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So, let us begin once again with a quick recap. So, the last thing we spoke about is 

probably the viterbi decoding algorithm, tail biting maybe collection of miscellaneous 

topics around convolution codes. Couple of things I want to highlight is this notion of 

trellis of course, trellis plays an important role. So, the trellis is an important idea so if 

you if you think about convolutional codes, you have to immediately think about the 

trellis that is the main idea. 
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Everything of around the convolutional code revolves around the trellis. Everything 

about the convolutional codes is both the trellis. It plays an important role in decoding of 

course; it also plays an important role in understanding the structure of the encoder. And 

we did not really spend too much time on this, but things like for instance minimum 

distance. The way I loosely define minimum distance is definitely quick to when we can 

find that out using the trellis in a much faster way than you would in any other way.  

So, things like that are interesting and another interesting idea, which is gained a lot of 

prominence because of turbo code, is this recursive systematic encoding. And there are 



several encoders, all of them are equivalent in the sense that the same set of code words 

are produced anywhere. So, they do not make any difference to the decoding 

performance. If you look at convolutional codes on its own 1 entity, when it turns out in 

turbo codes and other constructions, you use convolutional codes in concatenation.  

When you use them in concatenation the structure of the encoder makes a difference and 

we will see that soon enough, but for that reason the recursive systematic encoder is 

particularly crucial. So, the properties that are interesting when you go to recursive 

systematic encoding is low weight code words. Low weight messages do not necessarily 

always give you low weight code words. So, in particular weight 1 message definitely 

gives you a very long code word and weight two also most of the time gives you a long 

code.  

Only in some cases it gets stuck into a multiple of the polynomial that you use for the 

connection and then that case it works to a low weight code word. So, that is the main 

ideas that we spoke about and then of course, the viterbi algorithm. This is the ML 

decoder for convolutional codes. And what we are going to see next is called BCJR 

algorithm. So, let me try and see to way remember the names of Jelinik maybe EK and 

Raviv. So, Viterbi algorithm is the soft ML decoder, this is the bitwise MAP decoder.  

So, it is named after the four inventors and we are going to describe the BCJR algorithm 

in this lecture. So, just like the Viterbi algorithm the BCJR algorithm also works on the 

trellis, while the viterbi algorithm makes 1 past with trellis from the initial stage to the 

final stage and outputs the most likely code word or path on the trellis; that is what it 

outputs. What the BCJR algorithm does is, it will go it will make two passes on the 

trellis, it will go once from first to last and then from last to first.  

And for that extra effort what you get in the bargain is not only do you get, you may not 

necessarily get the best part. What you get is what a post A or E log likelihood ratio for 

each message width; that is what you get from the BCJR algorithm, so which is what the 

MAP decoder does. What is the difference between ML and MAP, ML you just find the 

code word, which is closest to distance and bitwise MAP what should you find out? You 

get the LLRs for each bit given all the received words, received information. It is a bit 

more information and that plays an important part in the turbo decoder etcetera, etcetera. 



So, if you have to only decode convolutional code and nothing else, what will you go 

with always? Load beta b you do not need anything else, but if you want decode the 

convolutional code as part of a larger system, you might want to use a bitwise MAP 

decoder because it produces what is called soft output. It produces probabilities on the 

bits not just the likely bits itself and those probabilities can be used further by another 

part of your decoder, which wants to improve etcetera, etcetera, so that is the idea. 

(Refer Slide Time: 06:11) 

 

So, let us talk about the BCJR algorithm, we will pick a rate half 0 terminated 

convolutional code, convolutional encoder. So, that is what we will do and I mean of 

course, the BCJR algorithm is more general than just rate half codes 0 terminated. 

Everybody has 0 terminated, but rate half is not as definitely needed for BCJR algorithm, 

but it is easy to describe and I will use rate half. 

So, what will happen if you use rate half is, your message have been using M or u for 

message u maybe. So, you have let us say k message bits u 0, u 1 all the way to u k 

minus 1. So, suppose you have a message u this is going to get encoded by the 

convolutional encoder like I said it is rate half. So, you will get code word. So, let us just 

say code word is c, so I get c 0. So, I think v is what we used for the code word. We use 

v or c v maybe v so I will use v again v I probably put v 1 v 1 0 is that v 2 0 this is how it 

is.  



So, this is the first stage and then for v 1 1, v 2 1 all the way to v. It is going to be k plus 

mu minus 1. So, I will once again take memory to be 2 it is just again convenience of 

course, it does not work, but of course works for everything else. So, in that case the last 

stage will be k plus 1 so it goes up to k plus 1. So, that is going to be the code word and 

then we will do BPSK encoding, BPSK modulation and what comes out? I will maybe 

call y, y once again y 0 1 so on. On way to y plus 1 1 is that so what is goanna happen to 

this y, this will go through an AWGN channel, which will add a noise vector z and you 

will get a receive vector, which we will call maybe r.  

I do not know it does not r 1 k plus 1 r 2 k plus 1. So, this is the setup for the BCJR 

algorithm that I will be using. So, of course do you can use it in a much larger setup than 

this BCJR algorithm, just like the viterbi algorithm works on any trellis you have a trellis 

BCJR algorithm would work. So, I am giving you a much simpler situation. So, for 

instance a standard place where you might again use it as an equalisation, if you have an 

ISI channel and you have a trellis corresponding to that you can once again use the BCJR 

algorithm nothing stops you from doing that.  

So, as long as you have a trellis, you can use the BCJR algorithm, but I am going to use 

this specific example to make my life easier with notation and other things. So, once 

again the crucial thing is the trellis. So, what the values in the notations in the trellis if I 

look at the l-t h stage of a trellis, there will be a corresponding trellis. 
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And that will have four states because our assumed memory is two. If the memory is not 

two then we will have larger number of states. I am drawing 1 particular example so you 

can in general have a different situation in the l-t h stage we are going to associate with 

the l-t h stage several things. First of all u sub all is the input corresponding to the l-t h 

stage and of course, this is not known at the decoder has to estimate this. And the output 

corresponding to the l-t h stage is of course, known to the decoder r 1 l, r 2 l.  

These are the received values corresponding to something went wrong with my values 

that is better. So, these are the received values corresponding to that l-t h stage and there 

are some I guess some connections no matter how they look. So, I will just draw some 

arbitrary stuff here. So, this is how the connections it does not matter how the 

connections are. 

So as far as, the decoder has concerned everything is a random variable u l is a random 

variable, it does not know u l, it only knows r l 1 and r l 2, it does not know u l, and this 

would be a random variable at the zero. So, the goal in a bitwise MAP decoder is to 

compute probability of u l equals 0. Let us say this is the goal of bitwise MAP, but 

usually nobody computes the probability directly. What do you compute? You compute 

the LLR so that is what you compute. So, well actually I am wrong in saying this, so let 

me just take this back and then write down exactly what the wants to compute. Of 

course, you want to compute probability that u l is 0 given the entire received vector r; 

this is what you want to compute.  

If you do not give the received vector r of course, it is r there is no big deal in that 

question. So, given the entire r, but you do not compute this probability directly, what 

you usually compute? You compute the log likelihood ratio say let us say we will keep it 

like this for now. It does not matter what it is we will go the LLR later we will try to 

compute this probability, probability that u l is 0 given r. 

So, u l like I said this is the input, this is a random variable at the receiver and for that 

you want to know, compute the compute the probability. So, let us add a few more 

random variables to describe what is actually happening. So, we will say the state before 

the l-t h stage so we will call that as some random variable. So, what can be a good 

notation for that so we will say let us say s capital s l minus 1 it may seem to you. So, we 

will say the state before the l-t h stage, but then the problem will come when you do 0 t h 



stage. So, let us may be s l minus 1 is not a good idea we will do s l, s l is the state before 

l-t h stage of trellis.  

So, what will be s l plus 1, it will be the state after the l-t h stage. So, that will be that will 

again random variables. So, s l is definitely a random variable at the receiver it is not 

known. So, there will be probabilities, there will be probability that f l equals 0 

probability that s l equals 1 1 etcetera, etcetera. So, for any particular state there will be a 

probability. So, what we are going to do is we will try and write this conditional 

probability in terms of s l also, we will bring in the states. So, why do we bring in the 

states?  

It is of course, the most natural thing to bring in the trellis we know ultimately that the 

states contribute to the decoder a lot. So, what happened in the viterbi decoder clearly 

was because you could retain just 1 part per state at a given stage. So, the states are going 

to play a crucial role so it turns out likewise here in the bitwise MAP decoder also. The 

states will play a crucial role in the facilitating the computation so we have to bring that 

end. 

So, before that in case anyways we are interested in the LLR, it is enough if you compute 

f of r given u l equals 0. So, the reason is I mean if you do the LLR kind of computation 

you will see that there will be some priori probability coming in then that you know. You 

know definitely half ahead of times, so it will going to cancel and this calculation you 

will be really trying to compute p d f of r given u l is 0. So, that is also good enough. So, 

keep that in mind so we might equivalently try and compute. So, I will use p just to make 

sure that I do not get into trouble here r given u l equal to 0. 

So, in fact this given u l equal to 0 you can even say this is as good as trying to compute 

probability of r comma u l equals 0 because what is the relationship between the 

conditional 1 you are dividing by probability. So, that is also the same thing so this is 

again equivalent to compute probability of r comma u l equals 0. So, we will try to 

actually compute this guy r comma u l equal to 0. So, that is the 1 that we will try to 

compute and then you will see that LLR is basically log of p of r comma u l equal to 0 

divided by p of r comma u l equal to 1.  

So, anyway for LLR you know this is good enough. So, if I do this for u l equal to 0 and 

u l equal to 1 then I am done there is no problem. So, that is what we will do so let us try 



and concentrate on this and see how to simplify this and then we will maybe also 

simplify probability of r given r comma u l equal to 1. We will see that is also easy. 
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So, how do you simplify this guy probability of let me write u l equal to 0 comma r. This 

now I am going to bring in the states so this is the same as summation over all states s 

prime comma s such that what? So, I will write that down, but before that I will write 

this here. So, probability of s l minus 1 equals no s l equals s prime comma s l plus 1 

equals s comma r. So, I want to break this expression up in as a summation over possible 

states s prime comma s and I want to say s l should be s prime and s l plus 1 should be s 

small s and small s prime.  

So, what should s prime and s be? So, let me ask this question. So, basically the 

condition here will be that the branch s prime to s should be labelled with u l equal to 0 

that is all. So, it should be labelled with input 0. So, when I say u l equal to 0 there are 

out of the eight branches, there will be four branches, which correspond to u l equal to 0 

in the trellis. There are eight branches four of them will correspond to u l equal to 0 the 

other four will correspond to u l equal to 1. So, I am only going to look at those branches 

where u l equal to 0 happened and then look at the starting state and the ending state.  

And then let s prime and s vary over those starting states and ending states and then I can 

write this probability as summation of this probability. So, if I want to compute this guy 

what I really need to compute is this fellow, so we will compute this in the BCJR 



algorithm. Now, it is also clear what will happen if I want to compute probability of u l 

equal to 1 comma r, how will this change? See you have to do a summation for s prime 

as labelled with input 1 that is all. So, all I really have to do is compute what is inside 

this for all possible transitions s prime comma s.  

If s prime to s is not connected by an edge I do not have to compute this you cannot 

really compute it will be like 0. So, no problem you do not have to compute it. But if a 

transition is possible from s prime to s, I have to compute probability that in the l-t h 

stage s l was s prime, s l plus 1 was s and the vector r was received. So, remember this p 

that I have written here is will be like a complicated distribution. It will be neither 

concrete nor continuous kind of distribution. So, it is a little bit you have to be careful 

when you deal with these things, but usually this is a very simple problem so it is not a 

big concern.  

So, do not ask me what this p is, it is a p d f or a p m f. So, it is some distribution, it is a 

valid way of writing it we can you can write with c d f if you like, but this is a much 

simpler way of writing it. I am hopefully it is clear to you. So, this is what we will try to 

compute probability that in l-t h stage, the previous state was s prime, the next state was s 

and the vector r. So, once you compute this anything else you want to compute is done. 

So, how do you go about doing that is the question?  

So, for that we once again use the trellis property and how in a trellis you naturally have 

several Markov chains, all your random variables will become Markov chains. So, that is 

the crucial idea, given that you are in a particular state in a particular stage all the past is 

totally irrelevant for the present and the future. So, that is the crucial property that is 

exploited in computing this. So, that is why this becomes easy so we use Markov chain 

properties of trellis to now simplify this expression. So, there will be a recursion thus 

developed and that is what will help you. 

So, it turns out the main result or theorem or lemma or whatever it is the following 

relationship. You can show it is a simplification of this, you can show probability that s l 

equals s prime, s l plus 1 equals s comma entire vector r can be written as, I make sure I 

do not make a mistake here. There are enough cases of making mistakes here can be 

written as a product of three terms and these three terms, it is very common to call them 



alpha, gamma and beta. So, what are the three terms, the first term is alpha l minus 1 s 

prime, the next term is gamma l s prime comma s and then the next term is beta l s.  

So, one can show that it can be written as a product of three terms. So, like I said this is 

the main result and this result will naturally give you the algorithm. So, of course I will 

have to tell what this alpha, beta and gamma is. So, just write it down like this and then 

you can say these two are one and then that is not the point is. You can write down, you 

can say that this alpha l minus 1 of s prime this will be probability s l equals s prime 

comma r, but r between 0 and I have been writing it from 0 to l minus 1.  

So, l will not be involved. So, when I raise this 0 to l minus 1 what it means is if I have a 

vector index from 0 to whatever, if I say 0 to l minus 1 you only take those indices it is 

like Mat lab notation. It will be r of 0 colon l minus 1 that is not actually Mat lab notation 

why 0 is not a valid index in Mat lab, but anyway it does not think of it as Mat lab 

notation in vectors. So, r from 0 to l minus 1 and then what is gamma, gamma l of s 

prime comma s is once again probability that s l equals s comma r l 1 r l 2.  

So, that is hopefully clear what I mean by r l 1 r l 2 that is the output at the l-t h point 

given that s l minus 1. Did I make a mistake here? I think this is s l minus 1, I am sorry 

no it is s l. Next one will be s l plus 1 given s l equals s. Thanks for pointing that out s l 

equals s prime and then beta l of s the Americans say beta l of s is going to be probability 

r. So, 0 to l minus 1 was involved in the alpha expression, l was involved in the gamma 

expression and in the beta expression you are going to get windows doing something. So, 

r l plus 1 man it really wants to do something, what did I do? 

It wants me to go to the next page. No I want to finish this off and then we will see l plus 

see it is continues to think that I am writing something. So, I do not know why l plus 1 

all the way to the end. So, the end is going to be what k plus 1 given s l plus 1 equals s. I 

managed that quite well. So, this decomposition is possible because of the Markov 

properties. So, we will call on a lot of Markov properties to enable this decomposition 

and you might wonder what the big deal in this decomposition is. You haven’t learned 

anything new I mean it is not like anything has changed.  

We had one probability expression and that is some product of three things and each of 

them involves anyway a long vector of r. May be the second gamma expression does not 

scare you too much. So, there is only one l that is involved, but alpha and beta both of 



them involve long vectors r. So, is there any simplification is the natural question you 

can ask. So, we will first do this decomposition and then I will show you that it is 

possible to write down the recursions for alpha l minus 1 in terms of alpha l minus 2 and 

gamma l minus 1.  

And then it is possible to write down the recursions for beta l in terms of gamma l plus 1 

and beta l plus 1. So, once you have recursions like that you can recursively compute 

alpha and beta very efficiently so that is the point. So, this decomposition itself is not 

anything special it becomes special because of the recursions that are possible by for 

alpha and beta you might be able to write so many other decompositions using the 

Markov property. So why not, but this particular one is nice because of the recursions 

that are possible 

Student: ((Refer Time: 28:25)) 

Which noise? 

Student: ((Refer Time: 28:29)) 

Let me see I will write it down you see we will assume I think so. Yes, for this 

decomposition yes. So, let us see a quick proof of this, the proof is not too hard I mean it 

is quite straight forward just that the notation is a bit clumsy, but it is quite easy. 
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So, s l equals s prime s l plus 1 equal s and then the entire vector r this is what I want to 

write down and I want to use some Markov type property. So, the first step is to first 

write down, so instead of writing s l equals s l plus 1 equals, I will simply write s prime 

comma s. So, I will say first thing is s prime means s l equals s prime, second one is s 

means s l plus 1 equals s. So, just to make my notations I will first simplify split r as 

going from 0 to l minus 1 and then the r l, I will write r l.  

So, r l is basically these two guys together is denoted r l all there are two outputs you get 

in your l-t h stage denote it as r l and then I will have r l plus 1 to k plus 1. Now, you start 

gathering things, which are in the past and in the future and then do some conditioning 

and see what happens, that is the idea. So, this you can write as probability of r l plus 1 to 

k plus 1 given everything else. So, everything else is what? s prime s r l r 0 to l minus 1 

then you should multiply by all this case s prime s r l and r 0 to l minus 1. Now, what is 

an immediate simplification in the first term?  

So, remember like I said noise is I I d so noise is not dependant on the past and given that 

s l plus 1 was equal to small s, all other information you have is totally irrelevant to r l 

plus 1 to k plus 1. It does not matter what happened in the past as long as you got to this 

state s and the l plus 1 t h stage, I mean after stage l only that matters. So, in the first term 

you can clearly drop this one, this one and this one, so you can drop these things. So, 

now let us look at this guy so here I am going to now write it as times. Now once again 

what is the most recent thing in this r l, r l is the most recent.  

So, let us write it as and s prime s also, s and r l happen at the like the last stage anyway 

from your guess you are all experts in reworking the solution. So, if you look at the 

solutions you need to get r l given s prime r 0 l minus 1 times probability of s prime r 0 l 

minus 1. Now once again you use your Markov thing and say if at s prime before the l-t 

h stage all these guys do not matter in the in s n. So, that is totally determined only by s 

prime so I can conditionally make it independent.  

Remember these are all conditional independences, not totally independent. Only given 

all these things, the thing becomes independent. So, now we have the final form and we 

can easily write it. I will write this last term first because that is what gives me my alpha 

term p s l l equals s prime comma r 0 to l minus 1 times the s l plus 1 equals s comma r l 



given s l equals s prime times, what is the last term r l plus 1 to k plus 1 given s l plus 1 

equals s.  

So, like I said it just uses basic chain rule and probability and the Markov condition with 

the trellis, the trellis plays the key role as you can see, so it is important. So, actually if 

you have any Markov chain, this BCJR computation will apply. So, if you have any 

Markov chain where the state is hidden to you, so you can think of it as a hidden Markov 

model if you want. The state is hidden to you what you observe is the noisy version of 

something that denotes the state transition, which gives you probability for states 

transitions.  

So, any such situation you have you can use your BCJR algorithm. So, only property you 

are using clearly is the Markov property nothing else matters. Of course, the 

independence of the noise from time to time also is used noise were dependant clearly I 

cannot throw out all of these things. So, that is the proof for the main result. So, once you 

have a proof for the main result, the problem of computing this term becomes equivalent 

to computing alpha l minus 1 gamma l beta l. So, how can we compute each of those 

things is the question? Gamma l is the easiest thing I will do that first because it involves 

only values in the state in the l-t h state.  

Alpha and beta we will need recursions so that is a very easy recursion, which you can 

once again derive for alpha and beta and you can write that down easy. So, it is also good 

before we do the all those things to see this formula in the trellis. So, how do you see this 

formula in the trellis, in the l-t h stage you are going to have alpha l minus 1 0. 
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This will be alpha l minus 1 1, those will be the probabilities that you can associate with 

those states alpha l minus 1 1, alpha l minus 1 3. And here with this state what will you 

associate? Well not alpha, alpha also you can associate, but that does not play any role in 

the l-t h stage. So, what is most natural beta, you can do beta l 0 beta l 1 beta l 2 and beta 

l 3 and then you might have some transitions. So, this might be 0, this might be 1, this 

will be 1, this will be 0. So, for each transition, each branch you have a gamma.  

So, look at the gamma, gamma depends see the alpha is associated with a particular state 

in the previous state, beta is associated with the next state. What is gamma associated 

with both s prime and s means it is associated with a branch. So, on each branch you can 

put a gamma. So, the some gammas will come here. So, let me just put the whole thing 

there and say gammas. So, how do I compute the final probability, this probability how 

do I compute this probability?  

How do I compute this guy on the trellis? If I take a particular branch and multiply the 

alpha on the left hand side and the beta on the hand side with the gamma and the branch. 

So, I take the each branch, take the alpha beta multiply them with the gamma on the 

branch, I get the probability that I want probability of s prime comma s comma the entire 

vector r. So, how will I compute probability of r comma u l equals 0, I compute this 

quantity for all the branches corresponding to 0 and then add them. So, it is the same 

thing for probability of r comma u l equal to 1.  



I compute the probabilities the products for all the branches corresponding to input 1 

then add them I get. So, clearly the crucial thing is alpha, beta and gamma and they are 

all naturally associated with the trellis notes. So, of course you are also there is alpha l on 

this side also, but then that is for the next stage, so valid only for the next stage. I am not 

going to use that alpha in this stage so it is most natural to think of alpha from on the left 

and beta on the and gamma on the branches.  

And my basic probability of the branch given the comma, the entire received vector is 

basically the product of alpha, gamma and beta that is how you think of that product. 

Product is the probability of that branch comma the entire received vector r. So, I add up 

all the branches together, which have input 0 I get the probability of r comma u l equal to 

0 etcetera, etcetera so that is crucial. 
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Now how do you efficiently compute alpha and beta? So, you have recursion so the 

alpha, beta recursions. So, the first formula to speak is this formula for alpha, you can 

show alpha l s is summation over all S prime, gamma l S prime comma s alpha l minus 1 

s prime. Remember this is capital L capital S l l plus 1, so this is S l. So, there is like a 

shift in the way this notation goes and this guy s prime comma s is from S l to S l plus 1. 

I am not going to prove this recursion, it is not too difficult. It is basically based on the 

expression for probability, what is this expression? This is probability of S comma. 

Student: ((Refer Time: 40:09)) 



s l plus 1 is s comma r from 0 to l that is this expression. So, basically what you have to 

do is once again use Markov property, I want to use alpha l minus 1. So, what I will say 

is the first step you can easily write down. Maybe I will quickly do the proof here we do 

have time. So, you do summation over s prime probability of s l plus 1 equal s comma s l 

equals s prime comma you split that as 0 to l minus 1 and r l. So, this is the first step that 

you do and then what is the next step.  

So, you can see that I mean you can easily figure it out from the formula that is given 

their s prime. I am going to now use Markov property. So, I need an alpha here so I am 

going to condition on that, I am going to write given s l plus 1 equal s l equals s prime 

comma r 0 to l minus 1. So, I have to write down here s l plus 1 equal s comma r l times I 

would have already got the alpha l minus 1 of s prime that is it. And then this guy is 

basically once you know s l is s prime, this you can drop and that becomes the gamma 

that I want.  

So, it is basically the Markov property just gives you this recursion. So, once again it is 

interesting to look at this in terms of the trellis. So, if you interpreted in terms of the 

trellis, this recursion looks a little bit artificial now it seems like why do I do all this s 

prime etcetera. Remember if you want to compute alpha l of s the only s prime that is 

relevant is. 

Student: ((Refer Time: 42:10)) 

Ones, which lead to s if you are not connected to the s prime, you do not have to include 

that here. So, let me put this here s prime such that s prime to s is an edge is a branch. So, 

it is a valid branch I have to only those things I mean if I could not have to come to s 

from that previous state, there is not going to be any probability distribution. You only 

have to take that. So, in terms of the trellis it is particularly easy to understand this. 
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Definitely only branches are considered s prime to s is labelled with input potentially it is 

a branch. So, here once again the trellis interpretation for the alpha recursion is quite 

easy. If you look at alpha let us say l of 0, so this might be connected from here and then 

from here, they will be a like a gamma 1 here and there will be a gamma 2 here. And this 

will be alpha l minus 1 of 0 and alpha l minus of 1 and what will be this alpha l of 0? It 

will simply be alpha l minus 1 of 0 times gamma 1 plus alpha l minus 1 of 1 times 

gamma 2.  

And I write it as a formula it seems like a very fancy formula, but essentially what I am 

saying is I know the probability of being in state 0 and state 1. Well when I say it is not 

the probability of being at state 0 and state 1, the definition is probability of state comma 

all the received values it is not given. So, it is not given it is comma, it is and, it is the 

joint probability. So, once I know these probabilities how I find alpha l of 0 simply take 

that by multiplying the corresponding gamma that leads you up there and add it up with 

the other contributions that you have.  

So, it is a kind of like natural recursion that you get on the trellis. There will be a similar 

natural recursion for beta also, maybe I will do with something like this maybe this goes 

here and it goes here. So, if you want to look at beta l of 2 and then a beta l of 3 and if 

you want to compute beta l minus 1 of 3 and if this is like say gamma 1 prime gamma 2 



prime, what will this be? This will once again be the natural formula that this is beta l of 

2 times gamma 1 prime plus beta l of 3 times gamma 2 prime.  

So, I can write down the beta recursion more formally also, but this is what you want to 

remember. So, this is how you can easily remember the recursions. Otherwise if you 

write down the Markov formula every time also you can do it, but it is a little more 

confusing, but this is a very easy way to remember the recursion. Once you know the 

gamma computation the alpha recursions are and beta recursions are easy. So, how do 

you start the recursion? So, any recursion has a starting point what is the starting point 

for this recursion. So, if were the 0 t h stage then what do I know? 

So, you always start at the all 0 state. So, only one state will be probable with probability 

1, all the other states will be probability 0. So, then what do you do? At the 0 t h stage on 

the left, you only put probability 1 for this and everything else 0. What about beta? Beta 

likewise I have 0 terminated of the k minus k plus 1 stage only the 0 terminated state 0 

state will have probability 1, everything else will have probability 0.  

So, these alphas are also called forward state occupation probabilities and this is a good 

word because it gives you a nice feel for what they actually represent? Forward state 

occupation probability is what is beta? So, let me not write it there, write it there. What is 

beta? Beta is backward state occupation probability. So, alpha is like the probability that 

you are in Maharashtra and beta is the probability that you are in Bihar. So, that is 

another way to think about this forward state, backward state.  

If too many people these kinds of comments when you go in one direction you can 

compute alpha, you have to go in the forward direction, then computing beta you have to 

come back in the backward direction. So, that is what you do, what about gamma? 

Gamma is neither forward nor backward. So, it is a stage so it corresponds to the branch 

probabilities for each stage. So, gammas are like branch metrics. I do not want to write 

down a formal formula for beta, you know how it will look?  

How will this look? You simply change alpha to beta here and then instead of l l minus 

1, you put l minus 1 here and l there that is all, so you get the exact same and s prime and 

s you have to reverse. So, you are goanna get the same formula. So, the last thing is 

gamma and that is crucial, that is a little bit important so let us see. I want you to pay 

some attention here because it plays an important role in the turbo decoder and all that. 



(Refer Slide Time: 48:12) 

 

 So, what is gamma? Gamma l s prime comma s is probability that what is the formula s l 

plus 1 equals s prime comma s l equals s. 

Student: ((Refer Time: 48:32)) 

Comma r l and given there is an s prime. 

Student: ((Refer Time: 48:42)) 

Given s l equals s. So, many mistakes that should work out and we have about a minute 

left. So, let me stop here. So, in the next lecture I will pick up from here, I will talk about 

how gamma is computed and that will kind of conclude the BCJR algorithm.  


