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Let us do a recap of where we are. We have been talking about is convolutional codes. 

So, the way we have been approaching this, is to first talk about the encoder, the encoder 

is nothing but a shift register, right? So shift register based encoder, I will give you very 

simple example. I showed how you can clock widths in and then clock widths out. You 

get a shift register as the encoder. Then there are various representations for the encoder 

some reason windows wants to update what should I do? I cannot cancel, postpone. 

So, I thought this task bar was supposed to be locked. I guess the update is so crucial that 

does not care about it, it’s still locked. The encoder and we spoke about various 

representations for the encoder, one was the state diagram and the only drawback in the 

state diagram was the time axis was missing. 

So, a better representation turns out to be, what I pointed out is a trellis diagram. Usually 

the shift register will have one input, one input stream. Let us say some n outputs and the 

number of the flip flops is also known as a memory. So, memory is going to be some mu. 



If you make a state diagram with this shift register, this shift register encoder you are 

going to have how many states? 

Student: ((Student: 02:32)) 

Two power mu states. How many branches out of each state? 

Student: Two power mu. 

How many branches out of each state? 

Student: Two. 

Two branches out of each state. How many branches into each state? 

Student: Two. 

Two branches in and out of each state. So it has to be that way in and out of each state. 

Where will the n play a role? Basically, each branch will be labeled with one bit input 

and the stroke and n bits as output. That is the branch labeling. Trellis diagram, since we 

are explicitly have time playing a role, we have to first specify the number of input bits. 

We usually keep it as, let us say some k input bits plus so is that enough? Can we stop 

there? No, we have to terminate the state back to the all zero state. For that you need mu 

termination bits. So, the number of output bits N will be equal to what small n times k 

plus mu. We are right number of output bits will be small n times k plus mu.  

So the actual rate k by n times k plus mu, if k becomes very large, roughly 1 by n for 

large k so one by n is known as the design rate of the encoder. The actual code rate will 

be different. That is the description of convolutional codes, so the way we are looking at 

it once you fix the number of input bits as k. Look at all the output bits you got. Can I 

think of this code as a block code? For every k bits of message, I am getting n bits of 

output. If I go ahead and exhaust all the two power k possibilities, I will get two power k 

code words N bit code words. So actually in this description it was also an N comma k 

block code. There is nothing wrong with thinking about it that way, also. You can think 

about it as an n comma k block code.  

You can in fact come up with generator matrix parity, check matrix all that you can do 

there is nothing wrong with that, except that we are describing this block code in a very 



simple way using simply mu d flip flops in a shift register implementation of the 

encoder. You do not have to describe it in any other complicated way. It is a very simple 

description for the encoder itself.  

So, essentially you can also think of it as a block code. There is nothing wrong with that 

except that it is traditionally called a convolutional code because of obvious reasons, this 

is a shift register. So it has an impulse response. You can think of the output as being a 

convolution of input and the impulse response of the shift register. For those reasons it is 

called convolutional code, but in actual operation it will always be a block code. So will 

it be a linear block code? Yes. It will be a linear block code because it is a linear shift 

register. So add two inputs, if you extort the two inputs the corresponding code words 

will also extort. It is all every operation is linear there right, every code word bit was 

written as a linear combination of the inputs, some inputs. So, does not matter how else 

you think about it. It will be a linear code. This is just a different way thinking about that 

problem. 

The Trellis representation on the other hand, has a complexity of two power mu case was 

referred to as the complexity of the Trellis is one measure of complexity. It is a most 

common one, 2 power mu. The number of states that you have at any given stage is the 

complexity of the Trellis. It turns out the Trellis plays a key role in decoding. I will 

describe why. It is easy to see why. It will, but because of that the complexity of the 

decoder is limited by mu. 

So, even if you increase k to a very large number one thousand or two thousand you only 

have a complexity of 2 power mu and not two power k. You remember that was our fear 

in when we did m L decoding. Complexity always become two power k and if k 

becomes thousand then you have no hope of implementing it because of the Trellis for 

any k, you only have a complexity of two power mu and the decoder also becomes only 

two power mu complex. That is the major attraction of convolutional codes.  

Otherwise if you look at it in terms of minimum distance, these codes will not be that 

great. In fact more than the minimum distance, I will point out later the number of 

minimum distance code words is fairly large for convolutional codes. That is the 

problem when you implement them. So, as block codes they may not be that great, but 



since they have a decoder they have very interesting characteristics, which we will see 

later on. 
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So, the next thing I am going to point out to start with is the decoding. The decoder, the 

m L decoder. So we will talk about the soft m L decoder. For the soft m L decoding as 

usual we will be using BPSK m L region. Remember, BPSK is 0 going to plus 1 and 1 

going to minus 1 AWGN will be noise distributed as normal iid, right. That is our 

standard assumption. There is also a hard decision m L decoder in which case the 

channel will be a binary symmetric channel. So that is what we will be using, so that is 

what we have used as a standard for hard decision decoding. I am not going to describe 

that. It is quite simple towards the end may be I will point out how that works, but we 

will begin with the soft m L decoder. 

So, there is lots of notation that needs to be built up. Finally, the decoder is very simple 

and you will intuitively get a very easy idea of what is happening as we go along, but 

initially we need a lot of notation to make sure that we do not slip up with the description 

of the decoder. Let us do that notation, so my input u is going to be, I am going to start 

with a shall, we start with 0 or 1. 

Zero, u 0, u one all the way to u k minus 1, then I am going to have some termination 

that is I will drop that, so if needed we will come to it later. For now these are the input 

bits. These are going to get encoded into a code word. This is the convolutional encoder. 



I have this habit of drawing the box first and then writing inside. So what I write inside 

tends to get really crammed. Anyway, think it is clear enough so the encoder is going to 

put out now capital N outputs. Now, I am going to group this outputs into, so again so we 

will always fix a rate half code. If you have a rate 1 by 4 code or 1 by 5 code it is easy to 

extend this. So we will have a rate half code. 

In each for each input bit there will be two output bits. One of them will we will denote 

as let us say some what we will be doing v 1 0 and the other is v 2 0. Let us do that so the 

output will be the code word. May be I will call it c so the code word is going to be. I 

will call it as c 0, c 1 so on till c. It is going to be k plus mu minus 1. It will go all the 

way till that and each c i, is actually what it is going to be v 1 i and v 2 i. It is actually a 

vector, is that, so this is the output. Then as usual you have BPSK and then you have the 

AWGN.  

So what we get here likewise, I am going to call as the vector r and this is going to be r 0, 

r 1 all the way to r k plus mu minus 1. Then each r i is what it is going to be two things, it 

is going to be r i 1, r i 2 corresponding to what was received for each thing. Then I think 

we will stop there. That is enough notations. So, this is the, this is the set up. Given this 

vector r, I have to now do a decoding. Windows is insisting that it will update. So, what 

we do? 

Student: Sir, postpone remind me four hours. 

Four hours, everybody knows exactly how to do that. It is been ages since I have used 

windows actively. So actually I have never used to windows actually, except for this 

lecture, of course. Is it going to go down on its own or what the task bar it would not? 

Student: Sir let us focus on the. 

Ok, there is some resident windows experts. So, the decoder is going to put out u hat. 

That is going to be once again u 0 hat, u 1 hat u k minus 1 hat. There is a tendency to get 

lost in the notation, then some of you might get lost in the notation, but when they hang 

on there is some simple description towards the end. So, when you are doing soft m L 

decoding, what you have to do it is very clear. What you have to do right in BPSK 

AWGN and when you have to do soft m L decoding, you have to find that code word 

which is closest in a certain distance. What distance? The Euclidean distance. So I have 



to compute that and find the closest. The task is pretty clear and we can write that down. 

We can write that down without too much of effort. 
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So, soft m L decoder it is going to do this. It is going to say, u hat is argument of 

minimum. Here, is where the notation is going to get a bit messy. So I will say u over all 

u what the Euclidean distance between r and u. U it is not u. So, I have to do a lot of 

conversion. I am going to write it as 1 minus 2 v square is that, so u will belong to all 0 1 

k and v will be c. I am sorry, I have been using c. Sorry, so c is what we should think of 

as c, c is the code word corresponding to u. It is a code word for u. That is the notation is 

that, so the task clearly is to compute this Euclidean distance for all possible inputs. How 

many Euclidean distances will you have 2 power k. 

It looks like you will have to compare compute all of them first and then compare with 

each other and find the minimum. That is the brute for soft m L task. That we saw before 

even for the linear codes is hard it is not going to be very easy to do. It is going to be 

exponentially complex 2 power k complex. It turns out because of the Trellis, you can do 

it sequentially as oppose to in total. This task of doing the minimization can be done 

sequentially. That is the idea in the in the decoder. So, the efficient implementation of 

soft m L decoder for convolutional codes is called the viterbi algorithm. After the person 

who discovered it, out of all the person who came up with it first and we will describe 



that next. This is basically efficient implementation of soft m L for convolutional codes 

using the Trellis obviously. 

We will begin by looking at this expression r minus 1 minus 2 c. This 1 minus 2 c is a bit 

of a pain to carry over, so I will simply use s equals 1 minus 2 c. This s expression, we 

will use this is basically summation i equals 0 to k plus mu minus 1. What should I put 

inside the summation? Remember, r i is actually a vector and s i is also a vector. It has 

two entries because I have assumed the rate half codes. If a rate half code, if it is one by 

n then it will have n entries. That does not matter, so I will, since I assumed rate half this 

is the slightly simpler situation. So, you will have r i 1 minus s i 1 square plus r i 2 minus 

s i 2 square. So it is that is the expression. 

So, the key idea is you can you can compute this using a summation, of course. The 

computation can be done sequentially. It is obvious, right. So summation one after the 

other, it turns out you can also do the minimization sequentially so that is the trick in 

viterbi algorithm. The minimization also can be done at every step and you do not have 

to remember too many code words. You only have to know two power mu code words.  

As long as you keep track of two power mu code words maintain a list of two power mu 

code words it turns out the global minimum will occur within this two power mu. You 

can be happy about the answer you get so that is the central high level idea. How it 

works is easy to describe. I will describe it and we would not see regress proves, but I 

think you will see clearly that works. It is a nice idea it will work out very well is that 

okay? 

So, the first thing we will use to translate this into Trellis languages. We will distribute 

this summation over stages of the Trellis. This is the very natural way to do that. 

Remember the i th input is associated with the i th stage. So the i th output r i is also 

associated with the i th stage. These si’s will where, will the si’s be in the i th stage of the 

Trellis. They will be on the branches; the branches will have the si’s, possible si’s. So 

you go on each branch and then write down what you compute here. Then you have 

translated what you have to do into the Trellis. The only thing I have to do next is show 

you how the minimization can also be done. If you do this, over the Trellis, and that will 

be the end of it.  
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So, let us do the first translation on the i th stage of the Trellis, so if you look at the i th 

stage of trellis. You will have how many states one, two all the way down to two power 

mu states. This side also you would have one, two all the way down to two power mu 

states. There will be branches I will take, I will take some kind of a generic branch. May 

be from, I do not know where, can we take a generic branch. Somewhere from here to 

here, then may be it goes from, so maybe that is not a good idea. So let us just take let us 

take some state i to state j is that i to j. This time I was smart, I wrote first and then drew 

the circle. Let us take a branch that goes from here to here. What will be the, what should 

be written on the top of the branch. There will be the label for the branch right inputs 

slash output.  

So I, since it is i to j may be we call it u, u I do not know what should we call it ij slash 

sij. So, I mean this is just notation. I think it is clear what I mean, but it is good to write it 

down also, is it so remember uij is going to be just one bit sij will be. Well, I am thinking 

sij as 1 minus 2 times the BPSK encoded form. It will be two a length two vector 

because of a rate half code. If it is rate one by n code then it will be length n vector with 

plus ones minus ones depending on what the actual output. There was, is that alright? So 

what I will do is, I will associate with this branch something called as a branch metric. 

What will be so this, I is occurring in too many places right, so maybe I will make this 

lth stage of the Trellis. Sorry, for that the l th stage of the Trellis you are looking at state i 



to state j as transition the branch metric will then be r l 1 minus sij. What one square plus 

r l 2 minus sij 2 square. This will be the branch metric associated with that particular 

branch in the l th stage. You have to think of this branch metric as some kind of a weight 

on that branch, or some toll money that you have to pay somebody who is sitting there to 

go on this branch to take this root. We have to pay that money. So, some cost associated 

with or may be the distance that you have to travel on that branch, something some cost 

associated with that with that branch or edge or whatever you might want to call. Why 

did I define it this way? 

Student: Sir, the optimizing function will be. 

So, I am trying to minimize the sum of terms like this over all possible code words. If I 

have a code word on which this branch was actually used, this will be a term that will 

participate in the summation. That is the idea. I am trying to write down all those 

summation terms in terms of the branches. I think that is, the that is the first step. So we 

have some kind of a branch metric. We can deal with it is that alright. 

So, the goal now is so the soft m L task of finding the least the code word, it is closest in 

terms of Euclidean distance can be written in terms of the Trellis. What you have to do 

for that is you have to first use this idea that code words correspond to paths on the 

Trellis. What is a path? Path is basically a sequence of branches. What do I have for each 

branch? I have a branch metric, so what can I do for each path? I can total all those 

branch metrics on those, on that path and get something called a path metric. That is 

called the path metric. I will define the path metric sum of branch metrics on path. Now, 

this path metric has a very real meaning for us, what is the path metric? 

Student: ((Refer Time: 26:03)) 

It is exactly this term, it is exactly this term, this is exactly the path metric path metric 

for. 
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That chosen code path for path corresponding to the code word to s. s is a valid well 

symbol sequence not really a code word sequence, S is the symbol vector. It has, it 

corresponds to a path on the Trellis. The branch path metric of that path exactly equals 

this r minus s square. That is what I have done with this trellis representation. My task of 

doing soft m L decoding of finding that code word which is closest in Euclidean distance 

from the received word, received vector is exactly the same as finding that path with 

least path metric on the Trellis. It is a very simple one to one correspondence and that is 

the first idea in the viterbi algorithm. 
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So, the soft m L can now be equivalently written as u cap. Remember as the u cap also 

defines a path on the Trellis. I have to be careful here when I do notation. Path of u cap 

equals argument of minimization over all paths of what, the path metric. Remember the 

inputs sequence also defines clearly a path on the Trellis. I can think of the path 

corresponding to my decoded input sequence that will be the argument of the 

minimization over all paths of the path metric on the trellis.  

Remember the metrics change for each received word. Once you get a received word you 

have to compute the metrics and kind of load it on that Trellis, not Trellis with those 

weights. You have to find the minimum path if you get another received vector. What 

will happen, all these weights will change. You have to re-compute the weights, so how 

many computations of weights do you have to do? 

Student: Sir, it is going to a two. 

For each, for decoding each code words, for each branch. You have to decode, you have 

to compute one for each branch. In fact you can simplify the computation. It is not you, 

can do some optimization, but anyway one for each branch how many branches are 

there. Two times two power mu times k plus mu. So clearly it is linear in k and 

exponentially mu. It is not exponentially in k once it goes exponentially in k. You have 

to worry about it. It is not going exponentially in k. It is only going linearly in k. So 

computing the branch metrics is not a problem, but if you want to compute path metric 

for every possible path then there will be a problem.  

Once again you go back to the same two power k. If you, because there are two power k 

paths and for each path if you want to keep doing this computation again, you are not 

going to go anywhere. So the trick to efficiently do it within 2 power mu is to only 

compute path metrics for some paths. You will keep track of only roughly two power mu 

parts. As you go along the Trellis and it turns out the minimum the best path will always 

be within this 2 power mu. 

So, the question is which are these two power mu paths and how should I keep track of 

them. I will give you a simple argument. It is easy to see why this will be true. You can 

also prove it recursively if you like. Remember, I started at the all zero state. This is the 

zero state. I also ended at the all zero states. This happened at stage zero, zero th stage. 

This will be finally, at the k plus mu minus one th stage so that is fine. 



So, if I look at the i th stage or l th stage, I am going to have so let us say, so remember 

there are is going to be something to be on this side or that side. Let us say I pick up this 

side. There will be a bunch of states. Let us focus on some particular state, let us focus 

on, let us say state i on the l th stage. Now, if you look at paths from the all zero state at 

the beginning to this state i in the l th stage there will be several paths. Let us say, let us 

draw small bunch of them. I am going to draw them dotted. There will be several paths 

to state i in the lth stage and once again from state i to the all zero state, there will be 

once again a lot of paths. Let us do that will be lot of paths. I am just drawing a 

representative sample of some paths, but there will be lots of them. I want to keep track 

of all of them that is the issue. 

So, if I want to find the lowest path metric path from state zero to starting at state zero 

and ending at state zero. My argument is at this state i, I only have to keep track of that 

path which has the minimum metric up to state i, I do not have to keep track of all of 

these paths that are ending here. It is enough if I keep track of that one path, which has 

minimum metric up to that point. That is the idea, I am doing it sequentially. I supposed 

to doing it totally at this l th stage. I only worry about the minimum path metric up to 

that point, but I have to do it state wise. I cannot just do it totally state wise for the state i 

there will be one path which is the minimum metric path. I can only keep this and throw 

away all the other paths from zero to state i. Why is that okay?  

The reason is if the overall final best path that you have where to go through state i in the 

lth stage? It will necessarily take this path on the left hand side. It cannot take anything 

else the reason is, from here it would have taken something to go there and if you took 

some other path. Clearly you can drop that and go to the minimum weight path and get a 

lower weight path. For this simple reason because you are starting at zero and ending at 

zero and you are looking at the ith stage. You only have to keep track of that minimum 

metric path from the zeroth state to the ith state. 

So, let me repeat that argument once again. I will do it just in words. I am not going to 

write it down. If the minimum overall final greatest path, I mean the minimum metric 

path that you have where to go through state i in the l th stage. Then from zero to i, it 

would have definitely taken the minimum the partial minimum weight path. If it for 

instance the argument is by contradiction, if you say if it did not take that path then what 

you do? You keep the remaining part the same then here you flip from the path that it 



took to this minimum weight path and you would have decreased metric. That is a 

contradiction. So you cannot have anything else. It splits this way and the crucial reason 

why it really works is you are starting at zero and ending at zero. If we are not doing that 

then it would not work. You are starting at one point and ending at one point. So, 

because of that, this works in a nice way.  

So I have to now do this for each state. Each state I have to keep track of only one path 

and that is only two power mu paths as I go along the Trellis. How you do that efficiently 

is the viterbi algorithm, how you do that is the viterbi algorithm. It is a no big deal in 

efficiency that already comes down to this efficiency. This is the idea behind the viterbi 

algorithm.  

Of course the original paper of viterbi it is not described like this, it is something else. It 

is actually a proof technique used for proving something. It is strange it was not even an 

algorithm method point so the important person who played a key role and making it an 

algorithm was David Forney. In case his name, if I have not mentioned, but I think it is 

good to know that David Forney played a key role in writing it down as an algorithm and 

explaining it to everybody as an algorithm.  

But I think in the world of dynamic programming and other areas it was known long 

before it is not invented by anybody here so that is the idea. So, that is the, that is the 

basic task. Let me write down a step by step kind of an algorithmic description or pseudo 

code for the viterbi algorithm. Only for the lth stage what you do in the lth stage. I will 

write that down and then you will see how you can repeat it. It is very easy to generalize 

form them. 
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So, some kind of algorithm, so the, so what happens in the l th stage have states 1 to 2 

power mu. Then you also have this is the l th stage, each out of each state you are going 

to have two branches coming out and into each state you have two branches coming in. 

So, let me, take let me take the j th state here may be its two branches coming in are from 

j 1 and j 2 i 1 and i 2 sorry, i 1 and i 2, so there are two branches coming in.  

So this will have one branch metric that is maybe we can call it B m i 1 to j and this will 

be another branch metric B m i 2 to j now in my algorithm upto the l minus 1 th stage. I 

have already done something, so which means for state i 1 I will be remembering one 

particular path and that path will have a partial path metric up to that point i 1. That is 

called the state metric for this state i 1. That is what called the state metric. Let me write 

that down you has the all zero state.  

Well I am starting from one here so that is the problem, so let us say one the zero th 

state. This will be like a minimum metric path from all zero state at stage zero to state i 1 

before stage L, it is a long word description for what is may be easy to describe easy for 

you to understand. That will have a partial path metric, so that metric is called the state 

metric for i 1. Minimum path metric path, so this partial path metric is called state metric 

for i 1. We need some notation, so this minimum path I will denote as what it is usually 

called the survivor path. I will call it S P at the S P for i 1.  



It is usually called the survivor path the minimum metric path from all zero state to i 1. 

The metric of that path is called the state metric for i 1. I have to also index it by L, so I 

will put L on top so both these case will have state metrics. Both of these states will have 

state metrics and the branches will also have branch metrics. So, the task for this 

algorithm is to compute, the survivor path for j after the l th stage and it is corresponding 

state metric that is the only task. Once I described that, you can simply repeat the tasks 

stage after stage for every state and you are done. So how is that done it is done like this 

it is very easy so if S m l of i 1 plus B mi 1 to j is greater than S m l i 2 plus B mi 2 to j. 

What should I do? 

Student: I two.  

So, you make the survivor path of i j as survivor path of i 2 and append toward may be j. 

The last one will be some pj itself. You come up with this path and then add the j to it. 

Then state metric for j is after l plus 1 is basically what S m l of i 2 plus the branch 

metric i 2 j. Else what do you do? Else replace, i 2 by i 1. So the reason why I can do that 

is the justification, I gave before. Once I fix a particular state and a particular stage and I 

start at all zero and end it at all zero, I only have to keep track of the minimum way to 

get there. From there I can worry about what I do later on so this is the idea. 
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So, like I said the complexity roughly is k times two power mu, which is much smaller 

than two power k. It is really doable, if you have just even if you have six bits for the 



state, 64 states thousand k equals thousand. You can easily do it thousand times 2 power 

6 is nothing on the other hand 2 power thousand is something you cannot even imagine. 

So it is very big. That is the, that is the idea here. 

So, what is the basic summary here soft m L decoding, decoding is implementable for 

convolutional codes. This is the, this is the major step and the Trellis played a crucial 

role. The other thing is the complexity of the Trellis because we have the definition as 

the convolutional code, we fix the complexity of the Trellis ahead of time. So we fix mu 

is six or four or five initially when we design the encoder itself explicitly, we fix it. For 

instance if you do the other way round, if you start with the generator matrix parity check 

matrix and then try and go to a shift register implementation. That is very hard it is not 

very easy to do those things, but since we start with an explicit shift register 

implementation everything becomes really simple.  

So, convolutional codes are some of the most popular codes around, one of your cell 

phones have it, so it is used in several different applications. All the way from outer 

space to magnetic disk drives may be not some other things it is used everywhere. 

Basically, this idea of viterbi algorithm is there all over the place of course viterbi 

became a millionaire, started quite common other things. 

So, my brief comments on the hard m L decoding, if your channel model became the 

binary symmetric channel and you have to now do hard m L decoding, what will you 

change in this algorithm description? It turns out the only thing you have to change is the 

definition of this branch metric. The branch metric definition here involves a Euclidean 

distance computation what will it be for the bsc. 

It will be a hamming distance computation that is all, so you will have two bits received 

for the for this particular stage Sij will be two bits. You simply take the hamming 

distance between those two things and every other part of the algorithm remains exactly 

the same, nothing else you have to change except that the branch metrics instead of being 

Euclidean distance simply become hamming distance. That gives you hard ML decoding 

so that is the. 

Student: Sir, how much it is going to incur for us if we do not end with exactly all zeroes. 



I will make a comment on that do not worry. So hard m L decoding, you have to simply 

replace Euclidean distance, Euclidean distance in definition of what definition of branch 

metric with hamming distance that is it. So, that is a definitely doable, it can be efficient 

also similar in efficiency 2 power mu is the complexity. 

So, the next interesting thing to worry about is some kind of an implementation detail if 

you want really much lower complexity. So, in fact I was saying k equals thousand is not 

too bad because thousand times 2 power mu is not a big number, but still thousand is a 

fairly large number. If you want to reduce your, reduce your what to say we all say 

footprints has to be very small. You cannot really may be do even thousand, but if your 

original length was thousand and you terminated only after thousand, you have to go all 

the way to thousand before you can finish up your decoding right so it seems like a kind 

of a anyway, it is more expensive than what you would have thought beforehand.  

So, what people usually do is, they go sufficiently far into the Trellis so they would not 

really go all the way to thousand. They would go if your memory is mu the rough 

number is suppose to be four times mu or five times mu. So you go some fifty or 

hundred into the Trellis, how much every your secured complexity can take. So, you go 

as far as that and then you kind of stop there say out of all the paths, you have you 

simply pick the minimum path and then you go back, but you do not make decisions 

immediately. 

So, if your memory was let us say six so you go all the way up to hundred. Then you 

back track and do not make decisions on the immediate fifty. You would go up go from 

0 to 50 and make decisions there. Then you will allow for this fifty lag and it is called 

windowing. You can do windowed versions for efficient implementations. You do not 

have to really go all the way to thousand and then come back so you go partially and 

then you pick among the paths, you have the best one and then come back.  

But do not make decisions towards the end of the path because you know the end of the 

path is not very you are not terminated, you are not very sure. So, you leave some gap 

there and then you decide after that and that gap suppose to be 4 mu or something is 

good enough 4 mu or 5 mu is supposed to be good enough based on experiments people 

have done, this several times and found that 4 mu 5 mu is good enough. 



So, you do that and that simplifies your complexity a lot, in fact most implementations 

will do that only windowed versions are implemented. That is hardly any loss, but if you 

do not terminate you will get a huge hit in terms of you will do soft m L. That is not a 

problem, but then your decoder performance will be very bad because minimum distance 

will be very less. 

So, that is the next thing we are going to talk about. One thing to worry about is 

implementation details. I am not going to spend too much time about on this except that 

windowing is an important idea in implementation. Another important idea is making 

sure that you do not overflow. So you have to take care of overflows because particularly 

if your s n r is low then this branch metrics can blow up. So what people do is, since you 

are always comparing paths of similar lengths they would subtract the minimum of these 

branch metrics and keep only the difference. That is good enough.  

So, those are ideas that you can use if minimum is difficult to compute. You simply 

subtract a large enough number after several times. Those are all tricks that people use to 

keep the overflow problem done, so that is the implementation detail. More important is 

performance, so how is performance affected? How do you measure performance? It 

turns out the union bound gives you a very nice of way of thinking about how this will 

work. We will talk about that in the next lecture. Time is up, so we talk about 

performance and how minimum distance plays a role in the performance, and all that we 

talk about in the next lecture. 


