
Coding Theory 
Prof. Dr. Andrew Thangaraj 

Department of Electronics and Communication Engineering 
Indian Institute of Technology, Madras 

 
Lecture - 30 

Introduction to Convolutional Codes 
 

So, we are starting a brand new topic, and we had a brand new writers exchange shift my 

position little bit it is better. 

(Refer Slide Time: 00:28) 

 

So, we are going to start talking about convolutional codes and towards the end of last 

lecture I gave you a simple high level reason for why this is interesting it turns out soft 

M L decoding can be done efficiently. And of course, soft bitwise MAP is also efficient 

so both of these are efficient for convolutional codes so that is the main selling point for 

these codes and we will on top of this they also have an amazing advantage that they are 

really simple. So, they are the simplest possible codes and not simplest possible codes of 

course, but a very simple to describe and simple to describe the decoding very intuitive 

and very nice and clearly understand what happens with these things quite easily. 

So, we are going to begin with an example so I will give an example of a convolutional 

code and it will be a very typical example any other convolutional code will be a minor 

modification of that you will also define it generally later on, but an example is the best 

place to start. So, let us begin with an example and I will start by drawing an encoder so 



instead of just defining the code so if you remember till now we are defining the code 

directly, code is the list of all code words. Now, I will define the encoder for this code of 

course that also defines the code in a way right so it is not a bad definition. 

So, the encoder that I am going to draw will involve d flip flops all of you must be 

familiar with what a d flip flop is basically it is a delay element it will have a memory of 

1 bit and will hold it for 1 clock cycle. So, it will be like a clocked sequential digital 

circuit so let me draw that. So, I have 2 d flip flops and they are connected up like this 

there are 2 outputs and the second one looks like this, so this is kind of an ugly looking 

diagram of the encoder I am sure you will find better pictures of the encoder. So, this is 

the input and this is output 1 and output 2. 

So, this is the encoder so what happens is bits a clock 10 from the input side at every 

clock you send 1 input bit in and the clocked out on the output side so that is the that is 

the high level picture here. So, I think you have seen enough digital systems to know that 

that what is happening here, but anyway let me emphasize that once again which a 

clocked in and clocked out if the input side the output side bits are clocked out. Of 

course, the clock is not shown it is suppose to be there, I am showing it explicitly 

anywhere it is suppose to be there where is a clock which is running and every tick of the 

clock or every stage state of the clock it is going to keep shifting a bit inside, and an 

output bit is two output bits are going to be come out. 

So, we need some notation I will call the nth input bit as some u n, so at the nth clock the 

input is u n so this are all bits. So, what will be the what do I have to write here what will 

what will happen here u n minus 1, so it would have been the input in the previous clock 

it would have after a delay it will be there what about this k here u n minus 2. So, once 

you figure this out it is a simple d flip flop you know exactly what is going to happen the 

outputs are also easy to write down. So, we have 2 outputs so will have a notation like 

this for the nth output v n 1 this will be u n xor u n minus 2 by the way this is xor. So, I 

think it is standard so I have not written it down. 

So, the second output is what v n 2 is going to be u n xor, u n minus 1 xor, u n minus 2 

so that is the second output bit. So, I am sure you agree with me on this word simple so it 

is a very simple code, I mean if you look at the LDPC code. For instance its encoder is 

definitely not going to look anything remotely close to this, it is going to be quite big and 



you have to remember a lot of things and you will do a lot of things well things for that, 

but for the convolutional code the encoder is so simple and this is a main reason. 

This is a huge advantage in practice several times so you might want some system where 

the transmitter is maybe very weak so to speak it is relying on let us say some very poor 

energy source it cannot sustain for a long time. So, you want to have an encoder which is 

really, really, really simple and this will satisfy that constraint. So, if you look at the 

number of gates in this implementation how many gates are in a d flip flop, any some 

number which is you can count it one hand right so it is small number. So, you have 2 d 

flip flops and 2 xor’s. So, both ten fifteen gates you will be able to easily do this entire 

implementation and there will be a clock and it is it is it is dirt chips are given it will 

work on and on forever. So, that is a big advantage with convolutional codes. 

So, the big point is are they any good how well do they do in a bit error rate or block 

error rates situation. So, we will see when you implement soft M L decoding and in fact 

implement bitwise MAP or any other decoder it will work really well we will see that 

also. So, this is the picture hopefully this picture is clear now you can see some 

generalizations of this picture. So, in general how will a convolutional encoder typically 

look you will have more than 2 d flip flops you can possibly have some mu d flip flops 

and then how many outputs can you have as many as you want maybe 3 or 4 or 5 then let 

us 1 input always. 

And then it is just a question of connecting up the different points of the d flip flops 

outputs to these xor gates and getting your output. So, that is the generalization if I have 

to present it in the most general form there will be a lot more notation but definitely not 

more not much inside is lost with these example so you see it to be you get the idea of 

what is happening here. So, the next important thing to remember is this seems like an 

encoder which is going to take a stream of input and keep on putting out a 2 streams of 

output, but in practice with codes it is not going to work this way it is going to be a block 

of message bits some k bits and they have to be converted into some so many bits before 

transmission. 

That is one important constraint in practice right so you cannot you cannot keep on, on 

and on encoding all the time right. So, there are other things that have to happen 

communications has to started and stopped and so many other things will go wrong if 



you have it like a stream so you have to stop and start. So, we have to convert this picture 

into a block coding picture that is one thing and the other thing is there are 2 streams of 

output and they have to be interleaved also and sent out all these things have to taken 

care of in an actual operation. So, let me write down how that works first and then we 

will see other descriptions of what happens here. 

So, the input you can think of as, so first thing I should start out with is the state of the 

encoder so what is the state of the encoder. So, it is the state of any digital system what is 

the state of digital system to look at all the outputs of the d flip flops put them together 

how many ever bits you have that is called the state. State of the encoder is basically 2 

bits so you can call it s 1 s 2 if you like so basically it is 2 bits in this example of course, 

and in general it will be as many bits as the number of d flip flops that you have. So, first 

question in an actual implementation is what is the initial state so it is typical to take the 

initial state as 0’s, so you are going to put initially 0’s in your d flip flop output. 

So, we will assume that the initial state is 0 in implementation and then you have so 

many numbers of bits coming in so let us say k bits of input are going to be clock 10. So, 

it is very common and very important to terminate your, term terminate your state you 

terminate your encoder finally, in the all 0 state once again. If you keep clocking in k bits 

at the end of k bits state is not guaranteed to be in the all 0 state. So, usual in 

convolutional codes to manually put in 2 further bit inputs to force this state back to all 0 

state so that you start at the all 0 state and end at the all 0 state. So, that is good for a lot 

of descriptions and in practice that is always done so that is called termination so we will 

do that in practice as well, we will do that when I describe it. 



(Refer Slide Time: 11:18) 

 

So, if you have k bits of input so it is a bit tricky how I write it so I am going to write it 

as u 1 u 2 all the way to u k, but what does this mean which bit will go in first u 1 will go 

in first. So, maybe it is good to write it as u 0, let me write it as u 0 sorry about that I will 

start with u 0 and then go all the way to u k minus 1 so that is better, u 0 u 1 all the way 

to u k minus 1. So, this is my k bits of input my initial state is going to be 0 0 so the final 

state will be what after k bits, state after k bits will be what. 

Student: k minus 2. 

Yes, after k bits of input will be u k minus 2, u k minus 1 u k minus 2 and I do not want 

this so this is not this is you cannot end in a random state it turns out it is bad for the 

decoder. So, you want to go back to the all 0 state so you have to add along with the k 

bits of input 2 additional terminating bits which in this case the way I have drawn it will 

always be 0 0 so that you can take it back to the initial state. So, the actual input will be 

actual input for all 0 state termination will actually be u 0 u 1 all the way to u k minus 1 

and then I will add two 0’s. 

In the general case, when you have let us say mu d flip flops how many 0’s will you have 

to add mu 0’s that is all that is no problem so you need do that, that is what will happen. 

Now, let us look at the output this is being clocked 10 so the output, output 1 so maybe 

we can call this as some vector u and this will be u 0 0 so you can do that. The output 1 

will be so we not write n the vector v 1 it will be v 1 0 v 2 0 I am sorry did I get that right 



no, v 1 1 so until v 1 k minus 1 can I stop here no. So, when I put in the 0’s also I will get 

some output and I have to retain that also if I want a complete picture I have to retain that 

also. 

So, in fact you will have a v 1 k and a v 1 k plus 1 and the output 2 will be v 2 and that 

will again once again be v 2 0 v 2 1 v 2 k minus 1 v 2 k and v 2 k plus 1. So, the actual 

code word output that is actually going to be transmitted will be an interleaved form of 

these 2 things it will be basically v 1 0 v 2 0 v 1 1 v 2 1 I will write one more so let me 

not write one more it is good enough all the way to v 1 k minus 1 v 2 k minus 1 v 1 k v 2 

k and then v 1 k plus 1 v 2 k plus 1 that is my actual output.  

So, these two are the outputs corresponding to the first time instance 0th time instance, 

these two are the outputs corresponding to the second time instant time 0 so to speak, if 

your index time this will come out at time 0 time 1 and so on and the last one will be 

time k plus 1. So, your message was actually k bits long that is the message that you 

have you cannot say the 0 0 is the message so it is not any random message it is know at 

the receiver so it is only k bits long. How many bits of code word do you have.  

Student: 2 k plus 2. 

2 k plus 2 so the actual rate of this code in this 0 termination operation a 0 terminated 

rate is actually k by 2 k plus 4. So, you have this 4 additional bits that have to be sent for 

k bits. So, this is the 0 terminated rate while the design rate is what design rate is half so 

if you look at the encoder, the encoder rate is half for every t every time instance it seems 

to be doing half, but when you actually operated you will get this penalty so there will be 

this penalty because of the 0 termination that is ok.  

Why is not why is 4 not a big deal it is like it is it is obvious to many people if k becomes 

1000 then clearly the 4 is not going to hurt you at all, but remember, but keep in mind 

mean you may not know this, but convolutional codes are even used with very low block 

lines k could be 8 or 10 or something and with that case things like 4 will matter a lot. 

So, in general so this is the picture for this specific rate half code. 



(Refer Slide Time: 18:11) 

 

In general, if you have let us say so in general if you want to generalize it so it is quite 

easy to that you might have an encoder with, encoder might have mu flip flops if it does 

so then it is called since mu is called memory so for obvious reasons it is called memory 

of the encoder. So, the encoder might have mu flip flops and input we will keep as 1 for 

the purposes of this course we will keep as 1 of course, there is other theory for more 

than 1 input also it is possible to have 2 or 3 inputs and then you need a slightly more 

complicated picture, but for this course we will keep input as 1 just 1 stream. In output in 

general can be some m streams right so if this is true the design rate is 1 over m so that is 

the design rate what will be the 0 terminated rate. 

Student: (( )) 

So, these are very easy things to figure out, but anyway let us do that once and then I will 

do that. It is going to be k or any for k bits of input so 0 terminated rate actually depends 

on the lengths of the message for k bit input k by m k plus 

Student: m times k minus, m times mu  

m times mu, so if you put numbers like for instance m equals 2 mu equals 6, mu equals 6 

is a popular number in practice, in many standards mu equals 6 is a popular number, m 

equals 2 is also a popular number. If you put k equals 8 what happens to the design rate 

were might be 1 half, but the actual rate is going to be 8 by 16 plus 14, 14 no 12 my 



multiplication tables are getting rusty. So, even though you are saying the rate is 1 half 

because of this extra 12 bits what does the rate actually becomes, become it is become 

less than a third it is become less than a third so this is less than 1 by 3 oh my god less 

than 1 over 3. 

So, this is a problem in practice people deal with it differently, but anyways so we will 

just assume 0 termination all the time so I things like 8 are dangerous, 8 bits of input are 

dangerous when you want to do 0 termination you may not have real control over your 

rate. So, hopefully the operation is clear so let us go back and look at the encoder circuit 

once again. 

(Refer Slide Time: 21:13) 

 

So, in general for a convolutional encoder if you have rate 1 over m and memory mu 

there going to be d flip flops, 1 input stream and if you have m outputs m different xor 

gates at which some connections are made so that is the idea. So, the question is why is 

this called convolutional 

Student: convolving with some streams of 1’s and 0’s of 1 stream. 

All of you must seen maybe hopefully enough linear system theory. So, this is basically 

some kind of a very linear system and you can think of an impulse response it is a 

discrete time linear system except that you might be used to systems where the impulse 

response is real numbers. So, you use to real numbers here the difference is it is all bits 



everything is modular 2 other than that everything else is the same, is the same standard 

linear function theory will apply. So, if you send an impulse as input what does an 

impulse as input, 1 followed by a bunch of 0’s you will get a certain response at output 1 

and output 2 that will be impulse response 1 and impulse response 2. 

If you now do an arbitrary input how can I compute the output simply take that input and 

convolve with the impulse response you will get the output. So, it is all linear same thing 

will hold same thing you can do at output 2 also you have an impulse response 

corresponding to output 2 and then you do that. So, what are these impulse responses let 

us try to find them maybe I call it g 1 what is g 1. 

Student: 1 0 1 

So, it is just going to be 1 0 1 so that is it, what about g 2 1 1 1 so these 2 things are the 

impulse responses. In general if I want to find the input for u n if you take u n and then 

convolve it g n 1 so this sequence u, so if you think of the sequence itself as u the 

sequence v 1 is simply going to be the sequence u convolved with g 1. So, the sequence 

v 2 is going to be u convolved with g 2 so these are standard ideas not too difficult. So, 

the convolutional is also very easy to do basically this convolutional will mean u n plus u 

n minus 2 this convolutional will mean u n plus u n minus 1 plus u n minus 2 the exactly 

the same thing we just saying it in multiple different ways. 

So, the nice thing about convolution is you can also think of it as polynomial 

multiplication, so you go to this transform domain usually you do the z inverse. So, z 

inverse is common when you do real numbers when you have binary and all that instead 

of z inverse people usually use d capital d so you can go to the d notation which is the d 

transform so to speak of this impulse response and get capital g 1 of d and capital g 2 of 

d. And then you do a g transform, d transform on u to get a u of d how will I find v 1 of d 

simply do u d times v of d so that is the idea. So, let us let us do that a little bit more with 

one more examples. 



(Refer Slide Time: 24:40) 

 

So, let us do this this is, this is we are trying to do d transform notation so to speak I 

mean I have just say it is notation it is nothing more than that at this point. So, we get 2 

impulse responses so you think of the sequence u n as u of d what is u of d now, u of d is 

basically summation u i d power I, so i will go from 0 to wherever so 0 to let us say 

capital, I do not know I will just put capital k here, just to me keep something definite. 

So, I have 2 d flip flops 1 output is these 2 things and the other output is all 3. 

So, I can write v 1 of d the d transform of the output here as u of d times capital g 1 of t 

what will be this guy g 1 of d will simply be 1 plus d squared so remember g 1 was 

simply 1 0 1 so the d transform will be 1 plus d square. So, it is all a same thing I mean 

just saying the exact same thing the basic thing I am saying is v 1 n is u n plus u n minus 

2. You can write in so many different ways another way of doing it is to write it as u of d 

times g 1 of d where g 1 of d is 1 plus d square it is a d transform notation. When you 

learn it in DSP I am sure they told you that this is the greatest revolution ever in signal 

processing, but that is all very simple stuff no means it is not very complicated. 

So, u of d u of d times g 2 of d and this g 2 of d will now be 1 plus d plus d squared 

which corresponds to the impulse response 1 1 1. So, really no big deal here and you get 

the same equation back I mean if you just plug it in you get the exact same case back is 

there a question 

Student: (( )) k minus 1 or…  



I have just put a capital k there it is not it is not the small k it is not related to the 

previous k. So, this is some maybe if you want I will give some other notation there I just 

want it something just to define what the d transform. So, how many ever you have their 

you have to do it because you 0 terminate you have to put the 0’s also, but the 0’s do not 

show up in the d transform anyway so it does not matter, alright. So, this is the transform 

notation so there is again once again a short hand notation for this so what you do is you 

can do d transform generator matrix so this is this is pretty important because you will 

get some nice tricks that you can play once you do this. 

You have a generator matrix and d transform that is basically g 1 of d, g 2 of d. What 

does this generator matrix do for me if I want to find v 1 of d and v 2 of d what can I do, 

I can simply take u of d and multiply it with the generator matrix g 1 of d g 2 of d. So, 

this is for this simple and nice reason is called the generator matrix. So, let us maybe do 

one quick and dirty example. 

(Refer Slide Time: 29:02) 

 

Let us say u the input code word so I am going to use all these notations interchangeably 

so if a put u with a bar underlined it means thinking of it as a vector if I u of d I am 

thinking of it as the polynomial in d transform notation etcetera. So, let us say u is 1 0 1 

1 go ahead and tell me what u of d will be what is u of d 1 plus d squared plus d power 3. 

So, what is v 1 of d going to be basically u of d times 1 plus d squared so I have to 

multiply u of d with 1 plus d squared so it is quite simple if I do that I am going to get 1 



plus d squared plus d power 3 plus d squared plus d power 4 plus d power 5 and that will 

be 1 plus d power 3 plus d power 4 plus d power 5 it is not too difficult to figure out. 

And v 2 of d you can find very similarly, it is going to be u of d times 1 plus d plus d 

squared so it is basically this guy plus d times that. So, it is going to be 1 plus d plus 

power 5 so if you do the multiplication you will get that. So, from here if you want you 

can figure out the code word output what will be the code word output. 

Student: 1 1 0 1 

1 1 0 1 0 0 1 0 1 0 1 1 what will happen after this how many should I put out that is it 

that will be the end seems a little surprising, but you see now why the 0 termination is 

nice you know you have to do the 0 termination because this polynomial formula will 

work very nicely we did not do it will be a little bit more complicated. So, we have made 

the polynomial formula can work with a 0 termination that is one way of one fancy way 

of thinking about very simple idea. 

So, the next thing that is done usually in digital systems is some kind of a state diagram 

right and state diagram here will be quite simple so you know there are only 2 bits states. 

So, let us do a state diagram there are only 4 possible states 0 0 from 0 0 what states can 

you go to remember I have a sequence of d flip flops and I am flipping I am bringing in 

bits from the left so how do I do a state diagram, I have to now think about what next 

state I can go to, but basically what input will come in I am in state 0 0 what input will 

come in, it can either be 0 or 1 if a 0 comes in what will be my next state I will continue 

to be in 0 0. 

What will be my output I have state 0 0 and then 0’s coming in my output will be both 

0’s so this is a very standard way of denoting a state diagram. In case I am in 0 0 and an 

input 1 comes in what state will I go to 1 0 so of course, the convention is important I am 

going to write always s 1 s 2 the first d flip flop first you can also do it [FL] then 

everything will change so but I am going to write it as s 1 s 2. So, the next state can also 

be 1 0 if the input is 1 in which case the output will be 1 1 just a question of looking at 

that state machine and figuring out what is happening it is a simple d flip flop so it is not 

too hard. 

Now, from 1 0 what can happen input can be 0 which means I will go to… 



Student: 0 1. 

0 1 with an output of 0 1 or input could be 1 in which case I will go to 1 1 and the output 

will be 1 0 maybe my picture is going to look really ugly, but anyway it will be accurate 

so the only thing I can guarantee. Now, from 0 1 what can happen if my input is 0, 0 0 so 

I am going to make my picture little bit more beautiful. 

(Refer Slide Time: 33:54) 

 

So, let us say we do this differently so we will say if my input is 1, if my input is 0 I go 

to 0 1 with an output 0 1 and if my input is 1 I go to 1 1 with an output 1 0 so this will 

make the picture a little bit better. Now, from 0 1 if the input is 0 I am going to go to 0 0 

with some output and if the input is 1 I am going to go back to 1 0 with some output and 

at 1 1 if the input is 1 I am going to stay here, if 1 1 the input is 0 I am going to stay I am 

going to go here and fill out the corresponding things I think this will be 0 0 and the 0 1 

so this will be 1 0 and if this will be 1 1. 

So, this is a state diagram that you can fill out so I did it rather quickly, but I think this is 

quite basic and you might be able to do it if you put give it some thought. So, what is the 

utility of the state diagram what you do with the state diagram I learnt it long back. 

Student: Given input I know how the I mean I can think with time I can say interval is…  

Actually time is missing in this picture so that is a bit of a problem so people will we will 

change this diagram soon enough, but the idea is basically as the state evolves you know 



you can see how the state is going to evolve from time to time that is the idea in the state 

diagram and there are general system theoretic ways of saying which state diagrams are 

good which state diagrams are bad etcetera. These things are used in convolutional codes 

also, but we would not go into all the detail in this course so we will simply look at it and 

say it is one more thing that we can do with the convolutional codes so that is nice. But, 

let me ask you some questions where are you to begin with 

Student: 0 0. 

0 0 from 0 0 you can possibly go only to 2 other states 1 0 and 0 1, 1 0 and 0 0 I am sorry 

only 2 other states that is correct, but not 0 1 0 1, but 1 0 and 0 0. So, the path you take 

gets defined on the state so any input sequence you have can be mapped into a path on 

the state diagram right starting at the all 0 you will go to something and you can map that 

path, but along with the 0 termination what else can I do I can come back to the all 0 

state so in fact from any other state you can come back to the all 0 state in 2 steps you do 

that and along that path both the input and the output are clearly representive so the input 

you know what it is and the message is there and the code word is also there. 

So, paths on the state diagram are important correspond to message slash code word that 

is one thing. The other idea which is also very important that the state diagram conveys 

is no matter how long my input bit sequence is my input bit sequence can be 8 or 8000 

my state diagram still has only 4 states, because my input bit input bit goes up my state 

complexity is not going to increase the number of states is not going to go up. That is the 

reassuring thing when you see the state diagram, so that is something that is exploited in 

the decoding how no matter how long the decoder is at a code number of code word bits 

is anyway it comes only from a 4 state the system. So, there is some structure which can 

be exploited on the decoding. 

But, coming back to the point that was about the time axis, the time is kind of explicitly 

not present in the state diagram, so it is implicit you should know where you are should 

have a count of how many hops you did from state to state to know time. So, that 

problem is rectified when you go from state diagram to what is called the trellis diagram. 

So, you move to a trellis diagram and there you explicitly used time, a time axis and 

draw different state diagrams for different times that is what you do. So, you do not have 

the same state for instance is 0 0 you have this 1 state for any time so it is just that you 



split it up and draw it for different times and then the picture becomes little bit cleaner 

and you can think about your decoding and encoding very nicely in the trellis diagram. 

The trellis diagram is very standard and that is what used most of the time. 

(Refer Slide Time: 39:00) 

 

So, let us do the trellis, is there a comment or some question no. So, what you do in the 

trellis diagram is yes so you going to draw so let me draw an arbitrary state instead of 

starting from 0 0 etcetera let me draw an arbitrary states somewhere in the middle. So, 

you can be in anyone of the 4 states 0 0, 0 1, 1 0, 1 1 and the next state it is going to be 

again one of four possibilities, but instead of drawing them instead of assuming that the 

same 0 0 states represents the state at the next instant I will draw one more set of states. 

So, this is the state before some time i so this is time i, before the ith input is clocked in 

these are the states, after the ith input is clocked in these are states. 

So, maybe I can call these state as s i and this will be s i plus 1 so if s i is 1 0 what does it 

mean I was at state time state 1 0 after i minus 1 bits have been clocked in and before the 

ith bit is clocked. Now, I can do links here so what will be now I can join these two 

things that was something fancy I did not do it I did on its own, it is nice. So, if 1 comes 

in it is going to go all the way down here from 0 1 also same thing will happen 1 0 and 1 

1 same thing happens and now I can write my input and output on this 0 0 0, oh my god 

is this correct, might let me know if I making a mistake. Let me go back to the state 

diagram and make sure out of 0 1 out of 1 0 with 0 you get 0 1. 



So, the same thing is the state diagram so it is exactly the same there is nothing that has 

changed except that now my branches go from 1 state to some other state so to speak at 

the next time that is all, this is called the trellis diagram the ith general stage of a state 

diagram. So, this is called 1 stage of a trellis so at each stage you get 1 input bit and 2 

output bits so once again I am talking about this example, but if the example were if the 

encoder were something else it is easy to see that you can reconstruct a very similar 

diagram so you have a state diagram and then you convert it definitely into a trellis 

diagram there is no problem. So, the ideas are quite clear. 

Now, what do I do if I have k input bits so I have to start at time 0, but at time 0 there is 

something slightly special going on because I know already that there is only state 0 0. 

So, at time 0 I can either get a 0 which means I will continue to be in state 0 0 or I can 

get a 1 which means I can go to state 1 0. So, what happens at time 1 at time 1 the trellis 

becomes, after time 1 the trellis becomes full, all the states can be occupied. After this 

you have the complete stage so this is the time axis you have 0 1 so on you have to go all 

the way up to k minus 1. So, I am going to put dot, dot, dot here so you can fill it out and 

then after the sorry let me draw the k minus 1 little bit more better.  

This is s k minus 1 so this is after the k minus 1 thing has been clocked in so this is how 

the trellis will look the entire trellis if you want to do it for the entire input. So, you have 

k minus 1 inputs at the end of the k minus 1 bit or it was a kth bit which is you will be s k 

minus 1 am I right or is it s k, so I think I should do s k here so let me do the let me 

changed this out let it just be s k after the k minus 1 after well, after the kth bit has been 

clocked in you will be in s k is that, right? When I say kth bit you should remember it is 

numbered from 0 to k minus 1. So, let me say k minus 1th bit instead of saying so we 

will start at 0th bit, 0th bit first bit so until k minus 1th bit. 

So, after the k minus 1th bit is clocked in after u k minus 1 is clocked in you will be in s 

k what will happen next I am going to be clock in clocking in only 0 so when if you do 0 

then the states you can have is only 0 0 and 0 1 you cannot have anything else. And then 

finally, 1 more 0 will take you to 0 so this is time k and then k plus 1. So, we have the 

0th stage first stage so on till a general ith stage and then a k minus 1th stage which is the 

last message bit coming in. Then you have the kth stage where you input a 0 k plus 1 

stage where you again input a 0 take you take it back to the all 0 stage  



So, this is how an entire trellis diagram will look for the convolutional encoder that we 

had for the simple example. If you have some other example it is easy to see that the 

similar diagram can be re redone if you have mu bits in the state memory mu then how 

many states will I have 2 power mu, then how many stages will it take how many 0’s do 

I have to clock in here, mu 0’s. So, I will go out to k plus mu minus 1 so you start at 0 

and go all the way to k plus mu minus 1 in general. 

And it will take mu bits to be clocked in before reaching all the 2 power mu so we will 

not reach it immediately you will have only 2 states after the 0th stage, you will have 4 

after the first 8 so until 2 power mu after the mu bits have been clocked in. So, that will 

be the general picture there is no point in drawing the general picture because I think the 

intuition is clear in this. So, you see this is a directed trellis so we have direction this is 

such because we are going from left to right that is the idea here we are starting at the all 

0 state and ending at the all 0 state. 

And the analogy that I had before for both parts is also true here every set of inputs that I 

have will correspond to a path on the trellis, if you have 2 different inputs there will be 2 

different paths they will never be the same so that is the idea let me fill it out and then so 

let me just do this. So, every message sequence you have or every code word sequence 

you have corresponds to a path in the trellis, so path in a trellis, paths in trellis 

corresponds to message and code word pair, alright? 

So, in this diagram how many different paths are there 2 path k, so has to exactly 2 path 

k paths so you do not have to worry about counting the paths once again, why should I 

not have to worry counting the paths once again, every paths corresponds to a unique bit 

message. So, how many possible messages are there 2 path k and there will be exactly 2 

path k paths no problem there so there are 2 path k paths. There are various other ways of 

counting that also, but anyway you get 2 path k paths there is no problem there. 

So, this intuition is crucial in the decoding the fact that the every code word every 

message corresponds to a path remember what do you, what do you have to do when we 

do M L decoding, we have to do correlations or minimize the Euclidian distance. So, you 

have to some kind of a distance for every with of the received word with every possible 

code word and pick that code word which gave you the least distance that is the idea in 

M L decoding. 



What people will do in this trellis diagram is you do not compute the distance in one shot 

for all the code words, for all the code word positions start from the left and keep 

accumulating distance as you go along. You will see as you go along you can eliminate a 

lot of paths very early you do not have to wait I mean in every state you will see you can 

eliminate a lot of paths in fact it is enough if you retain only 4 paths in this, you do not 

have to keep doing that computation for all the 2 path k paths. 

Initially, M L is scary because you have to do 2 path k correlations, 2 path k computation 

of distance it turns out in the trellis it is enough if you do for 4 roughly 4, 4 not exactly 4 

you have to do some more calculations, but you have to do only 4. You have to only 

keep 4 in mind all the time you do not have to worry about otherwise you can keep 

eliminating as you go along the starting at all 0 and ending at all 0 and that is the key 

behind the decoder. So, we will pick up from here in the next class. 


