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Semi-classical Bulk Transport: EM Field and Transport Equations

In the previous lecture, we began a discussion of the fundamental ensemble view point of

getting the device current from a description of carrier population over momentum assuming

the carriers are particles. So we explained in detail, what is the meaning of the distribution

function and then we gave the formula for deriving n, Jn and kinetic energy density Wn from

the distribution function f.

We also explained the equation which helps you to derive the distribution function F and that

equation is called the Boltzmann's  Transport  Equation.  We showed that  this equation has

close correspondence to the whole continuity equation.  Therefore, it  can be regarded as a

balance conservation or continuity equation for the distribution function. 

In this lecture, let us look at ways of solving the distribution function or ways of solving the

Boltzmann's Transport Equation or working with the Boltzmann's Transport Equation to get

the device current carrier concentration and so on. The first approach, you can solve for n and

Jn as follows;
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You solve for the function f from the Boltzmann's Transport Equation and derive n and Jn

from this formula which we wrote down in the first level course, which we wrote down in

yesterday’s  lecture.  Now,  in  general  even  numerical  solution  of  Boltzmann's  Transport

Equation is rather difficult because f is a function of 7 variables. x, y, z, Px, Py, Pz and t.

So when you look at a picture in 3 dimensions then you see the distribution function really

becomes complicated you are having 7 variables. If you look at in 1-dimension then you have

only  x  and  the  Px  apart  from  t.  But  in  3  dimensions  it  is  complicated.  However,  in

equilibrium the Boltzmann's Transport Equation gets simplified because the term S and time

varying terms vanish and so f can be solved for analytically. So, what we are saying is the

following.
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If you look at the equilibrium state then this Boltzmann's Transport Equation, which we write

as follows. This term will be 0 because things will not change with time. This term will be 0

for the same reason things do not change with time and this term is also 0 because there is no

excess generation or recombination. So, you see they are left with only these 2 terms = 0.

So this what we mean by saying on equilibrium the equation simplifies. So, can we now use

this feature in some way? We will discuss analytical solution shortly, but before that let us

make a point since the equilibrium solution is possible, analytically. Hence, one can attempt

modifications of the equilibrium function f to treat a general case. So, we get a distribution

function for equilibrium.



And for non-equilibrium cases what we do is we disturb this function or we pert up this

function or modify this function by introducing some additional terms to represent the effect

of non-equilibrium and we try to see whether this form satisfies the Boltzmann's Transport

Equation. If so, then we regard this as the solution.
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Let us look at the equilibrium solution for f. Let us attempt to check whether a form like this

can work. Now this is really good guess work or imagination, right. Right now we cannot

justify this form unless we show that it will satisfy the Boltzmann's Transport Equation and

we also derive under what conditions it satisfies the Boltzmann's Transport Equation. Let us

say, we have done an inspired guess.

Note  that  I  have  put  a  suffix  0 here  to  show that  this  is  equilibrium situation  and the  t

therefore has gone out of this set of variables. Let me read this thing for you, so f not affects,

p which were trying as a solution has a form 1/1 + exponential  of E,  the energy of the

electron or energy of the stake. At any x and it is a function of the momentum p - a constant

level as we will see this is from E level.

Right  now let  us  say  it  is  some constant  divided  by K times  Tl  where  Tl  is  the  lattice

temperature. Now, what is our motivation for thinking about a form like this, we will see that

shortly. Mainly we would like to connect it to the shape of this function that we anticipate.

So, we are looking at expression that will fit into this kind of a shape, okay for f as a function

of P.



Now, the total energy E is nothing but the sum of potential energy which we represent as Ec.

Now here please note that this is capital version of the Greek Letter Epsilon, however, we

will simply continue to call it as E but you must always remember this is not the same as the

symbol used for electric field. So, this is a potential energy of the electron. When we discuss

the band structure, we will show that this energy nothing.

But the conduction band H in the energy band picture. That is the potential energy + the

kinetic energy which is nothing by models of P square/2 times Mn where P is the momentum

of the electron. So, this is the total energy potential + kinetic. Now we will show that this will

be a solution of the Boltzmann's Transport Equation provided the gradient of Fermi level.

Well, probably we should right now avoid using the word Fermi level because right now we

really do not know that this is a Fermi-Dirac distribution function, right? We are just guessing

a form. So we pretend that we do not know. So, this constant Ef whatever we are using here

the gradient of this special gradient of this should be zero in other words this constant should

be same for all x on a 3 dimensions for all positions.

Similarly,  the gradient of the lattice temperature should also be 0. In other words, lattice

temperature should be uniform throughout the device.  So, both Ef and lattice temperature

should be constant throughout the device. So long as this is satisfied, so long as the constants

here Tl and Ef follow this condition you can show that this function will be a solution of the

Boltzmann's Transport Equation under equilibrium.

Now, let us do some manipulation to show that. This is our Boltzmann's Transport Equation,

okay. Now, we will substitute this function f0 and evaluate the derivatives which are there. Or

rather derive the derivatives of this function. So, let us write this here. The form we are trying

out is under equilibrium, this is f0. And the form we are trying out is F != 1/1+exponential E-

Ef / KTl where this E is the total energy. So, let us write this total energy in terms of potential

and kinetic.

So, this  is  Ec+P square/2Mn-Ef.  If  this  is the solution then when I  substitute  this  in this

equation  the  sum of  the 2 terms should become zero.  So, let  us  substitute  and see what

equations we get.  So, we get V multiplied by now dou f0/dou x. Now, here this Ec is a



function X, okay? Now, Ef we can assume to a function of x and later on get that it is not a

function of x whatever.

Now this Ec is appearing in this exponential which is in the denominator. Now since this is a

little bit involved what we can do is, we will make a substitution we will assume that this

quantity is y then our f0 turns out to be = 1/1+e power y. Now, it will be easy to work with

that. Now, we use y as a variable then I can write dou f0/dou x at as dou f0/dou y multiplied

by dou y/ dou x.

And similarly plus now I removing the negative signs, right +f, here also I do the same I

write dou f0/dou y multiplied by dou y/dou p. Sorry it is dy/dp and this is = 0. Now I can

cancel out this dou f0/dou y. What is dy/dp? So this is y. So, when I differentiate with respect

to P, the EC is not a function of P,  it  is a potential  energy, right? It does not depend on

momentum. 

So derivative with respect to P of this quantity is 0. So, similarly Ef is also not a function of P.

Therefore, what remains is only this, so if you take derivative of this with respect to P, I will

get 2 times P/2Mn which is P/Mn and P/Mn is nothing but the velocity, V which were using

here. So, this dy/dp is velocity but there is a K times Tl in the denominator Tl is again not a

function of T, you can treat as a constant. 

So, this is V/K times Tl. Now if this is the case then this V also gets cancelled out of the

equation. Now let us as look at dy/dx, so dy/dx. P is not a function of x, okay because x and P

are independent variables. So, we have to take dEc/dx and right now we do not know Ef

could depend on x though it is not a function of P, we can assume Ef also to be depend on x

and see what happens. 

Thus the derivative Dy/dx would be now Tl also we should allow to be a function of x. Later

on we can see that it will not be a function of x because of the imposition of the condition it

should satisfy the equation. But since this is also a function of x, so I have numerator and

denominator. So, basically a product of 2 terms, so I should be careful while looking at that. 

So,  K is  a constant,  so 1/KI will  take out.  So,  1/K into d/dx of  the numerator  which  is

DEc/dx, at that time I can keep the Tl outside +Ec+E square/2Mn–Ef into d/dx of 1/Tl, k



comes out as a constant. So, now if I put this term here I will find that the K is going out of

the picture, the K is getting cancelled. Further, what is dEc/dx. Now, you know that the force

is negative gradient of potential energy. 

Yes, okay, thank you for pointing that out. Here I have written dEc/dx and I forgotten to put

dEf/dx, so let me put that in there. So dEc/dx is nothing but - of f. So, you see here we are

getting  -  of  f/K times  Tl  and here  you have  f/K times  Tl.  So  that  is  how this  will  get

cancelled. So, let us assume that this has been put here and then let us cancel out the terms

which go out. 

So, f/K times Tl that is what you have here, this will cancel out with this term, okay, so f goes

off. In other words, this term goes off. I am not removing K times Tl because it is multiplying

this term dEf/dx. Okay, then let me put this terms here the K when I am can cancelling this K,

I can cancel this K also and again cancel this K here.
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So, my equation will  therefore become this  dy/dx is  nothing but 1/Tl  into dEf/dx with a

negative sign + this quantity multiplied by dy/dx of 1/Tl and this is = 0, okay? Now, since

this relation should hold for all values of P, all values of momentum. The only way you can

have this = 0 is each of the term should be 0. Now, since Tl is non 0 the only way this will

work is that dEf/dx = 0 and dy/dx of 1/Tl = 0, which is nothing but d of Tl/dx = 0. 

So if you want d/dx 1/Tl 0, it is nothing but – 1/Tl square dTl/dx. So, Tl is non 0, therefore, in

fact 1/Tl is not 0. So, dTl/dx should be 0. So, this is what you get is the condition. In other



words, this function is a solution of the Boltzmann's Transport Equation under equilibrium if

df/dx = 0, dTl/dx = 0. Now, that is a great result we already know that the Fermi level should

be constant with x under equilibrium or constant with position and temperature should be

uniform. 

So, the Boltzmann's Transport Equation gives you this result, which we have obtained from

some other method. It also tells you that this equation is a solution.
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Now from the first level course you know that this particular  function is nothing but the

Fermi–Dirac  function  FD. So the  Fermi–Dirac  function  is  a  solution  of  the  Boltzmann's

Transport Equation under equilibrium. However, now how do we get the shape like this? So,

normally we use a Maxwell-Boltzmann approximation of this Fermi-Dirac function and if

you plot  this  function it  will  give you the shape after  substituting  for E in  terms of the

potential energy and P square/2Mn.

So,  suffix  MB  stands  for  Maxwell-Boltzmann  distribution.  Now,  when  does  this

approximation hold from the first level course you know that if E-Ef is more than 3 times

kTl,  so  E-Ef  here  is  more  than  3  time  kTl.  In  other  words,  this  quantity  is  more  than

exponential  of  3  then  within  5%  error  you  can  replace  this  whole  function  by  simply

exponential of minus of this quantity that is what we shown here.

And we write this as show here, so we separate out the exponential of -P square/2Mn kTl

term which is contributed by this kinetic energy term and the other quantity. Now, when you



plot the distribution function f as a function of P, this is the term that has this particular shape,

okay? You know that this is Gaussian kind of shape. Its peak is at P = 0.
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Now, we said that one approach to solving the Boltzmann's Transport Equation is to take the

equilibrium distribution  function  and  perturb  it  to  accommodate  the  happenings  of  non-

equilibrium  case.  So,  what  is  happening  in  non-equilibrium?  So  we  know  that  under

equilibrium the  entire  carrier  population  has  no  net  motion  in  any  direction  or  no  drift

velocity,

or in general no directed velocity because your current could be because of drift diffusion,

thermoelectric current, anything, right? So, let us say directed velocity. So, under equilibrium

there is no directed velocity or there is no momentum P, right average momentum P is 0.
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So that is what in fact you can see the equilibrium distribution function is like this. This is P

and this is 0, so E1 about 0 this is F0. The effect on non-equilibrium will be to introduce a

directed velocity. You can do that very easily as follows. Let us first plot the situation under

equilibrium. Now the disturbance is that there is a directed velocity. Now that is shifting the

momentum or there is a non 0 momentum, average momentum.

Therefore, the distribution function is shifting to the right, to display the average momentum,

non 0 momentum.  This average momentum nothing but  effective  mass multiplied by the

directed velocity. Under Quasi-equilibrium you find that the shape of the distribution function

about the mean value is remaining the same, if the disturbance from equilibrium is small. We

will shortly see what this means.

So, here is your distribution function corresponding to the red curve. The difference is that

now P square has been replaced by P-Mn Vd square. Now the quantity is which vary with x

and t are all indicated in this equation. Quasi-equilibrium is characterized by the condition the

electron temperature Tn = the lattice temperature. We have already introduced the concept of

carrier temperature.

And how the population of carriers can have a different temperature than lattice under non-

equilibrium. Now if the carrier temperature is approximately called to Tl then it is Quasi-

equilibrium,  you  know  that  or  other  way  around,  in  under  Quasi-equilibrium  Tn  is

approximately = TL. In equilibrium Tn = Tl. So, this is the formula that is more general.

Another change that has been done is the Fermi level is replaced by the Quasi Fermi level. 



You know from the first level course, that, under non-equilibrium condition the Fermi level is

replaced by the Quasi Fermi level  concept.  Now, what happens if  the equilibrium, if  the

deviation from the equilibrium is large how do we accommodate that effect. So, in terms of

the curve the large deviation from equilibrium is reflected in spreading of the curve, right. So,

here the peak is sharp but under non-equilibrium the peak is broad.

So, more and more carriers are taking up momenta on either side of the average value. Now

this effect is captured by changing the quantity Tn. So, in non-equilibrium Tn becomes more

than Tl. How does Tn become so, how does this Tn becoming more than Tl broaden the peak,

well that is seen easily. If this denominator is large, then this width of the peak region will

increase, this clear from the nature of the Gaussian function.

Now using a 3D version of the above equation, so here we have written terms as a function of

x. 3D version this x is replaced by r. So one can derive so we are not doing the derivation, we

are  just  showing the  results  using  the  same formula  that  we have  introduced  for  carrier

concentration  and  current  density  in  terms  of  the  distribution  function.  One  derives  this

expression for carrier concentration, which we have derived in the first level course from a

different starting point. So Nc and exponential of Fn – Ec/kTn.
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The current density is given by this formula and operation according to this formula leads

you to this equation. Q times, -Q times carrier concentration N into directed velocity Vd.



Note that this is the average velocity as you can see from here. This average momentum and

so the velocity correspondence to that is average velocity.
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Similarly, one can derive the kinetic energy density using the formula that we introduced the

result of using this Displaced-Maxwellian Approximation is, that kinetic energy density =

half Mn Vd square this the so called directed kinetic energy or drift energy and 3/2 times kTn

which is the random kinetic energy or so called thermal energy and that is why you see the

carrier temperature coming in here.

Now this multiplied by n, this multiplication n carrier concentration is coming, because this is

not kinetic energy but kinetic energy density. Now, you would have appreciated by now why

it is called a Displaced-Maxwellian Approximation. Because this function the red curve or

this broaden blue curve is nothing but a displaced version of the curve under equilibrium.

That is why it is called Displaced-Maxwellian Approximation.

The displacement is shown here by introducing minus –Mn Vd along with P. Let us now look

at our equations and boundary conditions picture. We have now introduced the Boltzmann

transport equation as an equation of carrier transport, okay? So when we put this equation in

the organization of all the equations the picture is as follows;
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So, here you have the Maxwell’s equations with Quasi-static approximation and magnetic

field = 0. There are 2 equations E = - grad psi equation and then you have Lorentz force

equation which gives you the force because of electric field or potential gradient. Now this

force and the electric field that is given here is used in the Boltzmann transport equation to

solve for the distribution function f.

So in fact this force is entering here and electric field is used to find out this force. Now you

need one equation for electron and another equation for whole. So you have 2 Boltzmann

transport  equations,  one for  electron  other  for  whole.  We are  following the  equation  for

electrons  to explain the various  aspects.  Now what is  interesting  is  to see that  you need

another equation here and that is the equation for Lattice heat flux or Tl.

Now  this  is  because  in  our  Displaced-Maxwellian  Approximation  you  find  the  carrier

temperature Tn coming there in the distribution function, and therefore you need to know that

carrier temperature if you want to solve various quantities of interest. Now how do you get

the carrier temperature? The carrier temperature depends on the lattice temperature, right? So,

I need an equation to solve for the lattice temperature.

and  this  is  the  so  called  equation  for  heat  flux  Q.  Recall  that  in  the  beginning  of  the

discussion on the carrier  transport  towards the early lectures we had said that  the carrier

transport can be regarded as the consequence of 6 couple fluxes namely the electric flux, the

magnetic flux, the heat flux, then electron flux, the whole flux and the displacement current

flux, okay?



So, heat flux Q that is something that we had not brought in so far. So now at this point you

realize why you need an equation for heat flux. So because the Boltzmann transport equation

of  semi-classical  carrier  transport  requires  the  knowledge  of  carrier  temperature  which

depends  on  the  lattice  temperature  and this  lattice  temperature  is  to  be  solved  from the

equation for heat flux.

So that is what is  shown here.  So this  heat flux equation can be regard as a part  of the

transport equations. You need to impose boundary conditions on these equations for solving.

So the applied electric field or magnetic field or heat flux imposed boundary conditions. So

heat flux may be applied or it may be generated within the device they have explained how

heat flux can be generated.

You have a power device heat is dissipated near the junction, right? So temperature of the

junction  is  high  compared  to  the  base  of  the  junction,  right?  And  therefore  there  is  a

temperature gradient and there is a heat flux. Let us write down the equation for heat flux.

Now we will not derive the equation but using our approach of Enology wherein we try to

relate all our transport equations to the whole continuity equation.

Because we know that these equations are nothing but all reflecting, conservation, balance or

continuity of some physical quantity. So we will be going to adopt that approach and see

what kind of an equation we can write for the heat flux.
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Now, let me show you the equation first and then familiarize you with the equation. So the

equation  for  heat  flux  looks  something  like  this.  So  left  hand  side  you  have  the  time

derivative of lattice temperature multiplied by 2 quantities rho, which is the mass density of

the material, semi connector material and see which is the specific heat capacity.

On the right hand side, you have divergence of the so called heat flux Q which is written as

proportional  to  the  temperature  gradient  Tl.  The  constant  of  proportionality  is  thermal

conductivity which is a function of temperature and that is why this k has not been moved out

of the divergence sign because it is a function of temperature and temperature can vary with x

+ source or sync terms.

Now one source of heat is the so called joule heating.  So electric filed multiplied by the

current density. This is so called VI loss, right? You are applying a voltage and there is a

current flow, V multiplied by I. So that has been disappeared as heat. So V into I is the total

heat loss in the device whereas E into J is the heat generated within a local volume, right?

Now this is a differential equation which should work for different positions in the device,

different  local  volumes  and  for  different  instance  of  time.  So  there  is  a  microscopic

description  of  the  heat  generation  because  of  ohmic  losses.  Then  you  can  have  energy

generated because of excess recombination. So R – G is excess recombination. So if carriers

recombine and if the mechanism of carrier recombination involves furanones then heat will

be generated.

So  we  are  writing  here  the  recombination  mechanisms  which  result  in  generation  of

furanones or heat in which the heat, means energy of recombination is dissipated as heat. Let

us take an example of silicon, so the recombination mostly is dissipated as, energy dissipated

as  heat.  So  the  rate  of  this  excess  recombination  multiplied  by  the  energy  lost  in  each

recombination that is the energy gap.
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So this is the diagram, Ec Ev and this the recombination, right, process in which the electron

jumps into a hole and this energy gap. So, this energy that is released. Now let us show the

correspondence of this equation with the whole continuity equation. Now here we are writing

the term G – R because the net generation or recombination for holes and electrons would be

equal because the processes are always balanced, right? 

Now the equation for heat flux, so here time derivative of Tl because the quantity analog is to

Ps Tl, right hand side is special derivative of the flux because of temperature that is a heat

flux Q and this Q we write as proportional to the temperature gradient. So in 1-dimension we

are writing, so and you have a negative sign because the heat flows from higher temperature

to lower temperature. 

Just as the diffusion current of holes goes from higher concentration to lower concentration.

So Jp/q if you write in the diffusion form it is dp dou dp/dx with a negative sign. Now this

term for heat flux is analog as to this term of full current. So this is the Q here + the source

terms, right? So that is E into J+ it is a recombination, net recombination which give rise to

source of heat. So that is the term put here. 

So this is analog as to this and these 2 terms together are analog as to this term. Now but

dimensionally it is not yet correct. On the left hand side, you see you have a derivative with

respect to time of the temperature. So dimensionally one can easily check that. I will have to

put this mass density and specific heat capacity. So this is mass density which means mass



per unit volume that is kg per meter cube or gram per centimeter cube and this is specific heat

capacity. This is thermal conductivity. 

So this  negative  sign and this  negative  sign get cancelled,  right?  I  leave it  to you as an

exercise to show that dimensionally now this equation is correct you put dimensions of these

quantities and this is an exercise that I want you to do. Put dimensions of each of these

quantities and show that this equation is dimensionally correct. There is another way to look

at this Lattice heat equation. 

The term rho ct suffix L can be seem to be heat energy density. The left hand side is the time

derivative of heat energy density and the first term on the right hand side is special derivative

of heat energy flux. This equation can therefore be called Latix energy balance equation in

analogy to carrier energy balance equation which we shall consider in the next lecture. So,

now what we find at this point is that we have a total of 3 equations. 

3 equations of electromagnetic field and 3 equations of carrier transport. The equations of

carrier transport consist of 2 Boltzmann's Transport Equations 1 for electron and 1 for hole

and the equation for heat flux. So, the connection between the 2 sets of equations we shown

here from the electromagnetic filed equations you get the solution for the electric field or

potential and from there you can get the force on an electron. 

This information is fed into the transport equations which give us output the current density

of electrons the carrier  concentration of electrons the current density of holes and carrier

concentration  of  holes.  So,  we  have  the  6  equations,  okay  at  this  point.  However,  the

approach that we have just outlined allows you to only guess the form of the solution of the

distribution function. 

So, direct solution of Boltzmann Transport Equation is rather difficult, that is limitation of the

set of equations that we have at this point. We can work to some extent with the displace

Maxwell form of the distribution function. However, certainly we would like to look for other

alternatives  of  working  with  the  Boltzmann  transport  equation.  Because  what  we  are

interested in is not the distribution function itself ultimately. 



But ultimately we are interested in the device current as a function of voltage. So, we want

carrier concentration and current densities. That is our goal. So, can we get those quantities of

interest without actually having to solve for the distribution function, as an intermediate step.

Now that is what we want to explore, this takes us to the second approach.
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The goal of modeling n and Jn are functions of 4 variables only x, y, z and t and filter out

detail distributions of f over Px, Py and Pz. So, in the process of finding out n and Jn from f

we  are  filtering  out  the  effects  of  Px,  Py  and Pz.  You  know that  from formula  for  the

equations of n and Jn. Now that being the case, why not adopt this approach. The BTE can be

converted into balance equations for carrier concentration n and current density Jn

both as a function of position and time by multiplying the BTE with appropriate functions,

which are denoted as phi of P divided by the local volume delta V. So, the functions we are

considering are functions of momentum P and then summing over all available states P. This

is  your  Boltzmann’s  Transport  Equation.  So,  we are  saying  that  we  will  convert  it  into

equation  for n  and Jn by multiplying  each of  the terms,  with appropriate  functions  of P

divided by local volume and then summing up. Let us see what we are talking about.
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So, this is our Boltzmann Transport Equation. You know that n is given by 1/delta V into

sigma f of x, P, i t where you are summing up over all the available states or allowed states.

Jn on the other  hand is  1/delta  V into now here you multiply  by –qPi/Mn,  multiply  the

distribution function. Again you sum it up over. So, this is your expression for Jn and now

this f here is the f here in this equation to avoid cluttering.

We have not put all the variables x, p, i and t for each of the terms here. Now how can I

convert this equation Bt into an equation for n, so clearly what I do is I simply sum f over the

available states and divide by delta V. While dong so what I have to do is I can put a sum here

but then I know I will exploit the fact that I can interchange differentiation and summation.

So if I want n, I can go, do as follows, summing up I =1 to M dou f/dou t is same as taking

the derivative of the sum I = 1 to M of f. Now if I divide by local volume delta V, I divide by

local volume/delta V here also. Then this quantity, I can easily identify as dou of n/dou t,

okay. In fact, I can push the delta V inside here further. I can write this as dou/dou t of, so I

can identify it as dou n/dou t.

If I want Jn, I can take this do a similar thing. So what I do is I know that I can interchange

summation and differentiation. So, I will use that facility and directly write the result. So, I

can convert dou f/dou t as follows. So, I take the f, I multiply the f/- Q into P/Mn, then I

divide by delta V and I sum this. So, in the process what I am getting from this dou f/dou t, is

dou of Jn/dou t.



So, this is how, now this is the so called function of, this is the so called phi of P that we are

talking about. In this case, the phi of P was simply = unity 1. Here phi of P is -Q into P/Mn.

So, this is how I can convert the left hand side into dou n/dou t or dou Jn/dou t. Now what I

will have to do is I will have to multiply all the terms by the appropriate function.

For example, if I want to write an equation for dou n/dou t I multiplying everything by 1. So,

this turns remain as it is and then I have to sum all of them all these terms over the states. In

this case I have to multiply each of the terms here with this function phi of P and then do the

summation. Division of by delta V is not a big matter because delta V will get even cancelled

out in all the terms.

So, that is how I can get equations for n and Jn. I can convert this into equation for n and Jn.

So, you see in this process I am not trying to solve the distribution function f. That is a great

achievement  of this  approach,  okay? And therefore I  am not working with details  of the

distribution of carriers or momentum. You can see that when I sum up over the momenta the

resulting function is a function of x and t alone.

So, this is a function of x and t. Though f is a function of x, p and t in the process of summing

we have removed that. Similarly, Jn here function of x and t alone. So, we have filtered out P.

We will develop this approach which is a powerful approach and which is commonly used

today, in the next lecture.
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Now, since we have come to the end of the lecture, let us make a summary of the important

points. So, in this lecture we have discussed about working with the Boltzmann transport

equation to determine carrier concentration and current density. So, one approach that we

outlined involved trying to solve the Boltzmann transport equation analytically. Now this is

very difficult,

so what we said is we could get a solution for f by guessing based on knowledge of the

solution under equilibrium. Under equilibrium the Boltzmann Transport Equation becomes

simple and it is possible to guess a solution for this simple equation. We guessed such a thing

and  we  showed  that  the  Fermi-Dirac  function  or  its  approximation  namely  Maxwell-

Boltzmann distribution actually works very well under equilibrium.

It is a solution. Then we said that you can use this equilibrium function and modify it by

making it a Displaced-Maxwellian function by introducing the directed velocity term in the

equation which is the sign of non-equilibrium. In equilibrium there is no directed velocity no

momentum. In non-equilibrium you have a net momentum or a directed velocity.  So, we

used, we introduced this term the resulting function was called Displaced-Maxwellian.

And we said by modifying the carrier temperature and using this directed velocity we can

modify this distribution function at equilibrium sufficiently to manage the non-equilibrium

conditions.  Then we gave formula how you can use this function to derive n and Jn. We

actually did not do the derivation but we showed how we can do that. However, in many

situations Displaced-Maxwellian function is not a good approximation, right?

After all it is a guess work it is, an in spite guess work and approximate function. Therefore,

we need to use alternate approaches and another approach we outlined was using the fact that

n and Jn required for our device modeling actually does not need the detail distribution of

momentum and therefore we can convert the Boltzmann Transport Equation into equations of

n and Jn.

So, this approach we will develop in detail in the next lecture.


