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So, here is where we were, we were looking at the BCJR algorithm with extrinsic input 

and output and how does it work. And looking at the expression it is clear that the second 

part, so once again I think there was a question about what this u and v are? So, basically 

if you have a, if you have a branch, there will be a label on the branch. This is s prime 

and this is s and the label on the branch is basically s prime s that is the input and stroke 

and there will be an output.  

The output is basically v of s prime s. So, that is my notation when I say u and v. And 

clearly the second part here does not use any extrinsic information, it is just it uses only 

channel, uses channel values. The first part is where we have to really use the prior 

information. So, how do we do this? It is not too hard to imagine how you can do this. If 

you get if you look at the l t h stage, so I think the picture is somehow every time I do 

this. The picture gets to the bottom of the screen and let me see like I can do this also. 

So, what is happening in our turbo kind of situation? 
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So, you have so this is maybe BCJR 1. So, if this is BCJR 1 your r l is going to be what, 

y s l and y 1 l that is, this is BCJR 1. If this is BCJR 2 then this is going to be y s l will be 

the same and then it will be y 2 l, that is r l and v and u are kind of going to be the, so u 

of s prime s. So, those things depend only on the branch. So, you cannot say much about 

it and what is the extrinsic information coming in?  

So, you would have had l e 1, l e 1 or l e 2, so l e 2 which will be let us say just for 

simplicity of notation. I will simply say l 0 l 1 all the way to I do not want to use l 

because I have to use subscript l also. What we can use here b delta, delta 1 delta 0 delta 

1. So, on you will also have a delta l all the way to delta let us say k minus 1 maybe. So, 

that is how l e 2 will look and this is basically the extrinsic information. And what is this, 

how should we think of this?  

This is basically log of a ratio a ratio of what? Probability of U l equals 0 divided by 

probability that u l equal to 1. So, all that is given that, but this basically I am going to 

think of the extrinsic LLR as some log likelihood ratio and remember this, this is 

extrinsic. So, this probability basically means, it does not use anything else, so it is 

extrinsic. Now if u of s prime s is 0 then, what I should put here, I have to compute p of u 

l equal to 0 and then substitute that there.  



So, form here easily you can see that a priori probability for u of s prime s equal to 0 for 

a branch, which corresponds to u of s prime s equal to 0. What will be p of u s prime s; it 

will be e power delta l. What will it be? 

Student: ((Refer Time: 04:12)) 

You can show this quite easily. So, p of u l equal to 0 is e power delta l time’s p of u l 

equal to 1 and if you add those 2 up it should be equal to 1. So, you should put that in 

you are getting at this is that e power delta l. On the other hand if u of s prime is equal to 

1 then, what will be this 1 by 1 plus e power delta l. So, let me write that down also here. 

If this is equal to 1 this k becomes 1 by 1 plus e power delta l. So, that is how you use the 

extrinsic information. So, it is easy enough to use the extrinsic information. 
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So, how do you compute the extrinsic output is the next question? So, for that we have to 

look at gamma little bit more closely. So, basically we are saying gamma of s prime s is 

nothing but p of u of s prime s. Here is where we use the extrinsic information time’s p 

of r l, which is p of y s l comma y 1 l given, given what? Given v of s prime s, so I have 

to split it into 2, so how do I do that? I can do it this way. So, I mean it does not matter. 

So, s is showing up in too many places, so I will simply say v 1 v 2. So, it is for s prime s 

prime to s, so I am just swallowing the notation here, this is basically v of s prime s.  



So, what will this be? This will basically be 1 by 2 pi sigma square e power y s l minus, 

minus what? So, to write v 1 I have to basically met make v 1 and v 2 the v p s k 

encoded versions, so what can we do there, 1 minus 2 v 1. So, do I have a notation for 

that I think? 

Student: ((Refer Time: 06:41)) 

 Y is basically my received value, so v 1 v 2 is basically now in bits 0 or 1. And when I 

write minus here I have to write 1 minus 2 v 1, so maybe we can let 1 minus 2 v 1 to be 

what w 1. 

Student: ((Refer Time: 07:05)) 

Somebody could have told me. So, we had r l and r l 1, but anyway it does not matter. 

So, it is hopefully it is clear to you. Maybe for the recording I might have to do redo this 

lecture with a different notation, but anyway, so 1 minus 2 v 1 is basically the BPSK 

encoded version of v 1. So, there is also another way to write this, I think you can also 

write it as minus 1 power v 1. So, anyway all these things do not matter. So, I am just 

trying to think of a very easy notation for this. So, what can we do any ideas? 

Student: ((Refer Time: 07:51)) 

As minus 1 plus 1 that is too many. So, me let me just keep it as 1 minus 2 v 1, so it is 

not too bad square plus what y l 1 minus 1 minus 2 v 2 square. Of course, this everything 

is divided by there is a minus overall also, this is the formula. So, maybe there is a there 

is a neater way of writing it, so usually what people do is, they would write like this. So, 

1 by 2 pi sigma square e power minus they will put a 2 bars and that means like norm.  

And then what they would do is they simply write r l minus v square by 2 sigma square. 

So, that is also some other way of writing it, but anyway. So, it is just it is irrelevant, so 

that is the form for the other part. So, clearly the channel received values enter into the 

second term and the a priori values extrinsic values enter into the first term. So, that is 

the main lesson here. 
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So, once you have that we can now go ahead and compute the final LLR. So, what is the 

output LLR for stage 1? For stage l in stage l, you are going to now add up over s prime 

s, such that u of s prime s equals 0 then, you divide with summation s prime s such that u 

of s prime s equals 1. So, there is log also, I am sorry log and then what happens there is 

you have an alpha term and then you have a gamma and then you have a beta term.  

So, let us write that down, there is going to be an alpha l minus 1 of s prime gamma l s 

prime s and then beta l s. And then you have an alpha l minus 1 s prime gamma l s prime 

s, beta l s. So, whether it is intrinsic or extrinsic or anything at all, all that is going to be 

part of only gamma. Alpha and beta will generally multiply anything that you put in 

there. So, we have to only substitute for gamma. What are we going to put for gamma? 

Here I am going to put p of u s prime s, what is that in the numerator u s prime s is 

always 0.  

So, it is going to be simply p of the a priori 0 times some e power term, so e power 

something. So, let us keep it like that. In that e power something there will be 2 things, 

so I will come to that later. So, here you have what p of 1 times e power something. So, 

already you see there is something that is emerging some. There is some simplicity here, 

so p of 0 there is one simplification that is that is already kind of possible here. So, we 

will we will come to that. So, there are some common things that will come out, so p of 0 

by p of 1 will come out.  



So, log p of 0 by p of 1 is anyways is the extrinsic, so the extrinsic is coming out by an as 

an independent factor. Now, we have to see if there is anything else that will come out as 

an independent factor. What do you what else do you expect as an independent as a 

factor that is going to come out? So, the extrinsic has come out already p of 0 by p of 1 

and from the e power part what do you want to come out? 

Anything that depends on the y s part has to come out then, I want to find the extrinsic 

output what am I trying to find? I am trying to get rid of the l e 2 part that I am able to 

already get rid of; it is just the first simplification. Next I have to get rid of whatever 

depends on y s, the question is will anything that depends on y s come out of that 

gamma, the branch matrix. So, p of 0 by p of 1 anyway comes out and then I have to 

look that what is in the exponential.  

So, let us look at what is in the exponential? The exponential will have minus; I will 

simply it as y s so, it is maybe clear y s minus 1 minus 2 v 1 square minus y 1 minus 1 

minus 2 v 2 squares by 2 sigma squares. So, this is the expression that we had. Now, if 

we try and simplify what is going to happen, what are the various things that are going to 

happen? y a square is going to come, but there will be a similar y a square term in the 

denominator and that is going to cancel with this. And then what else will you have you 

will have a 1 minus 2 v 1 square what will be that that will always be 1.  

Similarly, in the denominator whatever v 1 and v 2 is that is always going to be 1 and 

that is also going to cancel. So, the only thing that will be retained that you have to retain 

here is 2 y s times 1 minus 2 v 1 by 2 sigma square. So, you will have a similar term in 

the denominator also and that you have to read. Similarly, in the second part, you will 

have a y 1 square, in the denominator also you will have a y 1 square term and then 1 

minus 2 v 2 square will also cancel with what is in the denominator.  

What you have to retain is 2 times 1 minus 2 v 2 y 1 by sigma square. Remember this v 1 

and v 2 are not the same for each term, they change depend on the depending on what the 

term is. v 1 and v 2 are not the same. So, what happens in the recursive systematic 

encoder? V 1 becomes equal to u, so the u s prime s is 0 means v 1 is always 0 in the 

numerator and v 1 will be always 1 in the denominator that is the thing only I know. v 2 

on the other hand will be arbitrary and it will change and all that, but anyway v 2 I do not 

care too much about because that is only getting involved with the parity part.  



I want to only bring out the message systematic received value. So, ignoring this part not 

worrying too much about this, if you look at this term it turns out the only thing that this 

simplifies to e power 2 1 minus 2 v 1 times y s by 2 sigma square. And v 1 is going to be 

0 for the numerator and it is going to be 1 in the denominator in my recursive systematic 

encoder. So, what will happen finally when I take the ratio, this divided by e power so I 

have to put v 1 equal to 0 here then e power 2 1 minus 2 times 1 y s by 2 sigma square.  

So, finally, all these things add up to what e power 2 y s by sigma square. So, what 

comes out? There are two things that come out common in this ratio. One is p of 0 by p 

of 1 the other is e power 2 y s by sigma square. So, if you do this simplifications, I know 

I have not done it in very good detail, but go through and look at it and think about all 

the think about each of this steps it is not too difficult. So, the first part is p of 0 and p of 

1 the second part what subtracts from y of s is always either plus 1 in the it is always plus 

1 for the numerator and minus 1 for the denominator. So, you can pull out the y s part 

separately.  

(Refer Slide Time: 16:58) 

 

When you do that, you see that the final output LLR simplifies to delta l. How did I get 

this? This is basically log p of 0 by p of 1 that is this is delta l plus two times y s l by 

sigma square plus something else and what that something else will be, the extrinsic 

output. So, how I am running the BCJR algorithm, now with the extrinsic input the 

remember there were like 4 or 5 steps in the BCJR algorithm.  



First step was computing the branch matrix, second step was doing the forward recursion 

computing all the alphas, third step was doing the backward recursion computing, 

computing all the betas and then, final step was computing the LLRs alpha beta gamma, 

alpha gamma beta, alpha gamma beta type of thing. Now, with extrinsic input the first 

change is when you compute your branch matrix, you have to incorporate the extrinsic 

input in this form.  

So, your branch matrix computation will change. Is there is anything change in the 

second step, absolutely nothing. What about the third step, computing betas absolutely 

nothing, everything is the same. What about the fourth step, computing the total output 

LLR exactly the same there is no problem, after you compute the total output LLR, 

which is what comes up here on the left hand side. At the end of the fourth step, you 

would have computed the total output LLR.  

From there how will you compute the extrinsic output LLR, you subtract the intrinsic 

extrinsic input delta l and then, you subtract this other factor 2 y l s by sigma square, so 

this is the intrinsic parts? When you subtract these two, you are going to get the extrinsic 

output LLR which needs to be sent to the second decoder. This is the scalar LLR for the 

intrinsic component. So, this is like the scalar LLR that we had before. 

Student: Completely eliminating the extrinsic input because the alpha is also to some 

extent alphas and betas also depend on. 

Well it is not really true. See look at, if you are saying. 

Student: Eliminating from the previous branch matrix which actually. 

So, you are saying the extrinsic? You have to eliminate the extrinsic input in the l th 

stage, the extrinsic input from the other stages can filter through into your l th stage. So, 

the question here is interesting and you have to pay attention to the question. The 

question is we are saying we are subtracting the extrinsic, but that is on a stage by stage 

basis.  

You do not totally subtract the extrinsic, you should not be totally subtracting it out 

because there is a trellis dependency on this information and you have to exploit this that 

trellis dependency. So, in your l th stage the other extrinsic will feed into it, the other 



channel information will also feed into it. All those you are not going to subtract from 

the l th stage. In the l th stage you are going to subtract the extrinsic you received for that 

stage and the channel systematic received value for that particular state only. So of 

course, not just the extrinsic even the y s that you receive for l minus 1 will feed into this.  

All that you do not subtract that you will use, but for in that l th stage explicitly you 

subtract what is coming through. So, that is I mean if you think about it that is an 

approximation in your iterations, so there is some dependency that will carry through. 

You are not really subtracting all the dependency, but if you account for all of that then 

your decoder is becoming optimal. You do not want to do optimal because it is going to 

become really huge; this is not going to be implementable.  

So, that is essentially the approximation you are doing. So, you feed in something, but 

since it is through some other path eventually, the dependence will hurt you only after a 

few iterations. So, if you have converged already by a few iterations you are happy that 

is the idea, but that is an important to keep in mind. You do not throw away all the 

extrinsic, but intrinsic only that in corresponding to the stage. Now, we have filled out all 

the necessary details for the turbo decoder, which is here. Once again I am sorry for this 

notation I guess, I wish somebody had pointed out that this should be r instead of y.  

So, y was after the BPSK, so I think here I made the mistake, mistake came here. So, 

after BPSK it should have been. 

Student: ((Refer Time: 21:59)) 

 BPSK plus a w g n is how I am using. I should not have done that. I should have said 

after BPSK it is y, after a w g n it is r. If I had done that and everything would have been 

very hunky again, but anyway it went off for a toss that is how it is hopefully you too 

much. Now, we have all these inputs, so if you had taken the pains to implement the 

BCJR algorithm like I have asked you to do last time.  

Maybe not everyone if you did it then, you can now modify that implementation to add 

using extrinsic and computing extrinsic. Once you do that you can even implement the 

turbo decoder. So, it is not too scary to implement, if you write if you are good in Mat 

lab and you write a Mat lab code for this, it will hardly take about 40-50 lines. Finish off 



your turbo decoder implementation that is all it takes to achieve or please approach 

capacity with finite f e r.  

Any questions on any of these computations, so one question to ask is this is very much a 

BPSK computation. If you look at it I have strongly used some BPSK properties. What 

happens if it is not BPSK etcetera, those are questions that you can ask, there are things 

you can do. So, to work around that, but today what you do is how to get down to this 

kind of a thing is to kind of approximate things like so that they look like BPSK and then 

you try and work around and so that is the idea.  

So, usually I mean there are some additional tricks needed to deal or deal with arbitrary q 

m consolations, but we would not go into that BPSK is at least straight forward. So, what 

we are going to do next is, maybe see a few more. So, I had several students worked on 

implementation of turbo and LDPC codes on in hardware. And there is a couple of thesis 

particularly from last year’s or year before that two M tech. students who wrote, who did 

a very good job with implementing LDPC and turbo codes in VLSI. So, what I am going 

to show, you see there is a turbo 3 g p p thesis that is from some student name Mudassir 

2009. 

(Refer Slide Time: 24:50) 

 

So, we are not going to look at this entire report, so let us go through the main part of 

part I want to show you.  



(Refer Slide Time: 25:13) 

 

So, this is the 8th state 3 g p p turbo encoder. So, 1 plus d plus d power 3 by 1 plus d 

square plus d power 3. You can see the feedback is 1 plus d square plus d power 3 and 

what is taken out is 1 plus d plus d power 3. 

(Refer Slide Time: 25:43) 

 

Then you have the Intel lever so, this is the picture. So, this what he implemented he put 

this so, these days I think I do not know how many of you do v log v h d l or anything 

like that. It is almost like c programming. Write a program and press compile it becomes 

an f p g a implementation. This is something like that, but of course, he did a lot more 



stuff than that, but that is one way of thinking about it. So, that is the trellis there are 

some things, so in fact they terminate both actually. 

(Refer Slide Time: 26:15) 

 

So, there is a picture of how the encoder would look in all that extrinsic, intrinsic etcetera 

and then, the turbo decoding algorithm and that all kinds of pseudo code. So, let me 

quickly go to the part that I want to show you, the hardware implementation. 

(Refer Slide Time: 26:37) 

 

So, there is lots of stuff you have to take care of when you implement. So, you see this 

max star versus max. So, you can see the formula that is there. 
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So, hardware implementation let me show you, there is like a this is first the windowing 

part. So, he is first talking about the sliding window max log map. So, I will come to this 

maybe a little bit later. So, let us look at performance comparison this is quite important. 

(Refer Slide Time: 27:01) 

. 

It is really it took off; it is really upset with me for something. What too sensitive 

computers are becoming more and more human sensitive you know. 
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So, this is what I wanted to show you.  

(Refer Slide Time: 28:05) 

 

So, the first thing to keep in mind is when I write down the algorithm in the way I write 

it down, I am treating everything as a real number. I am treating everything as a real 

number, but real numbers do not exist. There is no such thing as a real number only it 

exists inside your head and you can work with it, but in practice there is no real number. 

In computation you can either use pre finite precision or floating point, so those are the 

only things you can use.  



Only a finite number of numbers you can deal. So, the first thing is to do a floating point 

implementation. Why is floating point the easiest to do? You can write a c program or a 

Mat lab program, it will naturally do floating point. If you wanted to do fixed point finite 

precision, you have to do some additional effort to make it fixed point finite precision. 

So, a floating point is first thing you implement. So, you see for instance this plot that he 

has here this is for the if I do this will it go up.  

No it does not go up it just go up. So, let me zoom into this plot and show you. Can you 

see that is that good? So, that is the first plot I am showing you. So, this is bit error rate 

versus e b o r n naught for a rate 1 by 3 turbo code with 5 iterations. You can see that in 

the title and the length is 1152 that is the maximum possible length in 3 g p p and the 

assimilated 10 thousand blocks. And you can see here, there is there are three different 

decoders, so one is called log map, a log map is basically the there is the basically BCJR 

complete BCJR. 

Next is max log map, there instead of max star you do max. So, you do not use the sigma 

square there is lots of benefit and that. So, you see there is about like a if you look at it 

loss is 10 power minus 6 bit error rate, what is the loss roughly about 0.4 sort of maybe 

0.4 d b loss from log map to max log map. And then he has a s w, s w is basically a 

sliding window. So, 1152 is a long length you cannot store even if it is fixed point width 

8 bit precision or 10 bit precision that is a lot of bits to store for alphas. So, you have to 

do sliding window and that is where he had this picture. I thought that was a good picture 

to show how the sliding window works. So, you can see the picture on the top. 
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So, he has got this one forward recursion if we start at 0 and go up to w minus 1, which 

is actually a window with, but you do not stop there, you go all the way in the forward 

recursion up to w plus l minus 1. So, there is a extra l that you have to go and then start 

your reverse recursion from w plus l minus 1 all the way down, but you make decisions 

only from w minus 1, you cannot make decisions from there.  

So, the same thing you do and then you continue with the second forward recursion from 

where you left off w plus l minus 1 and then the backward recursion will go all the way 

down to w minus 1 and then you start the computation. So, you have to overlap your 

windows like this, it is just a small trick, but you should do it carefully the crucial 

parameters are w and l what w you pick, what l you pick. All these things you have to 

optimise in your simulation. So, what do you do, how do you pick w and l, there is no 

theoretical formula. So, you first pick different w s and you keep plotting and you see 

which gives you the good performance and he has done whole bunch of that. 
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 I will show you how what all that he has done. The first thing is this, I think the hold and 

graph for some reason is not working. So, the first plot he has done is that and then there 

is a sliding window that he has done. He has not put down here what are the what is w 

and l, but I think he has optimised it later on in this other plots for that. So, the first thing 

I want to point out is that what e b o r n naught is achieving 10 power minus 6.  

Look at that 1.1 encoded is at 10.5 at what kind of gain is that 9.4 d b coding, it is huge 

of course the rate is 1 by 3. Maybe you do not like it too much, but still the coding gain is 

huge in e b o r n naught. Of course, rate is being accounted for in e b o r n, so that is how 

the turbo codes work. So, they are really, really, really very nice. So, let us start looking 

at the other things what else do we do? 
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One third is maybe less than 0, it is about minus something minus 0.5 maybe. So, here he 

has looked at effect of what he calls is guard window, I think guard window must be the 

l. How large is l for a fixed w, w is fixed at 64 for some reason and then he is looking at 

g 4, g 8, g 12, g 16. So, l is 4 8 12 and 16 and you plot different things as you increase l. 

Of course, as you increase l the performance becomes better and better. At some point it 

will start bunching, so you see the bunching is happening at 12 and 16.  

So, you pick something like 16 as you are the lag or the what he is calling the guard 

window. The guard that you have to do to make sure you get good results. So, this is 

what you do, this is how you design if you go to a company or something and you have 

to implement a turbo code, this is what you will be doing. First you write a Mat lab 

program and then you test all these parameters. So, you simply keep simulating it 

different parameters plot this curves keep on you have to plot and pick the different 

parameters to give you a good performance. So, this is for effective guard window and 

then quantisation. So, the quantisation is the next part. 
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Before that he has done number of iterations. So, how do you stop how do you know 

when to stop, how many iterations do you do. So, you plot probability of the first 

iteration. So, this is also I think points out this also nicely brings out the effect of the 

turbo principle. The first iteration look at the curve the topmost curve, it is not doing 

anything by the time.  

You do 5 iterations what has happened it is taken a drastic fall. Look at the gain from the 

first iteration to the fifth iteration, it nicely brings out the turbo effect, I mean how the 

iterations really improve the LLRs. So, we made a decision to stop at 5 iterations after 

plot like this sixth iteration will give you very-very small benefit, it will start bunching. 

So, at that point you pick your number of iterations as 5 and this is still floating point and 

I think then, he did some histograms. I think I do not want to go into details and this is 

this is fixed point. 
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So, he has got q 4, q 5, q 6 I do not know what it means really, but three different ways 

of quantising the received values maybe one is 4 I think. It is not four bits it is maybe 

there is a common 3 part and then it is either 4 bits on top of that and then another 5 bits 

or another 6 bits something like that. So, three different quantization and then floating 

point the floating point just about the best you can do in computation. No anybody has 

found another way of representing real numbers or something like that to beat floating 

point.  

So, floating point is really good, so beating floating point with finite quantisation is hard 

you have to. So, really a lot of work if you want to beat floating point, so floating point 

you can take as the standard. So, that is the left most curve here then, what you, you 

slowly increase your quantisation number of levels that you are using to make it in 

infinite precision till you get sufficiently close performance to floating point.  

And that point you can stop, so he has found that q 6 for instance is very-very close to 

the floating point line. So, you pick that q 6 as your quantisation level and he has used w 

is 128 and rate is one-third etcetera. So, this is how you pick each and every one of your 

parameters in your decoder. All these things are important in practise. So, if you are 

implementing a turbo code you have to worry about how many bits are you going to get 

per symbol?  



You will never get floating point, so after all there some analog to digital converters 

sitting there. If it converts the samples into a digital data for you it cannot be more than 8 

bits it is very hard to imagine anything more than 8 bits. So, 8 bits is a good number to 

think for that quantisation, how you implement your turbo decoder, how does it work all 

that you have to study. So, each and every one of these aspects you can study and again 

you have to go back to the simulations.  

Unfortunately it is not the code which has great structure where you can just analyse and 

just get some data out. You cannot decide number of quantisation in table without doing 

simulations. It is very-very difficult to do that. 
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What is this, this is for rate half. Again rate half the 3 g p p will specify how to go from 

rate one-third to rate half. I believe it is even an odd functioning when you do that, you 

go to rate half and you see there is it is not as good as rate 1 by 3, the coding gain is 

dropped, but then you gain in rate you go to rate half. So, but, still there is significant 

coding gain you get 10 power minus 6 bit error rate at around 2.2 2.3 e b o r n naught 

that is still about 8 d b of coding gain at rate half, which is a really good.  

If you remember the best convolutional code plots they were at around 5 d b 6 d b. So, 

there is still like this huge 3 d b gap from the regular convolutional codes that you are 

using at rate half. And with again q 6 quantisation as he calls it I do not know exactly 

what q 6 is, but q 6 quantisation is able to get very close to floating point so you pick that 



as the that is your point. So, this is rate two-thirds this is also specified in the 3 g p p 

standard. Once again you do similar curves and you see the there is some kind of a 

flooring effect that you can kind of see at rate two-thirds. 
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So, it does not this is what I mean when I say it is only for finite f e r. Of course, you 

cannot really avoid this floats. So, you get this and that is about at 3.3 d b or so for rate 

two-thirds again as a significant coding gain for and the higher rate. So, these are plots 

that you have to do. So, after that you can optimise power that is something that he did, 

but anyway the general idea I want to convey is, if you are implementing turbo codes in 

a company or for any other purpose, you will make a lot of plots like this.  

So, you have to create plots like this to justify your design choices. What are the various 

design choices here, you have to decide about window length that is a very pretty 

practical thing to decide on how many bits you are going to put per symbol that is 

something you are going to decide. How many iterations you are going to do, all these 

things you have to decide based on these kind of simulations, there is no way around. A 

3 g p p specifies the Intel lever it is the q p p Intel lever.  

So, usually in the standards the Intel lever is specified. So, the standards will completely 

specify encoding what do they do not specify the decoding. So, that is where you have to 

do the receiver is what you have to build the transmitter is usually standard, that is what 



standardised. Of course, there are standard there will be decoders available; I mean 

implementation is available, but it is good to optimise. 

So, this is for the turbo code I wanted to show you a similar thesis for LDPC codes. In 

fact both these guys worked together and they were kind of competing with each other to 

see which is better LDPC or turbo. So, that is the there is a kind of competition that we 

had and anyway both these guys did some good stuff. They were both VLSI M tech. 

students not communication M tech. students. So, I am saying that is why they did good 

work.  
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Anyway both these guys I think Kiran is working with I cannot remember Mudassir also 

working. Both of them are working in Bangalore doing more VLSI stuff. So, let me see I 

mean where this was come this will probably much later maybe I can use this. When I 

want to it is not going very fast. So, maybe no it is not what I want. So, maybe it is here. 

So, this is what I want to show you. So, this is 8 o 2 dot 16 e, which is the y max 

standard, I believe the y max I mean dot 16 e. 
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You have the LDPC codes, but y max is chosen not to use it maybe others will use it. I 

think it is maybe even optional I cannot remember what is the exact situation is now. 

And Kiran implemented mean sum decoding; he did not implement the full scale 1. So, 

here is the first plot that you see this is the floating point simulation for a rate half LDPC 

code. I believe iterations 10 and then I think the block length is oh my goodness.  

So, let us zoom in a little bit, so this is the floating point simulation for a rate half code. I 

think I mean I cannot remember the block length he does not seem to have specified 

anywhere. Maybe later on we will have those things also, but this is mean sum decoding 

and also the turbo simulations I showed were always max log map they were not log 

map.  

And you can see similar picture you have there are two comparisons here. One is mean 

sum and the other is offset mean sum offset mean sum is slightly better and you can see 

about 2 d b you are getting 10 power minus 6 for rate half, which is what roughly the 

turbo code also did. So, for if you look at rate half turbo code LDPC are roughly the 

same in terms of performance. In fact the rate one-third you will never have LDPC 

codes, it has become very inefficient at that point it is better to do turbo if you want to do 

rate one-third. So, again once again effect of iterations how do you decide how many 

iterations to do 2 6 8 10 11 12 till you see the bunching up. 
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 This is all LDPC remember it is not turbo anymore doing LDPC and you do this 

simulations still you see the bunching up and you can see about 12 iterations seems like a 

good number to do and then effect of quantisation. Once again you do 4 bit quantisation 

5 bit quantisation, 6 bit quantisation floating point see when it gets close and when you 

pick it effect of rate he called it effect of rate. So, anyway it does not matter it is again 2 

3 0 4 I think the block length is fairly high 2 thousand or something 2300. You can see 

there are rate half rate, two-thirds rate, 3 by 4 and rate 5 by 6 codes. 
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In the standard this is block length 2 3 0 4, 10 iterations he has done. You can see the 

curves is about 2 d b. Around 2 d b you are getting 10 power minus 5 here about 2 point i 

do not know 7 or 8 you are getting 10 power minus with the 2 by 3 for 3 by 4, it is just 

3.4 or so and even 5 by 6 it is about 4 d b I mean it is 10 power minus 4. So, it is quite a 

good performance for LDPC codes. So, in fact if you compare the rate two-thirds code 

you will see the LDPC code is doing better than the turbo code for corresponding length.  

So, it is just I mean for higher rates in general it is easier to design LDPC codes because 

you have to do. For turbo codes you have to look at a lower mother rate code, you have 

to puncture etcetera that turns out to be a little bit more sub optimal and this is something 

that you can do in LDPC. So, that is the plot and then this is code word length again this 

is again an interesting lesson.  
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So, the same to same I mean the LDPC code 1 specified for code length of 576 and 

another is for 2304 same rate, rate half and look at the difference 2304 10 power minus 5 

around 2 d b length 576, it goes all the way up to 2.8 d b. So, the longer block lengths are 

always better in turbo LDPC codes. So, longer you go it is always better 576, I believe is 

the smallest length specified in the y max dot sixteen d standard. So, I think that is I 

think then he talks about synthesis results and all that so.  

So, what I am trying to convey by showing these two thesis, the main idea is if you are in 

the business of implementing these things in hardware, you have to worry about a lot 



more things. You have to worry about many things, but essentially the algorithm will not 

change it will be the same. So, you will have to make the decisions such as number of 

iterations, number of bits per symbol, and all these decisions are made using simulations 

that is all. You have your basic decoder working in 6 point then; you can make all these 

decisions. So, try anything you like and then pick the best so then you implement. So, 

that is what you do if you join industry today and building codes, this is the kind of work 

that you guys. So, I think that kind of concludes then hey what this is left most pardon. 

Student: ((Refer Time: 46:38)). 

Hey what why is this? 

Student: ((Refer Time: 46:57)). 

What do I do man any idea. 

Student: ((Refer Time: 47:01)). 

Alt tab. 

Student: Start button. 

Hey finally, you do it becomes an adventure. See this seems very well behaved with the 

pull, but that thing was the adobe reader was very bad. 

Student: So, when in general actually when the s n r is bad there will ((Refer Time: 

47:52))  

I think now the question about the standards, I suppose to the codes themselves. I mean I 

do not know what the standards allow; I do not if you can switch from LDPC to turbo or 

something, but usually it should be possible. You are rate one-third maybe is the lowest 

and beyond rate one-third also they do. In fact what they will do after one-third they will 

do repetitions so beyond one-third give up hope on code design, you simply do repetition 

keep on repeating anyway.  

There is an absolute limit on e b o r n naught beyond, which you cannot do anything that 

is something like a minus some 1.69 or something. So, you cannot do anything below 

that. So, if it is below that you have to boost up something else. So, I mean one-third is 



like the lowest code rate you will see in standards, very few people go below one-third 

and LDPC is stops at one-half. Very few standards go below one-half, but I mean believe 

me 1 d b 2 d b and all is really-really low s n r. You are looking at very low I mean in e b 

o r n naught that is really low.  

Most systems will work at around 3 4 at least. At least you will adjust your power budget 

that way; you would not bet on 1 d b, 1 d b will be like the extreme case when nothing 

else is everything else is failed it will succeed kind of situation.  
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What I know about the wireless standards I mean, you have to ask somebody else who 

knows more about whether you can switch or not. So, let us few minutes few seconds 

left so, let us quickly summarise. So, LDPC and turbo is what we have looked at and 

there are some general principles, which I spoke about very briefly, but let us not we will 

get into that in the next lecture. Maybe in general these are in standards, they will 

continue to be in standards and there are lots of implementations shows, which are 

interesting, but people still work on.  

So, implementation issues that people still work on. And most of these choices are done 

based on simulations. Simulations play an important role and that can be a nice theory. I 

do not know that is the first question I mean for implementation at least nobody bothers 

with the theory if you can do it is fine. And the one thing to remember is the usually 

when you meet people everybody talks about LDPC and turbo capacity approaching. So, 



you should know in what sense these are capacity approaching, what is the sense in 

which the capacity approaching.  

They can achieve finite the important word is finite low f e r s close to capacity. So, you 

should remember first thing you should remember is as long as you stick to finite block 

lengths, you can only achieve finite error rates you cannot go below finite. So, the issue 

here is suppose, if I let my block length go to infinity, can I still get arbitrarily low f e r 

s? It turns out not all LDPC codes do that I mean you cannot show a capacity of 

achieving what there is a gap to the capacity at which today people have been able to 

show that you can get arbitrarily low frame error rates for LDPC codes.  

Similar thing is true for turbo codes and turbo codes in fact much lesser theory is 

available. LDPC is a little bit better in terms of theory, but the state of the art today is 

you cannot show low arbitrarily low block error probabilities for arbitrarily long block 

lengths and getting to capacity. If you are willing to be a little bit away from capacity not 

too far little bit away then you can show arbitrarily low frame error rates for LDPC 

codes. So, that is the kind of situation that people are in. Of course, deterministic 

constructions are still open so far people do is an random looking Intel levers even for 

LDPC. It is random computer search based design deterministic constructions are still 

unknown for these things.  


