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So, let us begin the next lecture. The last thing we saw in the previous class was about 

minimum distance, but I want to recap what we saw in the previous lecture. 
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So, let us do a quick recap, so right now we are thinking of three parameters for any code 

n, k, d code case once again clearly this is going to be a dimensional sub space of f 2 n 

no change in that, but what is this new parameter d. Now, d is minimum over u naught 

equal to 0 u n the code the hamming weight of u, so you look at all the non zero vectors 

in your code the one that has smallest you tick you tick the smallest and in weight among 

all those things you get minimum weight.  

So, that is what we saw and then this minimum distance d like a point at out that is not a 

very linear algebraic parameter it is more of a commentarial parameter. So, it is more 

difficult to determine directly the only relation it has with the parity check matrix is the 

following relationship you can also show d is the what it is the minimum number of 

columns of h, h that add to 0 well this zero vector.  



So, if the n code n d codes c has generator matrix g and paretic matrix h remember g is a 

cross n matrix full rank and h is a n minus cross n matrix you can think of them in 

systematic form this g becomes i p h will be p transpose i. Then the relationship g h 

transpose equals zero is also satisfy, so these are all the things that we saw in the last 

class like a point it out this is hard to determine in general. 

So, usually the strategy is to design a parity check matrix h and then show some d minus 

one when any d minus one or fewer columns are linearly independent. If you do that, 

then your minimum distance is at least d so that is the strategy that is used to show, so if 

you want to show it is exactly equal to d you also have to find the set of d columns which 

do definitely add up to 0. So, you do that you can find these things, so let us see couple 

of quick examples and work out the couple of parity check matrices at u and then ask 

you for the minimum distance we also started on the hamming code at s. 
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So, we will come back to that soon enough but before that lecture quickly see two quick 

examples just to drive home this point of how easy it might be to find the minimum 

distance. So, the first example try that the next example may want to try let us see the 

first example. I have parity check matrices the easiest think to determine is what both the 

first easiest think to determine n is the easiest parameter and you can determine how for 

n minus 6. I am sorry, see even the easiest parameter can some time you have so and 

equals 6.  



Then, next thing the you can determine as some parity check matrices the number of 

lineally independent rows and that would be n minus in this case what and this the form 

of the matrix is easy enough. You can quickly see that three rows a lineally independent 

in case you have a i sitting inside, so from there you can quickly see that n minus 3. 

From there, you can quickly conclude that has to be three years what about minimum 

distance, so it is very safe when you complete minimum distance to be patient.  

Eliminate one after the other and then go to three in case do not quickly jump to case 

three and there is correct, but it is good to do the step by step the first step is first fall is 

not d equal. You know d is not see row that you know what about d equals one how do 

you eliminate d equals 1 d equals one can happen only if there is the all zero column. So, 

d equals one is eliminate d cannot be one just be at least 2, how for 2 what should happen 

two column should be identical should be repeat and you can see the there is no 

representation.  

So, two is not also possible d as to be at least 3 and can you find three columns there add 

to 0 is request, so there are multiple choice is possible, so for instant effect pick this 

column this column and this column they add to 0. So, d clearly becomes 3, so know 

another question and that might be you of interest us how many minimum weight code 

words are there that might be an interesting question to think about. These are again 

difficult question, but you can try to answer at for instant in this code how many can you 

quickly see one as a putdown is clearly a minimum weight code word another one. You 

can have is this one this one and right another one you can have is this guy this guy and 

this guy anything else is anything possible. 

So, notice there is like non trivial looking minimum weight code word those three things 

is issue add you get what 0. So, that is four can be anything more so in this cases really 

simple problem a roundly eight code words rights. You can eliminate everything in find 

the answer very easily, so I believe this a roundly four code words which around 

minimum weight and this also find the other once these are there I am right correct yes 

no body his happy, so there are four of them.  

So, it can be a bit more weights it was its only think that I want point out the can be some 

hidden code words it is suddenly show up. So, let us know move on to the other case 

what about the other one case once again you do the follow the same strategy saved you 



start the equals 1 and d equals 0, you can just through way just space strong what you 

know in case n minus its n is 8, then n minus is 4. 

(Refer Slide Time: 08:56) 

 

So, these two things are able to see quite easily n minus four this easily seen because 

once again there is i sitting there if you do not have an i you have to do Gaussian 

elimination generate the i and then you see for d you have to do little bit more work. 

Then the four let see d equals one is the fed d rolled doubt what about d equals two are 

also is rolled doubt what about d equals three if it is sharp likely sharp you have really 

check. Even within this what I do so within this guy see you have check the no 3 adds to 

0 and then may be two of them will add.  

Suddenly, they will give something which is weight 1, so that might can happen, so if 

make 1 here in this case it would not happen, but if I make one devise looking change 

can suddenly happens for instants. If I just remove this 0 and make it 1 what can happen 

then last two and you will see the last 3 add up to 0. It is a little bit more non trivial to 

find the minimum distance, but in this case you can no 3 will add to columns to 0. I am 

not saying it is 0 it is easy to check that check all possibilities how many possibilities, 

you have to check if you were to do an exhaustive search h 3.  

You do not have to do all h o 3, what can I avoid easily among the first four columns 

there is no way anything is going to add up to 0. So, there is no problem there you can 

completely remove that under that you cannot completely remove you can take you do 



not have to take everything from. So, you can write you can reduce if you like you can 

be smart about it, but at the end of the day it is some kind of exhaustive it is nothing 

much you can.  

So, d will not be three what about four one two three four not one two three so there are 

multiple possibilities multiple possibilities to get that for instance very interesting 

looking example. You can come up with if you like this, so if you take this guy and this 

guy what happens that would be a code word, this is not to give a non trivial example 

some strange things like this can happen.  

So, you can get d equals four so this is the procedure think about it very carefully hard 

when I remember the first time this was thought to me and I thought about a lot of 

algebra type of algorithms. That should give me the minimum distance and after all I can 

put it in I p there only and I and p and well smatter people than me though about it. So, 

anyway the final competition as you have to do will always end up being a exhaustive 

very difficult to do smart algorithm it is n p complete. You do not know aware of very 

resent work that is p may be not empty nobody will have an algorithm. So, it is a difficult 

problem any questions go larger and larger than 8 choose 3 n choose three can become 

better than loop, this case there are so many other ways of doing it anything else. So, let 

us move on let me come back to this hamming code, so the code that we saw. 
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So, I think idea was to construct a parity check matrixes with d equals three right that 

was the idea and we are going to pick r rows. So, this is a parity check matrixes we are 

going to construct and one of the choices for n is to pick n equals 2 to the power r minus 

1 here and then you put all non zero binary r tuples binary r tuples as columns not as 

rows. This is going to columns and you get a parity check matrix and clearly d will be for 

this, what will be n minus will be equal to r, both these things need proof is not too 

difficult.  

Why will n minus will be equal to r you can find a i r inside this matrix, so you will have 

all those guys that will give you a linear degree of the linear independence you need. So, 

you will get n minus equal to r and then d equals three you can easily see you add two 

things you will another r tuples. This is also 0, so have it somewhere occurring you get d 

equals 3. So, what are the general parameters of this code n is 2 power r minus 1 and 

what is 2 power r minus 1, what is b?  

So, b is r general binary hamming codes binary hamming codes an r can be you want you 

can start with one if you like, but most non trivial competition starts with 2. Let me just 

put p equals 1, 2, 3 etcetera, I think it does not make any sense. Let us start with 2, sorry 

r will make minus 1 r equal to 1, I think will make equals 0 and all this. So, this start 

with r equals 2 all right these are the binary hamming codes and any d equals 3 code.  

You might build with binary any binary d equals 3 cos you might build will look roughly 

like this and you have to make you want to make it if you want to make you want to 

make it very efficient, it will look like this. You know how d equals 3 can be satisfied, 

we know the reputations we should know all zero culms that it you get 3 seems like very 

simple recipe. It is not too hard many codes have d equals 3, so that is the hamming code 

we have already seen some we already seen this code before, but think it is good see it 

once again, so d equals 4 onwards becomes a little bit more interesting, b equals 4 is not 

so hard.  

It turns out you can get a d equals 4 code from a d equals 3 code and that is close to 

optimal you cannot do much better than that. So, we will see next what we going to see 

next is some simple modification of codes, we will see three ideas first idea, I will call 

shortening next idea is puncturing and third idea is extending, so I have multiple 

purposes in discussing these modification of codes. The first purpose is, it will give you a 



feel for what this generator matrixes are parity check matrixes are how do you 

manipulate them how the minimum distance gets affected and all that.  

When you discuss this, all that will become little bit more clear and it is a good 

reinforcement of those ideas. The other purpose is these things are extremely valuable in 

practice maybe not extending both shortening and puncturing are pretty much used in all 

practical applications. Nobody will use it, it will always be a shorter version or a 

punctured version, so it turns out in practice progress some parameters this is very, very 

crucial. So, both points of views is useful, so we will see that very simple ideas, but 

never the less important to see them in some detail. 
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So, let us start with shortening, so let us say we have a n d code c is a n d code with 

generator matrix G, I am dropping this generator matrix all the time maybe it is not a 

very good idea, but remember that I say generator, I mean generator matrix. Suppose, 

you have c code c given like this, so we know how to write this set of all c such that c 

equals mg m comes from the set of all binary 2. So, it is good to think of g as a 

systematic form at least for the shortening you always think of g as a systematic form i p.  

So, then the c becomes m and m p, so what you do for a shortened version, so go to now 

define the shortened version you will call it c sub s and this s is integer so is basically 

one two three four so c sub s is basically. So, let me write it down carefully set of all c, 

so let me just write it down little bit differently. So, let me write the other thing first so 



the basic idea is to restrict your messages to have only minus s non zero possibilities the 

last bits of the message you will always set to 0. That is the idea of the shortening you 

basically set what that s tells you set last s bits of m to 0.  

Basically, you shorten your message more than shortening the code when you shorten 

the code you are shortening your message. So, you have first minus s bits such that any 

bits that you want and the last s bits you force them to 0. So, what will happen, I do that 

when I do m times g last rows of g pretty much drop out of consideration only have to 

worry about first minus s rows. When I form a code word what will happen the message 

part of the code word will have the first minus s bits, but then the last s bits of the 

message will always be 0 unless no point in transmitting that. 

I do not have to transmit that, so I can just simply drop those s bit in code also the code 

word also, the way you write it, so you take always a little bit confusing to write it and in 

a very optimal way. So, let me just see maybe there is a efficient way so this seems like 

the best way you can write it, so you write as m one m 2 so on till m minus s. So, you 

take minus s bits and then what do you do leave out the 0, so the remaining things I am 

going to drop out it just does not mean much.  

So, changing the generator matrix a little bit and then what you do, so little bit more 

confusing, so let me just write it let me just write. Then we will worry about what 

happens, so maybe I make it m p such that m is what m 1 m 2 m minus s and then 0 just 

the laborious way of writing, but I think it is good to write it once see how it looks like 

stuck here. So, I can define another p prime if you want which is just the first minus s 

rows of p and simply write it as m p where m is simply the only the minus s.  

You can do it that way also, it is just another way of writing it is that clear it should be 

clear. So, basically restrict yourself to on the minus s bits of the message and the 

remaining bits you set to 0 is there a question. I will come to that practical valuable let us 

come to that slowly there is a question about practical why it will be useful.  

I mean see you do not have think of shortening as a trade idea it is never a less simple 

idea, so let us see the interesting question. Now, is what are the parameters for c s what 

the generator matrix for the c s what the parity check matrix those are the things that are 

interesting? So, I want to concentrate a little bit like I said i gives you a practice with 

thinking about what this matrixes are really. 
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So, let us start with the generator matrix for c you have, so let me write down the i a bit 

more laboriously 1, 1, 1, so 1, 1 you have 0’s here, then you have p right so p would be 

here. So, this is a generator matrix for c what would be a generator matrix for c s maybe 

it is g s the last s row is 0 is that enough the last s row are 0. So, it goes from 1 to minus s 

and from there below I will just remove that, then what else should I remove? The last s 

columns are y also I should remove know that is the idea this also should go away that is 

quite simple to see nut anyway the last s columns are y should also withdraw.  

So, you would get the g s is that, so c s would be i minus s and then you would have p 

from 1 to minus s is that, so what about parameters here you had n d what will be the 

new parameters as you will show n is the easiest n will become n minus s. What will be 

minus s you have a i minus s what about d what about d it cannot go down, that is most 

important thing when you shorten d will not go down. So, it will get greater than or equal 

to d how do you quickly show that how do you show that d cannot go down u mean you 

used to intuit engineering answers.  

You have to a precise proof you have to write it n terms of contradiction you have to 

assume. Now, suppose c s has a code of weight code word of weight say some with d 

prime which is strictly less than d and what will happen suppose c s has a c belongs to c 

s, sorry c s it is non zero c is non zero and weight of c is equal to some d prime which is 

strictly less than d and what can I do. Now, create a c prime which will be what c 1 so on 



till c minus s, then what will I do? I will add 0’s then what will I put for the remaining s 

ck minus s plus one all the way to c n minus s.  

Now, what should c prime be should c prime be anything special now should it belong to 

any code that you know of maybe any code that is in this page it should belong to c. So, 

this employee’s c prime belongs to c why i got c by shortening a code from the code 

word from the original code. If I go from a code word in a short end version add zeros to 

one point I should get a code word in the original code. Now, what can happen to weight 

of c prime that going to be d prime which contradicts the assumption on the minimum 

distance of c.  

So, that implies minimum distance of c, let me write it down carefully minimum distance 

of c is less than d which is a contradiction. So, our basic assumption cannot be true it 

cannot find the non zero code word in c s it has weight less than d simple enough proof 

but if I have to write it down to be precise to the board. So, in most cases when you 

shorten it will be equal to d, so unless you are really lucky or you shorten with the lot of 

force side you cannot do the greeter the big just in the minimum distance.  

Sometimes, it might happen you get a larger minimum distance so the question was what 

is the point in doing this it looks like a not gaining anything just designing another linear 

code with different parameters n minus n minus s minus. So, it turns out the way we 

design if you want a particular minimum distance d you can design it only for certain 

special values of n and not all possible n.  

It is possible from the design point of view you may not be able to design n d codes you 

will see some design strategy. Later on, in the course you will see that those strategies 

work only for certain specific values of n. Maybe, that is what that how it works and then 

you might want some other n and which is very close to n and maybe you want n minus s 

minus, then how do you do it? You do it by shortening. That is that is how it is used in 

practice, so you design a larger code shorten it again to get what you want, so that is how 

it is all the time quality check matrix this is a more interesting question. 
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Suppose, I have a code c which has a quality check matrix which looks like this p 

transpose, then I and minus. So, this is for the original code what will happen to the 

quality check matrix of the shorten code first a fall let us take a let us take a small minus 

step. First, what will be the dimensions of the quality check matrix of the shorten code n 

minus cross n minus s, so clearly what does this suggest I think in the rows will go away.  

So, you do not have keep removing anything from the row only the columns have to go 

which columns will have to go the last l x s columns of b transpose have to go. So, that is 

the idea so you will just look at the last s columns of b transpose remove the last this 

columns, you will get is that if you not able to quickly I will suggest another way of 

thing about it about the parity check matrix.  

So, far for the encoder, we been using the generator matrix you can also use the parity 

check matrix for encoding nothing stops from doing that see you have a h equals let us 

say p transpose i columns of parity check matrix are associated with the bits of the code. 

Remember, what is the condition you want h times c transpose to be 0, so if you have c 

here c plus 1 all the way to the c n, this has to be equal to 0. So, I can associate each of 

these bits with the columns of with the columns of the parity check matrix. If I have a 

valid code what should happen these columns will be multi plied by those bits on top and 

I have add them up, I should get 0.  



Remember, this is my message part, so once I sell n my message part, how will I 

compute my parity part the equation directly gives you the answer all you have to do is 

simply multiply the columns by those bits add them up. Whatever vector you end up end 

up with will simply become your parity right that is what the equation is right, so I can 

write this equation as c plus 1 through c n as simply being equal to that. So, you write 

that carefully p transpose times c 1 through c 3, so that exactly what this equation means 

written in the different way.  

So, I can load my message bits on the on top of p transpose multiply those columns add 

it all up I will get the vector at the end n minus a length vector that vector is exactly my 

parity vector. I have to rotate and send it out that what the equation means, now in 

shortening what I am doing my last test message bits are 0 which means the last s 

columns in p transpose simply drop out you do not have to worry about them at all.  

So, this way of viewing the parity check matrix is also useful, now once again I think of 

parity check matrix even the minimum distance becomes a little bit easier to argue. 

Previously, I have to write down some contradiction proof and all that, but from parity 

check matrix it is that immediately cleared if you had d columns of h s adding to 0 what 

will happen same d columns in h will also add to 0. Clearly, there will be a problem that 

is another way of thinking about it same argument, but maybe when you start at it this is 

a easier thing to get to the answer, let us move on to the next part of it which is 

puncturing as we finished shortening. 
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We will see puncturing is a little bit easier to describe, so puncturing is basically idea is 

to draw parties this is very powerful idea it is used to a lot in practice, so you drop 

parities. So, let me just describe what happens so once again suppose c is an n d code 

generator would be g etcetera parity check matrix x. So, the punctured version you once 

again need an integer p should be 1 2 3 and so on and cp basically p, so I am going to 

think of averting in systematic form g is going to be i P and in my code the last n minus 

bits will be parity.  

The first bits will be message, so when I draw parities all the it is going to be c 1 c 2 so 

on till c n minus p such that c 1 c 2 so on till c n c n minus p c n minus p plus 1 so on till 

c n such that belongs to c. So, this is the punctured version, so in case you take all the 

code words of c simply drop the last p parity bits will remain will have a fill the same 

number of code words left. All do you know that the partition will happen I have to pick 

P carefully I cannot go beyond n minus.  

So, I would not go beyond n minus I will make sure, so the first bits are not affected by 

the puncturing, so defiantly I would not lose code words if I do this because the first bits 

are messaged bits and not puncturing any of that. So, they will all be distinct in my two 

power codes so as long I put parties the number of code words will not go down. I will 

have the same number of code words. So, let quickly see what will happen to the 

generator matrix if you have a i p what will happen to g s g p m, sorry so you will have 

the same i, nothing changes there what will happen to p.  

The last p columns will simply drop out puncturing is easy to describe what about n b the 

three parameters for the punctured version this is going to be n minus p remains just 

show you why remains no problem. So, this is going to happen less than or equal to d, 

but when it is not good to just say less than or equal, so then it looks like I am suggesting 

it can go to 0. Then I can put greater than or equal to if it is greater than or equal to also 

you can also say n minus p greater than or equal to what can I say it will greater than or 

equal to what it is simple d has to be involved in the answer.  

What will be greater than or equal to simply formula can I say d minus p d minus p is 

what wrong with d minus p perfectly good enough expression why is d minus p so the 

intuit to argument in the original code. There will be lot of there will be some code word 

with minimum weight d when that gets punctured p bits are dropped worse case that can 



happen to you is all p got punctured all p are in one last p bits in that case it will be d 

minus p many other case you have another advantage. So, you can only cannot be worse 

than this greater than equal to d minus. 

So, I will leave it as a exercise to see what happens to the parity check matrix and 

puncturing it will be a little bit more complicated, it will be like what happens to the 

generator matrix. See when you in the generator matrix for shortening what happens in 

the generator matrix for shortening once a little bit more complicated, right? Nothing 

gets just right same thing will happen here and in puncturing in the parity check matrix 

should be a little more confusing, but I want to quickly point out one thing so what does 

shortening do to the rate of the court what do shortening and puncturing to the t rate of 

the code. 
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So, you have an n d code suppose you do two things you go to c s which is shorten to n 

bits or you go to c p which is punctured by p bits. So, what you get here is n minus s 

minus s greater than or equal to d what you get here is n minus p then let us say greater 

than or equal to d minus p I will say that cos 2. So, what happens to the rate here the rate 

here is by n rate here becomes minus s by n minus s for a equals 1 2 3 and all what how 

will this compare with by n will be smaller this is smaller than by n. You can show that 

is very easy just cross multiply see say some n will cancel if n is greater than, so always 

be lesser.  



So, that is the condition so when you shorten the rate goes down and the minimum 

distance can possibly increase when you puncture what happens to that rate goes up n 

minus p is greater than by n, but the minimum distance can possibility come down. So, 

this is what will happen, so puncturing is always used for any instance any standard 

communication standard that you pick up that will be puncturing they will always design 

a code with lower rate and puncture it to get higher. 

What could be the advantage of doing that instead of designing two different course one 

at some rate at the rate half another at a rate 1 by 3. Then so decoding might become 

easier cannot just decoder just run for all of these codes these things are advantageous 

from a design point of view. If it is not so important then you might want to design two 

different codes if you design two different codes you might be slightly better off, but you 

are not considering is soft by doing puncturing. Softening that is the idea so the last thing 

there are about six minutes, so let me do the last thing which is extending it is not too 

difficult, so easier thing. 
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So, once again you have a C which is an n d code generator G parity check matrix H, 

once again I am thinking about of this as systematic form these are quite standard when 

you extent you do c e, e is not an integer or anything. It is just an extension denoting as a 

c e what this has is c 1, c 2 so on till c n and then you have c 1 x or c 2 x or so on till in 



writing x or because I want to drive home the point is just one bit for all c 1, c 2, c 3 c n 

belonging to c this is the idea so extending. 

Basically, the act of adding an overall parity that is idea and extent, so the way to 

visualize this is you have the list of all code words listed down one below the other. 

What you will do you go to each column compute the overall parity and add an extra bit 

and put the disturbance. You do that you get this, so this is the idea, so the parameters let 

me quickly write down the parameters original code is n d the parameters will be what n 

plus 1. That means they are adding only a parity, I am not adding any new message, it is 

just going to be parity added just, then what d or d plus 1 when will it be d when will be 

d plus 1 depends on d is even or odd d is even then what will happen.  

Then, it will remain by itself so there is no point in extending a code with d even, so that 

seems like a bad thing to do. So, one way to write it will be to say d plus d percentage 2 

d mod 2, so d is even I get the d if d is odd min minimum distance goes up by 1. The loss 

in rate is negligible is by n plus 1 and if and n are fairly large just do not lose anything 

not losing much we have increased the minimum distance by 1 to from r to even. So, this 

is extending and very interesting exercise which I urged to be a strongly tied get the 

generator and a parity check matrix for the extended court. 

So, a little bit non trivial but do some work it is not very not trivial but anyway it is a 

good thing to try you will get a good idea of what this parity check matrix and generated 

matrix look like. So, it is political think about that is an important exercise, I urge you to 

try it will get a clearer idea of what happens we saw a few techniques. Now, to see 

shortening puncturing and extending basic idea like I said was to get you familiar with 

what the parity check matrix is what means how do you manipulate etcetera hopefully. 
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Following which you can imagine which is not to difficult but still there are two conflict 

thing motions here one is be n which is by rate another thing is basically minimum 

distance, but I will normalize it just to make sure I can compare it with rate normalized 

minimum distance which is d by n. So, these will kind of compete with each other I want 

to increase both right in some sense like I said minimum distance is connected to their 

connecting capability. If I have more minimum distance, I can correct more errors, so I 

want to have more d by n why do I have more by n yeah it is it is giving very obvious 

answers.  

Then, I send more information to a second some level, so you can get that so I want to 

get the by n. You can imagine there will be some bounds you cannot keep on increasing 

by n for a 6, 10 you cannot keep on increasing and d eventually something will stop of 

there will be some relationship. There are some bounds relating this quantities which is 

what we will see in the in the next lecture, we will see how to relate these two things that 

is very simple ideas. Our intuition will mostly be true by n goes up d by n will go down 

we will here for the, now I will pick from here in the next lecture. 


