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Okay so at the end of the last lecture, we were talking about the branch metric. So, let us 

see real quick how to compute this. How do you… What is the first step we can do? Let 

us see who is going to tell me the very first step. What can we do? Any ideas? Condition 

Sl plus 1. So that seems like an interesting suggestion. So, write it as probability of Sl 

plus 1 equals S. Given, Sl equals S prime, times probability of Rl given. Is this what you 

wanted to say? Condition on Sl plus 1, Sl equals S prime comma S l plus 1 equals S. It 

seems like a natural good thing to try right? So, no, is this correct? The question is 

correct. What about this guy? What is S comma S prime? Remember?  

So, yeah so it is just a trellis. Always think in terms of the trellis. So, you are thinking of 

S prime here and S here and then asking, what is the probability that S l plus 1 equals S 

given that S was l was S prime? What is this probability? It is going to be 1 by 2 right? It 

is the probability of whether the input was 0 or 1. So, there was only 1 bit input here. So, 

it could be either 0 or 1. So, it is basically the probability of U l. So this is going to be Ul 

slash some output right? Corresponding output?  



So, I will write down the output soon enough, but Ul is this. So, this term is basically 

probability that Ul equals what? Whatever that should be right, right? So, remember 

what happened? The input here is a random variable Ul. So, that Ul has to correspond to 

whatever was on that branch. So, I do not know. I mean, we can have some notation for 

it. What notation can we have? So, let me say U of S prime to S. So, that is all. So, that is 

the input corresponding to the branch S prime to S. It could be either 0 or 1. So, this is 

this is A priori probability. So, this is going to be half. Half without any other 

information.  

So, keep this in mind. This term we will revisit later when we talk about turbo codes. 

When we decode, there might be something here. There might be some other information 

you might get on this. If you do not have any other information A priori, you have to say 

it is half. Where nothing else we can do about it usually it is going to be half. What about 

this guy? Yeah. So, it is going to be some normal distribution right? See remember S 

prime to S is some branch. There was an input and there will be an output. So, what is 

the input and the output? We are going to… Let us write that down.  

We are going to say this input is U of S prime to S and we can say that the output will 

be… Yeah, some I think the notation I have used is what? What notation have I used? V 

right? V of S prime 2. So, that is the output. So, this V will correspond after b p s k 

encoding. It will correspond to either some plus 1, minus 1, minus 1 plus or something. 

So that those were the 2 transmitted symbols. R l is basically Rl 1 and Rl 2. So, that is 

what? That is how you compute. This will be basically, probability of Rl 1 comma Rl 2 

given what? Given V, V 1, S prime to S comma V 2, S prime to S right?  

So, this output will have 2 bits. Those 2 bits are getting b p s k encoded and then sent on 

the channel to get Rl 1 and R l 2 and that is exactly this guy. How will you compute this? 

So, I will have a b p s k encoded version of this. So, the b p s k encoded version of this, 

the b p s k encoded version of this, we can use some notation. Is there any notation that 

we have used for the b p s k encoded version y? No y.  

So, it is going to be y 1, S prime to S y 2, S prime to S. I will simply use y 1, y 2. It is not 

too confusing. Use y 1, y 2. Basically, Rl 1 is Gaussen distributed with mean y 1, S 

prime to S and Rl 2 is Gaussen distributed, with mean y 2, S prime to S. Only that 



variance is important and you can simply compute the… And these 2 are also 

independent right? So, you have a 2 bi variant Gaussen which is independent. 
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So, it is simply a product of each of those things. So, this works out very easily to the 

following. So, let me write that down finally. Probability of Rl, given S prime, S will 

basically be 1 by 2 pi sigma square, how did I get 2 pi sigma square? It is root 2 pi sigma 

squared. Then you will have e power minus what? R 1 minus R 1 l minus y 1 square plus 

R 2 l minus y 2 square by 2 sigma square. Remember this minus is for everything. That 

is the formula for this probability. Is it okay? So, the branch metric for b c j r is 

computed like this alright?  

So, the difference between the b c j r and the viterbi algorithm in terms of the branch 

metric is, in the viterbi you do not need sigma for computing the branch metric. You do 

not need to know the channel noise variance. In the b c j r you have to know the channel 

noise variance. If you do not have sigma, you cannot compute this. So, one can argue 

that this is an inconsequential factor. Why is this inconsequential? It can be dropped 

because it will be there in every possible term that you compute and finally, when you 

compute the l l r it will cancel. You will do a numerator and the denominator and it will 

cancel finally, in the l l r. There is no problem. So, that can be dropped.  

So, sigma square does not show up there, but it shows up inside the exponential and you 

cannot drop it or you cannot cancel it in any which way you want. So, it is going to show 



up in the computation. You need sigma square for computing the branch metric in the b c 

j r algorithms. Of course, this is not the branch metric by itself. You have to multiply this 

with half right? Half if you have no A priori information or if you have some A priori 

information that lets to be multiplied, so that is an observation. How do you compute 

sigma square? Not compute. How do you write word as estimate sigma square?  

Yeah so, you have to estimate sigma square. So given your received values, you can 

estimate it in several ways. There are standard algorithms. If you are taking the, if you… 

did you take? If you took the estimation theory course that was offered, when was that 

offered? Last semester or something, you would have learnt about it. Estimating 

parameters is a standard thing. So, there are ways of doing it to any degree of accuracy. 

So, you can estimate sigma square. So, once you estimate it, you can plug it into your 

formulae.  

So, usually how it is done in receivers today, is you look at your received values R 1, R 2 

and so on and from those values itself you estimate your sigma square first. You do that 

with some reliability and then you use it once again in the computation. That is a very 

standard that is used in receiver implementations. The advantage to doing that is then 

your decoder block is independent of anything else that you have in the decoder in your 

receiver implementation. It might have so many other blocks, you might want to just 

independently estimate sigma square in your own way inside your decoder and 

implement it.  

That is one way of doing it. There could be other ways which are more interesting and 

for people to look at, but this is one way of doing. Alright, so let me quickly summarize 

how this is going to work out in the l th stage. How the b c j r algorithm is going to work 

out? You are going to first have the forward step. The first step is the forward recursion. 

The first step before all of that is branch metric computation. That is the first step. So, 

once you do that, the gammas for every single branch in your trellis, in your entire trellis 

has been computed. So, you do that first. The next step is forward step. What do you do 

in the forward step?  

You first start at the zeroth stage. At stage zero, how will you start at stage zero? You put 

1 here and you put everything else as 0. These are the alpha. So, forward step you 

compute alphas right? At stage zero you start with this, that you start your recursion and 



then in the l th stage what you do? You basically use the recursion and then so on use the 

recursion to compute all your alphas. So, you go through and compute all your alphas. 

Remember, when you terminate the alpha, computation will slightly change. You will 

compute only for the sub part of the trellis which is really retained in your termination 

ok? 
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You can do that and then what do you do is the backward step or let us call it the reverse 

step. It is also called the backward step. At the last stage, stage k plus 1, on the right of it 

what do you do? You put 1 for the beta. So, this is for computing betas and then you put 

zeros here for the remaining stages and then you use recursion alright? 

Alright, so after the branch metric say being computed, you can do the forward 

recursion. You can also do the backward recursion. Once you have finished branch 

metric computation, you know the gammas. Once you have finished forward steps, you 

know the alphas. Once you have finished the backward steps, you know the betas. So, 

what can you do now? Finally, compute LL r s. So, I will show you how to compute the 

LL r for the l th stage. 

The l th stage you have a bunch of stages. You have the alpha l minus 1 on this side and 

then you have the beta l on this side and you have the gamma l in the middle branch 

metrics. The branch metrics are in the middle. The forward state occupation probabilities 



are to the left and the backward state occupation probabilities are to the right. How do 

you compute LL r for u l the input in the l th stage? 
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You have to have a summation in the numerator over all s prime s, such that input equals 

0 and what will you multiply? Here, you have s prime gamma l, s prime comma s, beta l 

of s and then what will you do here? Of course, I forgot the log. The log is all important s 

prime s, such that input equals 1 and then you do the same expression. That is it. Now, 

you have soft information on each of your message bits. In this final expression, it is also 

clear why any arbitrary scaling of gammas does not matter right? I had the 1 by 2 pi 

sigma square right? If I had some scaling for every gamma, then clearly in the ration, it is 

going to cancel.  

So, in the LLr computation, the constant outside factor does not play any role. So, I can 

drop the 1 by 2 pi sigma square. The exponential obviously I cannot drop, so it will play 

an important role. Any questions on b c j r? So, given if you have enough experience 

coding in mat lab or c or any language it should be quite trivial for you to write a 

program for b c j r. It is not so difficult. At least you can write it down. What problems 

do you think you will face if you write it on a computer which obviously has a limited 

precision? What problem will you have? Yeah, there will be problems in over flow, 

under flow, etcetera.  



So, for instance as your k increases, what do you think will happen to these alphas and 

betas? Gamma is going to be fairly well behaved. So, there is no problem. What will 

happen to the alphas and betas for large k? Remember, these are probabilities and there 

is a comma. There is a joint probability for a long vector and r is actually a huge vector. 

So, everything is going to go down in probability and value. Everything is going to keep 

on dropping and eventually values will become so low that you cannot rely on any 

computation.  

So, it is very common for computation purposes to not implement this b c j r algorithm in 

the probability domain with alpha beta gammas as a probability, but usually people 

implemented and the log of probability domain. So, you simply take log of everything. 

You take log of everything, so instead of alpha you keep log alpha, but then what will 

happen to the recursion? There is a problem there. Look at the recursion. How do you 

deal with the recursion?  

Ok you have a summation. Summation is not very well behaved with logarithm so that 

will be a problem, but you deal with it. You do that computation. It can be done in a 

smart way if you like. There is a smart way to do this recursion summation of products. 

When you take logarithm, when everything is log, so you put log instead of gamma also, 

take log of that also. You have log of sum of exponentials. There are easy ways of 

implementing that, mean v l s i. That is a way in which you can implement it in a smart 

way for instance. Whereas there are interesting ways of doing that, I am not going to talk 

about in detail here, but that is how it is usually implemented.  

When you write a program, you keep log of everything. When you do that, then your 

precision does not matter right? Log is quite, it covers a wide range with good accuracy. 

So you do not mind at all. So, that is something that has done. So, that is something to 

keep in mind. So, in implementation use log alpha, log gamma, log beta and suitably 

change recursion. So, in that 1 operation that you have to do, is log of summation of 

exponentials right? Something like this, you have to do log of e power x plus e power y 

right? Am I right?  

So, this is the expression that you have to compute again and again. When you do it in 

recursion, when you do it in logarithm domain, do you see that? When you do the 

recursion, it is alpha summation of 2 products. You have to do log of e power x plus e 



power y. Maybe not just e power x power y, but several other terms, but that is just a 

repetition of this. Once you do this, everything else is also the same. Do you see that? So, 

this is the crucial operation. There is a way to write this. So, this is usually denoted as so 

you can show an interesting property here. So, let me just quickly look it up and write 

down what this property is.  

It is not difficult to prove. You can show this is basically max of x comma y plus log of 1 

plus e power minus mod x minus y. You can show this. So, this is quite an easy 

relationship to show. Try to prove this. So, for this reason this operation is usually 

denoted max star max with a star on top. This reason is it is related to the max, but with 

an alteration, but how large will this value be? What is the largest possible value for log 

of 1 plus e power minus mod x minus y? Log 2 right? So, what is log 2? Well base e m 

taking about base e. So, it is not very large. It is less than 1 definitely right? So, is it less 

than one? Yeah, it is less than 1. Say point 6 7 something.  

So, it is almost max except for the small alteration right? Do you see that 1 plus e power 

minus mod something right? So, it cannot really go very large. Maximum value for this 

is 2, right; 1 plus 1 2 log 2 base e also very small so it cannot be a very large number. So 

it is almost like max except for this non-linear term that is adjusted. So, that is why I said 

going to the log domain is not a big deal. Even in v l s i, all you have to do is implement 

this log lookup and that too it is a very small function and you can do it very easily. So, 

you do that, and then you get this approximation. So, what people do further in 

implementation is what? What is the most obvious thing you can do here?  

Simply drop that extra addition. Just throw that extra addition term away. Who cares 

about that? It is anyway less than 1. Simply keep it as max. Now, there are several 

advantages if you simply keep it as max. What is the first advantage? Computation is 

obviously simpler, but what is… What else can you think of as another advantage? (( )) 

No, actually 1 of the problems I pointed out here in the branch metric computation goes 

away if you replace it with max. So, what happens when you take log of this? 

Remember, I am taking log right? When I take log of this by branch metric will simply 

be some square distance divided by 2 sigma square.  

If I take max, the division by 2 sigma square is irrelevant. So, I can throw this sigma 

square term out and I do not even need that. So, that is another advantage in not doing 



that extra non-linear term and only doing max, which max does not change with non-

linear constant scaling positive scale. So, as long as you do that, max is enough. So, you 

throw away this non-linear term and that version of the decoder is called max log map. 

So, this entire thing is called log map and it is called log m a p. If you do the log 

implementation, it is called log m a p. For that you use max star. If you drop this extra, 

additional term and only use max, that is called max log map.  

So, I think most people who implement b c j r on actual hardware use max log map. Very 

few people use log max map. There are huge advantages to it. There is of course, a 

performance penalty. It is not as good as the log map. There will be some penalty, but 

there are so many advantages that you live with it and there are approximations. You 

know what people will do is, they will not just take max. They will do a minor 

adjustment. There will be an arbitrary adjustment that is done to max to make it little bit 

better. So, you can really make that gap go away by doing this add of things and making 

it really, really good. There are papers, several papers that are written on max log map. 

So, you can look it up and you will know what to implement. So, at least 

implementations that we have done in the department use max log map. It makes a lot of 

sense, works very well. So, that is I think all I wanted to say about implementation b c j r 

etcetera. Any questions? Like I said I mean you have to write a program to implement 

these things. You can write a very short mat lab code. It will not even take more than a 

few lines. It is just some, 1 loop for the forward recursion and 1 loop for the backward 

recursion and you should not be computing gamma first for everything.  

So, when you implement of course, I wrote it down like this, you are not going to 

compute gamma everywhere and then store it. You compute it as you and when you need 

it for the computation. Stage by stage you can go. Another problem in implementation is 

if your k is very large, if you have thousand or something, then you have to remember 

too many alphas. The memory you need in your implementation will be very, very large. 

So, how do you overcome that? Well no, alphas you cannot compute as and when you 

need it. You need at least one direction full computed sand stored and betas you can 

compute as and when you need it, but alphas you cannot.  

One way or the other you can only compute one thing. So, what is… We have seen this 

before with viterbi also. How do you overcome this long storage requirement? Yeah, you 



do something called windowing. So, windowing is the crucial idea. So, you start for, at a 

point go up to a certain point and then simply start your backward recursion there, but 

how can I start my backward recursion anywhere I want? I mean because I cannot do an 

initialization no?  

What can I do? Yeah, assume equal probability. Go large, long enough and then assume 

equal probability. Come back in your backward recursion for a few stages without really 

using that data and then after a while your betas will become good enough and then you 

can use it. So, the same windowing idea is used in implementation. So, almost all 

implementations use like I said max log map with windowing ok? 
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So, this is a good compromise and it works quite well. Windowing is to make sure you 

do not have to store a huge number of alphas as you go through the trellis in 1 direction. 

So, that is something. It has to be carefully done and you cannot just stop anywhere 

because you have to assign some betas carefully. So, you stop a little bit further ahead, 

then comeback and then go ahead and do that. So, the question is comparing m l and m a 

p; m l and m a p. If you actually compare and plot, they will look pretty much identical. 

They will be on top of each other, at least in whatever that I have done. I have seen with 

convulsion codes, it is on top of each other.  

There will be really no big change, but clearly the optimality is different. m a p is 

optimal for bit error probability. m l is optimal for block error probability. Remember, 



the m a p decoder is not constrained to output any valid path on the trellis. It will not 

output the valid path. It need not necessarily output a valid path, but it will you know. I 

mean you know so you have to be careful. When I talk about the trellis here you are 

directly outputting a message vector only. So, if you do that then of course, it will be a 

valid path, but if you also compute the parities and do m a p for that it may not be in the 

path. So, that is 1 thing, but in the b c j r clearly you are computing only message.  

When you are computing only message, then it is not a problem. You will be getting 

valid paths. That is not a big deal, but in general the m a p will not necessarily give you 

the best path on the trellis. It will only give you the best set of bits, yeah for 

convolutional codes themselves. Like I said nobody does b c j r for convolutional codes. 

If they are part of a bigger construction, then you will see the advantage. I will talk about 

it. In turbo codes it makes a big difference. When you need soft decisions you have to do 

b c j r. Yeah, you will need LLr s for the message bits not just what it is. You want also, 

some LLr s.  

Then at that point you need b c j r because viterbi will not give you LL r s. Any other 

questions? What do you do if it is not b p s k? That is the question. So, the formulas 

essentially are same. So, if you look at the way I derived it, up to the alpha beta gamma, I 

never used any b p s k. Only in the final expression for the branch metric gamma, I used 

b p s k. So, you can go back and think about that. Up to this formula there is no use of b 

p s k. If you are doing q a m and all that, first of all how do you do convolutional codes 

to q i m? You will have some mapping right? Some bits will get mapped to the symbols. 

That will play a role in these probability computations. That is all.  

So, then up to these computations everything is valid. You have to change your branch 

metric computation depending on your mapping in the q a m and other things and there 

are ways of doing it. People have studied that and max log map approximations are there 

for that; all kinds of approximations. So, very well studied subject. So, that is an 

important question because in going with 4 g etcetera, people are doing up to 64 q a m 

even in wireless. This was unheard of before, but people are doing all these huge 

constellations. So, you will be facing those kinds of problems if you are implementing 

these. So, it is good to know what to do in q a m.  



Like I said everything else is valid, only depends on the mark or chain properties. The 

only thing is, when you compute the branch metrics, you have to use your mapping. That 

is all. Depending on the mapping it will change. Maybe I will comment about q a m 

computations later on. So, I will talk about something else later on. How to do for 

something other than b p s k? If you do q a m? So, usually not, when people will do bit 

only. So, I will comment on that later. Also, usually the latest the modern way of doing 

modulation and coding is to make sure that they do not interfere with each other.  

You know what I mean. You do the code only in binary and then you convert from 

binary to q a m. So, only these ok? So, if we are done with questions on b c j r, I want to 

just quickly summarize convolutional codes. What is the main selling point of 

convolutional codes? Why are they; simple encoder, that is the first selling point, very, 

very simple encoder. If you want to have a very, very cheap connecting code which is 

also good, then the encoder is simplest in convolution code. It is very hard to beat it. 

There is no way you can beat that and in addition what is the matching property of the 

decoder which is crucial? Low complexity, soft m l decoder, soft optimal decoders of 

low complexity.  

So, these 2 are major, major selling points. It is a great, great combination and they 

provide good performance, but if you remember in some of the plots I showed you, 

convolutional codes by themselves after so much research and lots of work, they do not 

get close to capacity. There is always like a 3, 4, 3 d b gap at least. 3 or 4 d b gap from 

capacity. So, they do not get the capacity, but in practice, very few people try to get to 

capacity because capacity is like a 0 d b, 1 d b. So, that is really low s n r from any other 

things in your receiver chain. So the receiver chain is not just your encoder and decoder 

right? What else?  

You must be studying communication. What else is there in your receiver chain? What is 

very crucial? What else can be crucial? You have to recover carrier. You have to recover 

timing. So, all those things, nobody knows whether they will work at 0 d b, 1 d b. So, for 

a long time they were also not so robust that they can work at 0 d b and 1 d b and all that. 

So, many other things are there. First of all detect whether some communication is 

happening. Where are your frames? Where you begin? Where you end? So, many other 

things are involved. Lots of single processing is involved before you can start your 

decoder.  



So, just because a decoder works at 0 d b, does not mean everything else will work. So, 

those were the problems. So, because of that, people when they do not want to stretch 

everything in a single processing to its limits simply work with convolution codes and it 

works very well. No problem in that and the trellis plays an important role. Trellis is a 

crucial thing that enables everything in a way. So, that is it. So, what we are going to see 

next is turbo codes. So, of course, they are quite storied today. So, everybody is at least 

showing some hint of a smile when I mention turbo codes. You are happy to see that we 

are talking about turbo codes.  

So, like I said, for a long time people are talking, thinking the convolutional codes or any 

other codes that you can have will not really get to capacity. There was this talk of 

something called cutoff rate, computational cutoff rate. They are saying there is some 

other capacity which is not really capacity, little farther away from capacity which is the 

best you can do. Then in 93 or 94 I think; when did the paper come out? I think, I do not 

remember. Maybe 92, early nineties, there was this paper, from at that time; a little 

known French group I should say. So, it was from France and it had authors who were 

from, I think there was 1 author from Thailand and 3 others were French.  

So, it was a collaboration, clot barrow was the main guy as it turned out later. So, it got 

published and they said they showed performance very close to capacity, 1 d b, 1 and a 

half d b and all that. For a long time people were shocked. Nobody understood what was 

going on and then the whole revolution started. So, today going to capacity is not 

considered a serious; I mean it is actually considered a serious requisite.  

You know if you are building a communication system, everybody asks how far you are 

from capacity today. So, it has come to that level now. All of that started with this turbo 

codes. So, obviously now our understanding of turbo codes is also better, but when they 

originally presented it, it may not have been in this way, but right now the understanding 

is the current one. That is what I am going to talk about. The idea is so simple, so elegant 

and interesting. Hopefully it appeals to you and you like it.  
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So, turbo codes are what we are going to see next. So, the main idea here is 

concatenation. That is the first main idea of convolutional codes, with message inter 

leaving. So these 2 words are key words here. So, you do concatenation and then you 

interleave messages. So, I will be describing what is called parallel concatenation. There 

is also something called serial concatenation, but parallel is what I will be describing 

because that is what is used today. That has turned out to be good in many ways. Of 

course, that does not mean the other concatenations are not good, but parallel 

concatenation is accepted today as something very nice.  

So, once again I will start with the simple example of a turbo encoder. So, like 

convolutional encoders, we will not talk about turbo codes directly. We will talk about 

turbo encoders and then the codes that they produced will be the turbo codes. So, how 

does a turbo code look like? So, what I have said here, there are convolutional codes. Of 

course, there are convolutional codes. So, we will say we will use rate half convolutional 

codes and with a recursive systematic encoder. So, that is all so commonly used. So, this 

will be the convolutional code that we use. So, you can for an example keep that 

standard example in mind.  

If you want an example you can think of g of d equals 1 plus d square by 1 plus d plus d 

square and 1. So, this is an encoder. I will basically denote this by a picture like this. So, 

rate half, I will say CC for convolutional code. I will put 1 input and then I will put 2 



outputs. So, if this is u, this is going to be u and this will be a parity which I will denote 

as p. Is that alright? So, that is a systematic code; systematic encoder. So, if you have u, 

u is going to come out and then there is going to be a parity. So this is my convolutional 

code. Now, this is going to get what is known as parallel concatenated.  
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Let me show you. So, suppose you have a message u which is u 0, u 1, all the way to u k 

minus 1, u is first going to go through a rate half convolutional code and you would get u 

here and then k minus 1. Yeah, so I have to write down u k plus u k and u k plus 1 right? 

Do I have to? Yeah, I have to because it is a recursive code and I have to put in 2 things 

which are; I cannot just say 0 here. It is something else. Then I get the first set of parities. 

I will call this as p 1. So, of course, there is only 1 parity per symbol, but they still call it 

p 1. So, it is p 1, 0, p 1, 1 all the way to p 1 k plus 1. So this is the… What comes next is 

the master strokes so to speak.  

So what do you do is you want to concatenate. You want to do parallel concatenation, 

but before that you also want to inter leave. So, you take the u and then do an inter 

leaving. So, I will call it as an inter leaver. What does an inter leaver do? It just permutes 

the bits in u randomly and the inter leaver has to be sufficiently random. It cannot be 

very deterministic. It cannot be that it switches everything in a very deterministic way. It 

has to be very random. So, that is the first condition, but I am not saying that now you 



just simply say inter lever. You assume this to be random. Some kind of a random inter 

lever and then what do you do?  

The inter leaved version; so usually it is very common to denote permutations by pi. I 

will say the inter leaved version is pi of u. Now, this will go through another rate half 

convolutional code. So, in general it can be another code, but it is very common today to 

use the same code. So, you use the same encoder as before. Now, this will put out 2 

outputs right? One of them will simply be pi of u and that is already there. So, you can 

simply drop that and only take the parity which I will denote as p 2. So, you have p 2 0, p 

2 1, and so on till p 2 k plus 1. Now, there is something which is a bit; somebody might 

ask, think of this I do not know if any of you is going to think about it. 

Code construction is not. I just wanted to talk about the 0 termination here. So, you 

might be able to 0 terminate the first encoder. You may not be able to necessarily 0 

terminate the second encoder right? So, you just do; maybe you 0 terminate, maybe you 

do not. Maybe you terminate with something or maybe you simply stop at k minus 1. 

You do not have to really go to k plus 1. Maybe you 0 terminate may be you do not. You 

may not be able to do both of that. So, there is a problem there right? You see the 

problem? See if I do not, if I 0 terminate, what will happen? I have to send 2 more bits. 

So, maybe you do that. There is some issue about 0 termination here right?  

So, I said I am going to ignore the systematic form. If I ignore the systematic bit, then 

clearly the 0 termination is a problem. I have to send at least 2 bits from there. 0 

terminated bits. If you decide to drop that also, then you may not be able to 0 terminate 

here. So, all these things are issues, but these are just minor issues that affect you in a 

very small way. So, usually usual practice is to not 0 terminate the second encoder is that 

okay? Normal practice is to not 0 terminate the second encoder, but to zero terminate the 

first encoder. Is that ok? So, you 0 terminate the first encoder and then your inter leaver 

will have length k plus 1, k plus 2.  

The entire; all the bits will be inter leaved and sent through the second one and you 

produce whatever parities. It ends in whatever state. It does not matter. So, you do not 0 

terminate the second encoder. That is the common practice, but it is also possible to 0 

terminate the second 1 also. Which means in that case you have to send 2 more bits. The 

0 termination bits for the second encoder explicitly and that will reduce your rate a little 



bit. It may not matter in the end alright? So, there is a 0 termination issue, but common 

practice is to 0 terminate the first encoder and not worry about what happens to the 

second encoder. It can end in some arbitrary state. It does not matter.  

So, then what is the output? Final code word is if you want to write it as V, it is basically 

what? u 0, p 1 0, p 2 0, u 1, p 1 1, p 1 1, so on till u k plus 1, p 1 k plus 1. Is there a 

problem with what I wrote now? Yeah, it is fixed. It is a fixed random permutation. 

Random looking. So, let me say random looking fixed permutation. It should not be a 

simple formula. That is, you know simple linear or very easy formula, random looking 

fixed permutation. As it turns out, people use some quadratic formulas and that is good 

enough. It should not be some simple thing, like every; I put it in a row, in a matrix and 

then put it in row wise and shift out column wise. Things like that you should not do.  

It cannot be a very regular fixed, regular kind of inter leaving. It should be a random 

enough inter leaving. So, you pick something at random. Yeah, yeah, so I am going to 

talk about that. So, clearly the overall rate is 1 by 3 and this is something that you might 

want to live with, but usually current practice is to not go to that rate one by three code. 

What people do is to puncture. So, the common way of puncturing is to say that I will 

drop this guy. I will drop this guy. You drop all the even numbered bits in here in p 2 and 

drop all the odd numbered bits in p 1. Then what will happen to the rate? You get half. 

So, you drop odd numbered parity bits. You drop even numbered parities.  

So, this is the common practice, but even if you do not, you have a rate 1 by 3 turbo 

code. So, that is the basic idea. Usually you drop these things and you get a rate half 

turbo code. So, this will give you rate half turbo code. This is obviously a rate 1 by 3 

turbo code. So, what is the; I mean how could you probably justify this construction? I 

mean what is the motivation behind doing this inter leaving and concatenation? Any 

ideas? Well it is. They will not be the same. I mean when you change the order the parity 

in the way they show up is completely different right? It will be some other kind of bit. 

What is the idea? Noise is random. So change the point where the noise gets corrected. 

Ok alright so all these things are I mean, I do not know. It sounds interesting to me, but I 

mean, it is not. Of course, the decoder is important. So, you can do a decoding. It is 

important, but more than that from an encoder point of view, what is it about this which 

is interesting? So, remember 1 of the points I made when I talked about good codes is 



you really do not know good codes. Bad codes you can easily find, but good codes you 

do not know very well. So, how easy is it to find a low weight code word here? That is 

my question. How can you find a low weight code word? So, let us try and repeat the 

convolutional code ideas.  

Suppose I put in a weight one input, clearly the first systematic recursive encoder itself 

will kill it. I mean it will give you a long weight code word out and you cannot put 

weight 1. How did we get low weight code words for recursive convolutional codes? We 

had to use weight 2 and not all weight 2 code words, weight 2 messages result in a low 

weight code word. Only a one-third of them or something, so you have to find; pick the 

gap between the 2 very carefully. Only at some gaps you will get low weight code 

words. Now, what is the inter leaver doing?  

Suppose I put in a low weight message, weight 2 message with the critical gap which 

will kill my first encoder and give out a very low weight code word, the inter lever is 

going to be a random thing. So, very high probability, what it is going to do? What is it 

going to do? It is going to make that gap bad for or good for the second recursive 

systematic encoder. So, I am going to get a long weight code word on that side. So, it 

might even be possible to actually fix an inter leaver which will always do that. Maybe it 

is not possible. I do not know. It might be possible.  

So, at least it will be possible to come up with an inter leaver which will with very high 

probability always do that for weight 2 inputs. Then it has become much harder to find 

the weight 2 input which will give you a low weight code word right? Slowly as you go 

larger and larger weights of input, eventually your code word will any way become long 

and then you cannot do much about it. So, at least from this rule of thumb point of view 

it is not so easy to come up with a low weight code word for this construction. So, that is 

the first that we can be happy about in the turbo encoder construction, but that is just the 

starting point. The main thing will be the decoder.  

So, we have constructed this fancy looking encoder. How can we do decoding? So, that 

is where the idea of concatenation once again helps you. So, if you remember, I pointed 

out the main idea is, you do not have to decode the overall code. What do you do? You 

decode the smaller code and then use that information in decoding the other code and it 

turns out the crucial idea that these days used was this turbo idea. So, you go from 1 



decoder to the other decoder and then you do what?  You came back to the first decoder. 

Then you repeat and repeat and repeat and improve your decoding performance. So, once 

you do that, this code also has capacity approaching performance and bit error rate and 

all that. So, we will talk little bit more about the encoder and then more details about the 

decoder tomorrow.  

Thank you. 


