of recombination

processes. G and R represent excess generation and recombination so these arE0. Similarly,

the kinetic energy density of electrons Wn = the equilibrium value. 

Now as a consequence of this  many of the terms in this  equations  will  drop out.  So the

equilibrium picture of these equations is as follows. So you see most of the terms are getting

dropped out. The carrier balance equations really become trivial. So things are not changing

with time under equilibrium therefore all the time derivatives arE0 here in this column the

left hand side of all equations arE0. 



Further, since Jn itself is 0, this term does not exist. G and R also arE0. So carrier balance

equation really become trivial all terms = 0. Similarly, you find energy balance equation also

all terms are becoming 0 and same thing about the heat flux. However, it is interesting to

know for the momentum balance equation there are 2 terms which are noN0 here. 

While Jn/tau M goes to 0 because Jn is 0 and left hand side is also 0 because time derivative

are absent.  Now what does this  mean? Now you see that there can be conditions of non

uniform doping in a semiconductor though the semiconductor is under equilibrium and you

would  recall  from  discussions  in  the  first  level  course  that  under  non-informally  dope

conditions.

You do have an electric field to counterbalance the diffusion that is created by non uniform

doping. So non uniform doping causes the majority carrier concentration to be non uniform

and the minority carrier concentration also to be non uniform and therefore there are diffusion

currents of mobile carrier electrons are holes. However, since under equilibrium there should

be no Jn or JP the diffusion current should be balanced by drift current.

And that is how an electric field is set up. Now that is kind of situation that is described by

these 2 terms. So you see for non-uniformly dope semiconductor E is noN0. However, since

other terms arE0 these 2 terms should sum to 0. So therefore it shows that there is a noN0

spatial gradient of kinetic energy density. Now as we will see this is due to the presence of the

carrier concentration gradient and that is causing the diffusion current.
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Let  us  take  the  next  important  condition  namely  the  steady  state.  In  this  case  all  time

derivatives go to 0-time derivative of all quantities dou/dou T of any quantity is 0. So what is

happening is the left hand side of all these equations is being said to 0.

(Refer Slide Time: 15:23)

Let us take another important situation spatially uniform condition. In this case the spatial

derivatives of quantity go to 0. For example, in carrier balance equation dou Jn/dou X is 0. In

momentum balance equation dou Wn/dou X is 0. In energy balance equation the dou/dou X

of  FW is  0.  In  fact,  this  is  the  reason  why  in  many  situations  you  do  not  really  need

information about FW.

Because they are spatially uniform and finally in the heat flux also the gradient of the lattice

temperature is 0.



(Refer Slide Time: 16:10)

Now let us go on to model the velocity field curve based on this information about balance

equation.  Now this curve is shown here for silicon at  300 K for electrons  and holes.  So

basically what we want to model is a linear increase for small electric field followed by a

saturating tendency for large electric fields. 

As we have remarked whenever we want to develop a model for any characteristics, we must

also have a diagram of the biasing arrangement of the device in mind which tells us what is a

device geometry and what is the applied signal. So this is the situation that is depicted here.

So you have a uniform semi conductor a voltage is applied DC voltage is applied and there is

a current and this DC voltage is very slowly varied.

This is very important that we are not varying it rapidly. So the variation is so slow that

corresponding to any voltage the conditions in the device can be regarded as steady state.

This voltage sets up an electric field E that is causing the electrons to move from the right

contact to left contact but holes moves from left to right. So first we should write down the

conditions before writing the equations. 

So the conditions are steady state then spatially uniform and no impact ionization. Now why

are we saying this no impact ionization because we are dealing with high electric fields here

when the velocity tends to saturate and we want to be sure that our fields are not so high that

there is excess generation because of impact ionization. So we will not analyze that situation

where impact ionization may be present. Now what would our equations look like. 



So let us put down the equations here. We are doing this modeling for electrons and now let

us simplify the equations using the conditions so which are the terms which is drop out. So

since situation is steady state all the left hand side terms here have dropped out. Since it is

spatially uniform the spatial derivatives have dropped out. This is shown by the red crosses

here because spatially uniform is shown in red color.

The steady state is shown in black color and then no impact ionization. This means there is no

generation excess generation of carriers. Now evidently this means that the recombination

also is 0 because excess recombination is 0 because you see this term is 0 in carrier balance

equation this term is 0. So evidently R has to bE0. This means the electron concentration

would be equal to the equilibrium value of the concentration.

Now, look at the term SE in energy balance equation. Now we are neglecting a contribution

of generation recombination processes to the kinetic energy. Now this is because we have just

now remarked that there are no excess generation or recombination. So therefore there is no

energy contribution from these processes. Also note that because the G and R have becomE0

as obtained from the carrier balance equation the R - G term here in the heat flux equation

drops out. 

Now you see there is a problem we have to introduce a sink term here otherwise the heat flux

equation becomes inconsistent why suppose we do not have the sink term. Now, you see what

is happening because of steady state condition this term is 0, time derivative is 0 because of

uniform conditions that is what we have claimed the spatial derivative is 0 and because there

is no excess generation or recombination this term is 0. 

Now, this seems to lead to the condition that E dot J is 0 that is no heat generation or ohmic

loss which is evidently wrong because E is noN0 and J is noN0. So therefore there has to be

another term non-0 term here. Now what has happened is we have not taken into account in

this equation the rate at which the heat is lost by the semi conductor to the surroundings. 

The equation that we have written down here talks about the sources of heat within or sources

or sinks of heat within the semiconductor so that is not sufficient. We need to have a sink

term here otherwise there will be inconsistency so that is the sink term. However, in practice



we are not going to use this heat flux equation. So we will not concern ourselves with the

sink term here.
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So  we  will  work  with  the  carrier  balance,  the  momentum  balance  and  energy  balance

equation. So the simplified forms of this equation are given here after all the other terms have

been removed. So carrier  balance equation gives the electron concentration = equilibrium

value.  The momentum balance equation gives equality between these 2 terms and energy

balance equation will give you this.

Now what about tau M and tau E? The relation for tau M and tau E have to be obtained from

quantum  mechanics  because  they  are  related  to  the  scattering  phenomena  and  we  have

discussed that the scattering itself has to be treated quantum mechanically. So these relations

are obtained from quantum mechanics. We have not done this derivation we are accepting the

result.

Now that being the case we need to express the energy balance equation in terms of the

carrier temperature because you see the equations derived for tau M and tau E from quantum

mechanics consists of the electron temperature here. To convert the energy balance equation

into equation for electron temperature we use this relation for kinetic energy density Wn in

terms of the carrier temperature Tn.

So, recall that this kinetic energy density can be split into 2 parts random component called

the thermal component and the direct heat component called the drift component. Since it is



energy density  you have the electron concentration  terms coming there.  Now usually we

make  the  approximation  that  we neglect  the  direct  heat  component.  We assume that  the

random component is very large.

Now these approximations is definitely quite good for very high electric fields where the

direct heat component saturates. It is also good for very low electric field. When the direct

heat component is small,  you know, that even under equilibrium you have a large kinetic

energy density because carriers are moving about randomly. So near equilibrium also the

direct heat component is very small compared to the random component and for very high

electric fields when the velocity saturates the random component goes on increasing.

So even there this approximation holds good somewhere in between the approximation may

not be valid to that extent. However, we shall continue to use this approximation over the

entire range to get a simple equation. Now I leave it as an assignment to you to show that

simple algebraic manipulations with these equations here. In fact, you do not have to use the

carrier balance equation this is independent.

You basically have to work with these 2 equations because the Jn here enters in both these

equations really these are 2 equations to be solved simultaneously and in this you substitute

Wn in terms of Tn from here and also use this formula for tau M and tau E. The result turns

out to be in the following form. 

The drift velocity is the function of electric field given by -mu N0 into electric filed by square

root of 1 + electric field by a critical electric field square in which the mu is 0 is Q times the

momentum relaxation  time under  equilibrium by the  effective  mass  of  electron.  And the

saturation velocity is obtained by taking the limit E tending to infinity in this equation and

what you find is that when you take E tending to infinity.

You can see that this term will be very large and so square root of a square term is E itself and

therefore this E will cancel with this E and therefore you will get a saturation value and that

saturation value should be shown as thermal velocity into square root of tau M0/6 times tau is

0. So this tells you that the saturation velocity is of the order of thermal velocity. Now you

will have to use the relation for thermal velocity. 



So you know that the kinetic energy density or kinetic energy for carrier under equilibrium

you have the relation half M into V thermal square = 3/2 times the Boltzmann constant into

the lattice temperature so you will have to use that relation.

(Refer Slide Time: 26:26)

Let me give you some hints for this assignment. So using the previous slide show that the

momentum balance equation leads to this formula for Vd then if you combine the momentum

balance and energy balance equation you will obtain this. So the algebraic manipulation is

your responsibility. I am telling you some hints for the individual steps. 

Now where E critical is a function of the lattice temperature TL Boltzmann constant K the

electronic charge  Q effective  mass of electrons  MN. The energy relaxation  time close to

equilibrium and momentum relaxation time close to equilibrium and then you can combine

these 2 equations to show this model.
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I would also like you to estimate the order of critical electric field, the mobility of electrons

for low electric fields mu N0, saturation velocity in silicon using approximate values of these

quantities. Just to give you some feel tau M0 is of the order of a few 10s of a picoseconds and

tau E0 is of the order of picoseconds. You can get the other quantities from books or internet.

(Refer Slide Time: 27:59)

Now here is the graphical representation of the results. This slide has actually been pulled up

from the qualitative analysis, qualitative modeling. So why does the velocity saturate. Now

this is your velocity field curve. Now why does velocity saturate it is because the momentum

relaxation time is failing down and at this end it is inversely proportion to electric fields. So

why does the momentum relaxation time fall down it is because of the electron temperature

rising rapidly here.



So this is the graph representing the result of energy balance which is Tn/TL = 1+E/E critical

square.  The result  of carrier  balance  is  N remains  = N0. Now this  shape of  tau M as  a

function of electric field is obtained from quantum mechanical relation tau M = tau M 0 into

square root of TL/Tn where the Tn is expressed in terms of electric field from our energy

balance equation.

So the momentum balance equation on the other hand gives you this expression for the drift

velocity. Note that under quasi equilibrium conditions very close to the origin here. You have

a straight line segment which can be cast in the form of minus of mu N0 into E. So here is a

summary  of  our  model.  The  conditions  in  our  semiconductor  or  steady  state,  spatially

uniform and no impact ionization.

Under such conditions, if you vary the voltage across the semiconductor slowly you increase

voltage slowly. The current versus voltage relation will be linear in the beginning and then it

will approach saturation. So since mu N0 is the constant slope in this linear segment close to

the origin or for low fields this is called low field mobility.
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Now similarly let us look at the velocity overshoot, modeling of the velocity overshoot which

is a little bit more complex issue as compared to the velocity saturation. However, we will

find  that  the  same  set  of  energy  balance  equations  will  be  used  here  and  we  will  be

approximating the terms depending on the conditions. So our conditions are that you have a

semi conductor uniform and you are suddenly stepping the voltage to a high value.



As a result, there is a transient current and this transient current which is reflected in the drift

velocity varies as shown here. So it goes up and it overshoots the saturation value. This is the

electric field step because of the applied voltage. Now we will assume that the conditions are

spatially uniform and there is no impact ionization. Again because this is a high field effect

we are going to ignore impact ionization so that our analysis is simple.

So let  us  begin  with  the  equations  again.  Now because  of  spatial  uniformity  the  spatial

derivatives have all been neglected. Now look at this carrier balance equation. This term is 0

because no impact ionization the term G is 0. Now we can show that the consequence of this

relation dou N dou T = -R is that the R should also bE0. Now why now this is because you

see when at the instant when the electric field is just stepped so you take the condition initial

condition.

At this point there is no excess generation. So there is no excess recombination either so your

N = N0. Now under steady state conditions when dou N/dou T is 0. R has to bE0 because

other terms arE0. So again under steady state condition also your N = N0. So initial condition

at T = 0 when the electric field is stepped N = N0 finally also N = N0. And if you now

substitute this form of the recombination process here you find that dou N/dou T versus N

should you an exponential relation. 

Now an exponential relation whose initial value is N0 and final value is N0. So you know

that this segment is nothing, but a constant segment. Now that is why the carrier balance

equation gives you N = N0. Now again we have removed the contribution of the generation

recombination processes to the energy balance equation SE because there is no generation or

recombination over and above the equilibrium value.
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The simplified equations are put here we are following exactly the same approach that we

followed for velocity saturation okay velocity field curve. The only thing is the equations are

little bit more complex because here time derivative have to be considered. So tau M and tau

E are obtained from quantum mechanics and since they are given in terms of the electron

temperature  we  convert  the  kinetic  energy  balance  equation  to  an  equation  in  terms  of

electron temperature for which we use this expression.

And we neglect the direct heat component regarding the thermal component to dominate.

Now the result of that would be the equation shown here okay. Now what we have done is we

have also removed the term Jn and instead we have converted the equation into an equation

of the drift velocity. This is done readily because you know that Jn is nothing, but - Q times

the electron concentration into the drift velocity.

So if you divide the Jn equation/- Q times N you get the drift velocity because ultimately we

want  to  model  the  drift  velocity  and  not  the  Jn,  we  want  the  velocity  overshoot

characteristics. So now you find that the momentum balance and energy balance equations

are coupled through drift velocity and the electron temperature. So you find the drift velocity

entering here.

And you have the electron temperature entering in momentum balance equation why because

tau M depends on electron temperature as shown by this formula.

(Refer Slide Time: 35:21)



So the first step will be to simplify or decouple this equation. So these are approximation that

we are doing for analytical solution. Otherwise numerically you can always solve 2 couple

differential  equation,  but  we  want  analytical  solution  so  how  do  you  decouple.  So  you

decouple momentum balance and energy balance equations assuming tau M is constant in the

momentum balance equation.

So here we will assume tau M to be constant and Vd is approximate is = V sat in the energy

balance equation. So moment you said Vd as a constant = V sat you do not need this equation

for this velocity and moment you said tau M as constant you do not need the equation of the

electron temperature to estimate this value. So the results are shown here so we have replaced

Vd/V sat constant and we have removed tau M because it is a constant, but we still have tau E

as a function of electron temperature with a square root sign here.

Now that is going to complicate the solution of this differential equation. So if you put tau E

as a function of square root tau M. So what we will do is next simplification we do is that we

simplify energy balance equation assuming tau E is constant. So here we will set this to be

constant. So we remove the tau E expression also. Now we are dealing with considerably

simplified equation.

You can see that this is a simple differential equation first order and its solution will be an

exponential for Vd as a function of time. Similarly, this is an equation which is also a first

order equation in Tn that is electron temperature and it will also give you an exponential

solution as a function of time.
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Now that is what is shown here. So the momentum balance equation gives you an exponential

relation for the drift velocity as a function of time assuming that tau M is constant and the

energy balance equation gives you equation for electron temperature as a function of time.

Now these 2 solutions have been plotted here. 

So Tn is  exponentially  rising from TL under  equilibrium to some saturation  value under

steady state corresponding to the high electric field or high voltage that you apply so this is

electric field step and similarly the momentum balance equation gives you an exponentially

rising drift velocity as a function of time. Now here we have shown approximately to scale

the fact that the momentum relaxation time tau M is less than the energy relaxation time tau

E. 

So this variation in Tn happens over a much longer period than the variation in VD. You will

recall from the qualitative modeling that we had said that the fact that tau M happens to be

less than tau E or much less than tau E is actually very important for the velocity overshoot to

occur.
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Now we do not seem to have got the velocity overshoot yet. Now that is just one step ahead

now. So what we do is we now set the tau M as a function of the electron temperature Tn. So

we are solving for electron temperature from this equation and that value will substitute here

to get that tau M and we will make that tau M as a function of time. Now notice that this is an

approximate approach.

First  we  assume  tau  M  to  be  constant  to  get  exponential  solutions,  but  now  we  are

introducing the time dependent tau M to get the velocity overshoot. So note that the tau M is

temperature dependent quantity in 2 places of the solution of the momentum balance equation

here this place as well as this place. Unless you assume the tau M to be time dependent in

both places.

You will not get the overshoot and how does it give you the overshoot that is represented

here. So your tau M varies it decreases from high value to a low value. 2 L is what tau M is 0

and tau M infinity. So the exponential solutions for 2 extremes assuming constant tau M are

given here this tau M 0 and this tau M infinity. So evidently when you put the tau M to be

time varying between 2 limits in this equation.

Your curve is going to follow the curve for tau M 0 up to a point and then it will drop and

then come to tau M infinity. In fact, this is what I leave it to you as an assignment to show

that when you assume tau M as a function of time here according to this formula you will

actually get a velocity overshoot. 



So you will have a region where the velocity versus time will have a negative value or you

can also analytically approach the problem as finding out the derivative DVd/DT and show

that it goes to 0 at some non-zero times. And when it goes to 0 the D square Vd/DT square

has appropriate sign to show that it is a maximum.
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So this is our model of velocity overshoot of this characteristics. Now you can improve the

model, you can also include the variation of energy relaxation time with time because energy

relaxation  time also  will  change in  fact,  it  increases  because  the  electron  temperature  is

increasing with time. So I can feed this time dependence at this location and this location and

then I can solve this equation. My computation would be more, but a model will be more

accurate.
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So this is assignment established that the following equations indeed show velocity overshoot

when tau M is much < tau E.  First  using simple analytical  reasoning so I  told you take

derivative and find out the sign of the derivatives and so on. And then by calculation and

plotting you can actually calculate and plot. You can use MATLAB or any other calculator.
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Now finally let us discuss the model for current density. You will recall that when we discuss

the various transport phenomena semi classical transport phenomena we said that current can

be because of drift diffusion or thermoelectric current so temperature gradient. So we want

expressions for the current density for this driving forces. Now this is what we would like to

get from the balance equation.

The relevant  balance  equation  here is  the  momentum balance  equation  because  it  is  this

equation which contains the Jn terms. Let us show how some approximations of this equation

will lead us to a simple model for current density Jn in terms of the various driving forces

namely the electric field, the concentration gradient and the temperature gradient. So we have

reproduced the momentum balance equation.

And note that this quantity here is called the mobility which is the function of electric field

because tau M varies with electric field. The first approximation we make in this equation is a

quasi-static  approximation.  We  assume  that  the  time  varying  term  is  small.  Now  this

approximation works fairly well because momentum relaxation times are very, very small

and the quasi-static approximation amounts to assuming that dou Jn/dou T is much < Jn/tau

M. 



So you see we have said that whenever we neglected a term we also do so with respect to or

with reference to another term. So it is not as though some terms becomE0 and that is why

we neglected. So whether a term is small or large depends on its relative value compared to

other terms in the equation. So the simplest term that you can compare with to get a feel for

what this approximation means is Jn. 

So when we said tau M dou Jn/dou T is much < Jn then it means the current changes in a

duration much > tau M. So long as your changes in current density are in a time that is much

more than fractions of picoseconds this will work. So this is going to fairly high frequencies.

The next approximation we make is that thermal energy is much greater than the drift energy.

So this approximation related to Wn. 

You see we have to find out this spatial derivative of Wn. So we are doing the approximation

for that purpose. Now writing the equation in terms of electron temperature this amounts to

the approximation Wn thermal much greater than Wn drift amounts to assuming that this half

nkTn+ half nm N Vd square is approximately equal to the thermal component itself. So we

have neglected the direct heat component and we are using half here.

Because we are using one dimensional version of the equation. Now if you use 3 dimensional

versions, you know, that this could be 3/2 nkTm. Now when you differentiate this term with

respect to X to get dou X/dou Wn. So you will get 2 terms here one related to the derivative

of N with respect to X and other related to derivative of Tn with respect to X because you

have the product of N and Tn. 
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Now let  us  substitute  the  result  of  differentiating  Wn with respect  to  X into  the  current

density equation and see how it look like or rather the momentum balance equation and see

how the equation looks like. So now under these 2 approximations namely the quasi-static

approximation where we have dropped out dou Jn/dou T term.

And using this derivative of the current density with respect to X the equation becomes Jn is

approximately  equal  to  few times  the diffusion  coefficient  of electrons  multiplied  by the

concentration gradient +Q into carrier concentration N into D suffix Tn this is called thermal

diffusivity in analog 2 the diffusivity associated with the concentration gradient. So Q into

carrier concentration into thermal diffusivity into the temperature gradient. 

So here we are looking at the carrier temperature +Q times the carrier concentration N into

the  mobility  mu N into  E.  Now the  diffusivity  DN thermal  diffusivity  D suffix  Tn and

mobility mu suffix N are all functions of electric fields. So this term represents diffusion this

is related to carrier concentration gradient. 

The term dependent on the temperature gradient represents the thermoelectric current and the

term dependent on electric fields represents the drift  current. Let us look at  the formulae

which relate the diffusion coefficient and thermal diffusivity to the mobility. So this is the so

called the Einstein relation. You have come across already in the first level course what we

see. However, is that the Einstein relation you had discussed in the first level course was

related to the equilibrium conditions.



Whereas here we are using it for high electric field regions also. So that is the difference.

Similarly, the thermal diffusivity D suffix Tn depends on the mobility why are this formulae

K there is a Boltzmann constant by Q into the mobility. Now this is the reason why one talks

only of the mobility of carriers in a semi conductor and one tries to model mobility, measure

mobility and so on.

So you will find in books the data for mobility given, but many times the data for diffusion

coefficient or thermal diffusivity is rarely given. The reason is you can always derive this data

from the mobility data because of these relations. So these relations are therefore very, very

important. Now the 2 approximations have been put in abbreviated form here because we are

going to encounter more approximations as we consider formulae for mobility.

So the mobility mu N is a function of E and a function is given by this formula. This we have

just derived when we discuss the velocity field relation. We model the velocity field relation

from the balance equations. Therefore, you will recall from that modeling exercise that there

are  some approximations  associated  with this  result  also.  Now those  are  the  quasi-static

approximations of the energy balance equation in which we neglect the dou Wn/dou T term.

Now  when  you  neglect  this  term  evidently  this  term  is  small  however  we  have  been

emphasizing that a term is small not in that it is absolutely 0, but it is small compared to the

other terms. So which term do you compare with? So as we have shown here you compare it

with the term Wn - Wn0/tau E. The reason for that is look at the energy balance equation.
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Now here before I proceed further I wish to point out an error in this equation the way it is

written there should be a negative sign here. And this negative sign had actually been missed

in the tables that I have shown earlier in this lecture so please make that correction if you

have taken down notes and note these corrections. However, this does not affect any of the

results that we have discussed.

Because we have already shown that we do not use this term at all in modeling at least the

kind of modeling that we have done. Now returning to this energy balance equation we want

to neglect this term so we would like to compare this term with any of the terms here. So one

term that you can compare it with is this. So just like for momentum balance equation we

move this Jn term from the right hand side to the left hand side.

And they are allowed us to compare these 2 terms. We can move this term to the left hand

side and then it will appear as +Wn-Wn0/tau E. So we remove it from here. Now we can

compare these 2 and if this is very small compared to this then you say that the quasi-static

approximation or steady state approximation for kinetic energy is applicable. So that is what

we have done here.
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Similarly,  we  made  another  approximation  namely  that  we  assume  the  conditions  to  be

uniform when we derive this formula for mobility. So you will recall that this formula for

mobility involved a relation for the electron temperature in terms of the electric field and that

is where we have done this approximation that we have been talking about when we derive

that equation for electron temperature.



So spatial non-uniformity of Wn in the momentum balance and FW that is a flux of kinetic

energy in the energy balance equations are small. So for example dou Wn/dou X is much less

than QNE divided by 2. So here again we are comparing the term that we are neglecting with

other terms in the equation. Look at this so dou Wn/dou X in a momentum balance equation

comes here.

Now we compare it with this term you can say that mobility can be removed and so if this

term is much less than this term then you can neglect this term that is what we are saying.

One can similarly write down in expression for neglecting FW. So if you want to do that you

should look at the terms here. You can compare it for example with this term for neglecting

and you can write down a similar relation.
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Here is an assignment before we close the lecture. Express the thermoelectric current density

in terms of the Soret coefficient Sn = k/q into carrier concentration N into mobility = carrier

concentration into the thermal diffusivity. So DTn is called the thermal diffusivity. Determine

Sn and DTn for  an  N-type silicon of  1  x 10 power 17 per  centimeter  cube doping and

estimate  the  thermoelectric  current  in  this  sample  for  a  temperate  gradient  of  1-degree

centigrade per micron.

Now since we are at the end of the lecture let us make a summary of the important points. So

in this lecture, we developed the energy balance equations approach for modeling devices.

We showed that the Boltzmann transport equation is equivalent to an infinite series of balance



equations. Now this series is terminated after 3 balance equations namely those of the carrier,

concentration, the momentum density and energy density.

And this termination is achieved by a closure relation for the energy flux that enters into the

energy balance equation.  Then we showed how using these 3 balance equations  you can

model  velocity  overshoot, velocity  saturation and the current  density.  The current  density

involving the drift current, the diffusion current and thermoelectric current.

And we showed that you need to do a number of approximations of the momentum balance

equation to achieve these simple relations for current density in which the current density is

shown as sum of 3 components. One due to concentration gradient, one due to temperature

gradient, carrier temperature gradient and the other due to electric field. We will continue the

discussion in the next lecture. 


