
Coding Theory 
Prof. Dr. Andrew Thangaraj 

Department of Electrical Engineering 
Indian Institute of Technology, Madras 

 
Lecture - 26 

Irregular LDPC Codes 
 

(Refer Slide Time: 00:16) 

 

So, let us begin once again the quick recap. So, what we did mostly was to look at w c 

comma w r regular LDPC codes and we looked at Gallagher a hard decision decoding 

algorithm. So, essentially this thing is a iterative message passing decoder, it operates on 

the tanner graph, so the way we describe that was there are two stages in the iteration 

first stage consists of messages being passed from the bit node to the check node. 

The other stage consist of messages being passed in the opposite direction and what are 

these messages these massages are estimates of this, so this message flow on edges and 

particular messages it is flowing on a edge. It is basically an estimate of the bit node that 

the edge is connected always irrespective of the direction in which messages flowing, it 

are always estimates of the bit node. That it is connected and other way for doing is the 

first iteration that is some message that you send and then the subsistent subsequence 

iterations send another message. 

We also saw this idea of density of evolution which is very crucial which gives you a 

nice handle on what is actually happening what is the idea behind density of evolution. 



So, tracking the probability that a particular message is going to be a rather right that is 

the main idea. How do you track that way there is you have take a lot of care in doing 

that the first assumption that is crucial in density of evolution is that the all 0 code word 

was transmitted. 

So, the all 0 code word was being transmitted is a crucial assumption and that can be 

justified by some means and once you make that assumption it is easy to track the 

probability that particular message is an error. Essentially, what you will have is you will 

have a formula like this. So, P l and the l th iteration the probability of error in the l th 

iteration will be some function which is parameterized by w r and w c of P l minus 1 and 

then the P which is the P s c P s c transition probability is that. 

So, this is to do the crucial method of analyzing the crucial step in the analysis step in the 

LDPC codes, so there are ways of justifying this if you want this formula to hold for l 

iteration what should happen in some condition. There should be no cycles of length to l 

lower, so the Gath should be 12, only then this formula will hold and the kind of do not 

take that too seriously. 

Then, let it not hold, but I will still do it and then we saw stimulation plots where that 

made sense. So, that also made sense and this formula was also useful because when n 

becomes really large probability that there is a cycle in that 12 goes to 0 in every 

neighborhood it goes to 0. So, it becomes reasonably good formula for large plot and we 

saw that also in simulation results as block length increased the prediction given by this 

formula was seen to hold more and more.  

So, you must saw that the curve was shifting closer and closer to the crucial line as n 

became large. So, another crucial property for this iteration has is a threshold property 

what is the threshold property. You can show that there is a P star such that P l P infinity 

is 0, the maximum p, so let me write the little bit more clearly. 



(Refer Slide Time: 04:30) 

 

So, threshold is the maximum P such that P infinity is equal to 0 in this iteration, so you 

keep on increasing P from 0 onwards of course, if P is 0 P infinity is also 0 plus if you 

keep increasing P infinity will continue to be 0 for some time. After that, it will shoot up 

to a non 0 value, so the maximum possible value for which this equal to 0 happens 

infinity equal to 0 happens is called the threshold.  

Remember, once again technically you cannot say maximum because such a maximum 

will not exist in that set it will be supremum or something maximum is good enough for 

us will stick to that. So, any questions or comments on this, so then if you actually look 

at that, there are some thresholds that you can look at I think I did not do in last class, but 

I will tell you, so if now make like a table of w r w c and P star say for a particular rate. 



(Refer Slide Time: 05:45) 

 

So, it is a rate equals half what are the various w r w c possible this is P star for GALA a 

GALA decoder or gala decoder sounds like this. So, if one thing you can do is this, so I 

should say w c w, some reason I always like saying w r w c, I do not know why. So, 3, 6 

is one choice which gives you a design rate of half and that threshold happens to be 

0.039. If you want to be very exact another possibility is 4, 8 also give you a design rate 

of half and this would give you in fact the threshold of 0.047 and then 5, 10 gives you a 

threshold of 0.027. Then progressively do not leave voice sense, you can do this if you 

like if you take 6, 12, it will be even lower, so those are things you can look at. 

So, if you stick to regular codes based on threshold which is the best degree distribution 

4, 8 is the best seems like the best degree distribution, but really there is not too much 

choice. Here, you know if you stick to regular codes it is seems like this too few it not to 

many choices, so you just one or two you can take then quickly you settle down settle on 

the right answer. 

So, this basically proms the move towards irregular codes were you allow multiple 

degrees multiple bit node degrees multiple check nodes degrees or interims. The partly 

check matrix multiple column which multiple column weights multiple not just a single 

one and then see what happens to the threshold. So, if you have threshold etc all that you 

can study and then maybe they will be that a thresholds, so remember if you want to 

know capacity it turns out for rate half capacity is capacity achieving probability is 



basically capacity will come at P equals 0 0.11. So, what this means is if you are if you 

are channel transition probability is smaller than 0.11, you can have rate half for large 

enough block, let that is what is means. 

So, for a comparison, if you compare this two guys is a bit far there is a gap P equals 

0.11 is capacity for rate half the best we are getting with regular codes is 0.047. So, the 

question is the same rate is half what about the actual code rate become, it might become 

1 by 10 or something. It would not become we can show some results that if you pick to 

our matrix at random with very high probability, you will have a rate close to half if you 

can begin linear depend us in spare matrix. 

Now, we moved on to irregular codes and it defined something called the degree 

distribution polynomials there defined the degree distribution polynomials. So, with the 

node prospective, we defined that the node prospective degree distributions basically 

capital l sub by is the fraction of nodes with degree fraction of bit nodes or left nodes 

with degree equal to i. Same is the case with R i, what is R i fraction of right nodes with 

degree equal to may be R j just to say leave some other dummy variable. If you do this 

based on the designed rate, there are constrains the first constrains is that summation l i, 

it should be equal to 1. Similarly, summation R j should be equal to 1 this are all 

fractions clearly they should all add up to one fraction of nodes. 

(Refer Slide Time: 10:24) 

 



Then, you can compute the design rate the design rate will turn out to be something like 

this R equals 1 minus summation i l i divided by summation j R j. So, you can also 

defined some polynomials if you like summation l i x power i R f x is summation R j x 

power j and then so those polynomials this will be l point one divided by R, 0.1. So, 

these are just convenient forms for expressions, so one example I gave for R half. I think 

you computed this for designed rate half we had a one example l of x being equal to x 

square by 2 plus x power 4 by 4 plus x power 7 by 4 and then R of x is equal to x power 

7 by 2 plus x power 8 by 2. 

So, one thing you can try for instance is to say I will allow degree 2 degree 4 and degree 

7 for the left nodes, let me not fix the fractions, now I will simply say I will allow degree 

2 degree 4 and degree seven for the left nodes. So, what does that mean it means l two is 

not 0 l four is not 0 l 7 is not 0 and l 2 plus l 4 plus l 7 is 1. All these case are between 0 

and 1 and for the right hand node, I will allow only degree 7 and degree 8 everything else 

I will make 0. 

Suppose, I add those two constraints how many possible degree distributions will you 

have for designed rate half. So, that is those kinds of questions you can ask it is a simple 

question there will some answers for that. So, first of all you have one equation for l’s 

and one equation for R’s saying summation l I is one summation R I is 1. Then there will 

be one more equation fixing the designed rate to be half what kind of equation will that, 

it will also be a linear equation. 

So, you have three linear equations and how many variables do you have five variables 

and there are forced to be between 0 and 1, so you have some any quality constraints 

also, but in general you can expect infinite number of solutions there will be huge 

number of solutions. So, in fact you do not have to put a constraint on the sum of l i and 

all that so you can do some adjustments with that and if you if you want you can exactly 

solve this problem, but it is not so critical. 

Today, as long as there are linear constraints nobody is cared about linear constraints, so 

it is very easy to program. So, you can do that, so final point they want to make is even if 

you restrict you degrees to be a few more than constant for a particular designed rate. 

You will have several degree distributions, so this was just one such degree distribution 



several such degree distributions are possible for all possible for a given designed rate 

given designed rate R. 

So, this increases your pole of candidates codes and candidate ensembles to speak, so not 

codes, so if a codes always remember when I say LDPC codes, it is just a ensemble when 

I fix a degree distribution the code never gets fixed. So, you have to pick the random 

member from the random matrix from the ensemble, so you have such a huge set and 

hopefully if you come up with a density evolution formula for irregular codes we have 

formula only for regular codes. If you do so for irregular codes, you can optimize over 

all these degree distributions for a particular designed rate to get the best possible 

threshold. 

So, that is the basic idea behind moving towards irregular codes, the regular codes we 

saw that there is gap between the capacity and the threshold that it is a chewing. So, 

maybe you can do a little bit better there, so that is the basic idea behind moving towards 

irregular codes and you can see there is huge number of degree distribution for a given 

designed rate. 

Even if you fix the number of allowed degrees there is a huge number, so if you vary that 

also you get a even bigger number of possibilities, so the question is how complex is this 

research will be. It will be very complex, I am not saying it will be very easy, but it is 

doable today computers are powerful there is very powerful algorithm like whatever 

different evolution is a very common. That is used all these genetic type algorithm for 

optimizations, so you can use all these throw some very heavy machinery at it eventually 

it will work. So, that is the idea, but the idea is other thing is you do not have to do this at 

some gigabytes second or something. 

So, this is some initial design that you are doing once and you freeze it that is all, so you 

do it as you can take like six months to do it as long as it that at the end you are done you 

know you do not have to do it online or anything like that. So, let us see let us see let us 

see how to go about doing this of course, coming up with construction for irregular 

degree distribution also is a little bit tricky. So, for regular we had some constructions, 

but you can always define a socket construction. 



(Refer Slide Time: 16:28) 

 

So, we will always think of a socket ensemble for irregular codes so how do you do the 

socket ensemble. So, you have l one n nodes of degree what of a degree 1, so I am not 

going to put degree 1, so I will just put start with degree 2 l 2 n of degree 2, then l 3 n of 

degree 3 and so on. Finally, may be some l, I do not know what do you want to call this 

guy maximum may be I will put I here, so I n bit nodes, so all these guys have degree 2 

all these nodes have degree 3 etc. So, the first set l 2 n has degree 2 the next set l three n 

has degree 3 so on, so what can I do, I can put two sockets in each of these nodes. 

Then, I would put three sockets in each of these nodes so on till I will put how many 

sockets here I sockets in each of these nodes. Now, the same thing I can do for check 

nodes also this going to be R 2 what R 2 M, M is the number of check nodes it is not the 

it is not n. So, m is the number of total number of check nodes, so likewise all the way 

down to R capital j m and I will put two sockets here and I will put j sockets here. Now, 

you have to count the total number of edges what is the total number of edges, so there 

are two ways of doing it. It is going to be summation I, LI times what times n is that 

correct or not maximum this side. 

This will be the same as summation j R j times m, so this is the total number of edges 

may be I call it some n e what do I do, I pick pi to be a permutation of any objects and 

then place the edges according to this random permutation. So, you number this sockets 

from one to n e on the left side you number the sockets from the same one to same n e on 



the right side there will be exactly n e sockets on both sides right pi will be a permutation 

from 1 n e 2, 1 n e. So, for each permutation, you will get a code, of course, it is a 

multiplied problems still remains, so let us say we throw away all the multiplied edges 

for distance and then you get then you get codes from it. 

So, technically for any irregular degree distribution also you can do a socket construction 

there is no problem, so construction is specification seems designed rates seems only 

next step is to look at decoding. So, once we will once you assure that the decoding that 

we had the GALLA decoding for instance also extends to the irregular case. So, that is 

the good for step and then we want to extend density evolution to the irregular case once 

all of those is done then you can go ahead and work on this complicated optimization or 

search for the best possible degree distribution for a particular designed rate. 

(Refer Slide Time: 20:47) 

 

So, that is the next two steps that we will tie and do so what about Gallager decoding, so 

before this if you want me to mention what will you do about encoding, what about 

encoding of irregular code. So, once you have the parity check matrix encoding is at least 

principle trivial, so do you grow in elimination convert it into systematic form and then 

do the encoding. So, that is going to be a little bit more complex if you want to do 

efficient encoding there are ways of doing that also. All those things will extend without 

any problem the critical thing is the decoding, so let us see how the decoding extends 

decoding is also actually quite simple. 



Remember, how did we describe Gallager, finally, on the stenograph each iteration has 

two steps in the first steps the message were passed from bit nodes to check nodes in the 

regular codes. Each bit nodes were connected to a to the same number of check nodes 

you had w R on each sides, but what will happen in the irregular case. There will be 

different depending on how many there are you simply pass that many messages, the 

same principle holds you send messages on the edges message. 

Sent is an estimate of the bit nodes that is connected to except that in the irregular case 

every bit node will not do the exact same thing as in it would not have the same number 

of neighbors that is all the principles is the same. It will pass messages according to the 

same algorithm only, but bit node of degree 2 will send out only two messages well a bit 

node of degree 10 will send out 10 different messages that is all. So, rather than that, I 

can very easily write down the rules for the iteration, so I am going to say Gallager 

decoding same as regular with some codes. You have to just understand that this one 

minor change does not the degree must be different, so how does this, this look. 

So, you have a bit node which is connected to let us say I check node, so let us say 

degree here is I, so what would have happened in the l minus 1 th iteration you would 

have got. I think if I remember, I called that u l minus 1 is that correct u 2 may be right, 

so you will go all the way down to u I l minus 1. So, may I write this again, so the 

message that was received in the previous iteration is like this and the message that 

passed from on the first edge in this iteration is b 1 let us say l. 

How do you decide b 1 l if all the u's agree equal to b, then v 1 l equal to b, so let us say 

the channel received information is l's v 1 l equals R, so the rule remains exactly the 

same except that there might be some bridges which I have connected. Only two nodes, 

two check nodes and there might be some bridge which I connected to more than 2. So, 

depending on what we are connected to you simply change the degree there and you 

have this exact same rule which you can repeat there is no complication as far as the 

iterative message passing decoder is concerned. It works on even a irregular graph 

exactly the same way without any problem so what happens on the check node side. 

So, the check node might have degree, so you can run this decoder and if you want to 

measure performance for the decoder you have to have some analysis is good. Suppose, 

we cannot analyze what would be a very brook force way of analyzing the decoder you 



have to do stimulation, but then if you want stimulate down to 10 power minus 3 frame 

error rate you have to stimulate 100, 1,000 blocks. So, one way of optimizing the degree 

distribution is doing what you pick a particular degree distribution, how do you measure 

the performance of the degree distribution you stimulate and recreate and create not 

recreate create the b R verses e b over n node picture. 

It will cross a 10 power minus 3, 107, you find that point and then you find one more 

degree distribution see how it behaves. That would be one way of measuring 

performance, but given that we have a huge number of degree distributions some 

procedures like this will not even convert in finite time. Even though you have even 

though you have like 6, 7 months in your hand you may not be able to do anything like 

that also, you really desperately need some way of extending the threshold analysis. 

Even if it is approximate, even if there are some hand waving’s, then here and there even 

if it is not very exact if you have some number which can be easily computed given the 

degree distribution which measures the threshold. 

So, to speak, then you can optimize the degree distribution for that number so in fact it 

turns out the threshold computation is also hard we would not have a closed form 

expression for threshold even in the regular case. We did not have a closed form 

expression, actually for this algorithm may be you can get some approximations, but it is 

very hard to get a closed form expression I think. So, general case you may not be able, 

so for the irregular codes also you may not get a closed form expression, but at least 

numerically you should be able to evaluate the threshold and that might be way better 

than doing 100, 1,000 blocks of stimulation. 

Actually, implementing the decoder and you do not know how many iterations to do 

number the block length n is going to be very large and n is going to be a 100, 1,000 or 

something. Then you have to do so many iterations hundreds of iterations you have to do 

so it takes a long time to that takes a long time to finish till computers reach that stage. 

You still need some analysis of how this is going to work so let us see how to extend the 

density evolution the way I describe it. 

I will do I will do a kind of a hand waving justification for something so there are there is 

a slightly more rigorous justification possible, but at the end of the day it is an 

approximate analysis. So, I will try and mention the main steps and give you some 



guidelines on how to understand it, but I will derive it with a very simple kind of hand 

waving kind of idea. So, that will that is how I will derive it, so the basic idea is we want 

a repeat the same analysis that we had before, so we want to do density evolution. 

(Refer Slide Time: 29:22) 

 

How did density evolution work, in the previous case we had two different quantities that 

we tracked across iterations there was this P l. Then the q l P l was the probability that 

the message from bit two check was an error and q l was the probability that the message 

was the probability that the message from check to bit nodes was an error. So, I will give 

you a simple way of getting an approximate expression for these things in the irregular 

case there will be some holes in the way I described it to rigorously properly justify it. 

You need some one more course material, so maybe it is not possible in this codes I 

would not, I would not do too much in the later on, I will mention all the caviars and 

what else is need to make it little bit more rigorous. So, that is what we are going to do 

so but before that the all 0 code word assumption can be justified in the same manner as 

before we will actually, we did not really justify the all 0 code word given before, but it 

can be justified. 

So, I am going I am going into that detail, but you assume the all 0 code word and that is 

no problem that will be justified for the same reason that it works for regular codes. So, it 

is no problem at the extends without any approximation so like before I want to have P l 



to be probability that v l is equal to 1 and likewise they also want to have q l to be 

probability that u l is equal to 1. 

So, now comes crucial point and defining v l and u l, so in the regular case I really had 

no problem in defining v l and u l to be I mean not defining in assuming that v l and u l. 

That was a crucial assumption if you remember in the so that is the first the first kind of 

approximate analyze approximation that will enter the analysis. I will no longer look at 

one graph I will look at all the graphs on average over that so it turns out you can justify 

this IID nature when you average over all the graphs I am not going to going to great 

detail. In fact you can justify it only as n turns to infinity the asymptotic situation it is 

justified. 

So, let us let us leave a try that and then again for u l also the same thing holds once 

again you have to average over all graphs in the ensemble only then every edge will be 

equally likely to come from an average kind of neighborhood. This looks the same, that 

is the idea, so I do not want to go into great detail here, but we will just remember that 

the messages that we will be tracking are not the messages on a particular graph are not 

looking fixing a graph and doing decoding. 

You are not tracking messages there what is the messages is being tracked you will be 

looking at all the graphs together. So, all 0 code word is being received over the b s c the 

same received word is being decoded by all graphs from the ensemble how many graphs 

are there are huge number of graphs all is very large. So, huge number of graphs all of 

them are being decoded decoding is done simultaneously, then what message will attack 

an average an edge that I pick randomly from all of those things. So, that message I will 

get that, I can say will be IID seems to make sense look, so many huge things may be IID 

it is not too difficult to justify. 

So, the way there is regular ways of justifying it, but intuitively that is what happening 

that is the picture you should have in mind, I do not have one graph I am not tracking the 

message on one graph. I will first pick the particular edge, the particular edge that I can 

specify in the certain ensemble. So, number from edge out of this guy may be specify 

that then that one you have to now look at every single code. 

So, it is neighborhood each in each code the neighborhood will be different you can kind 

average over all of those things that is the idea. So, I do not know anything did I do 



anything wrong. So, we are back, so it is a bit of like I said it is a bit of official idea you 

have to justify it very carefully. We will not see that justification class I love, you look at 

the book by Bunk K Richardson modern coding theory. We have a very good 

justification of this and there’s lots of detail in that book. So, if you are interested you 

can take a look at it, but we will proceed with like I said my own pseudo interpretation of 

that. 

I will give you a simple derivation, so remember we are interesting the density tracking 

the probability of u l and v l being in error through these two steps. There are two steps 

in the iteration, one step is the processing at the bites nodes and the other step is the 

processing at the check nodes, we will start with the processing at the check nodes, 

suppose I have a check node with degree j. 

(Refer Slide Time: 38:32) 

 

So, remember once again, so let me so for some reason it has not oh I think it is not 

maybe it is not the standard one then I will so I want to pick a random edge what do I 

mean by random edge. So, when I say random edge the edge can be from any one of the 

codes so there is huge number of codes with the same degree distribution and I want to 

pick a random edge from this code. So, you pick a random edge and then ask the 

question what it is right degree and what it is, left degree. So, you have ask that question 

because only then you can do the evolution. 



So, when I want to do the evolution of I mean when I want to find q l or u P l the 

probability the messages or an error the degree of the check nodes and the degree of the 

bit nodes plays an important role. Then I cannot analyze the probability of error on any 

particular edge I have to pick the edge over at random, so when I keep doing this a 

random edge when I pick a random edge you have a probability that this random edge is 

connected to a certain degree check nodes. The probability that this random edge is 

connected to a certain degree bit node, so let us try to compute that. 

So, if you pick a random edge what is the probability that right degree equals right 

degree of edge remember what I mean by right degree of edge the degree of the check 

nodes that it is connected? So, what is the probability that equals j how you will answer 

this question. So, this will basically be let me remove the question mark this will be the 

fraction of edges fraction of edges arising from arising from degree j check nodes right 

that is the idea so in a graph. You have so many several check nodes of different degrees 

so there will be several edges which originates from different degree check nodes. 

So, when I pick a random edge in a particular graph even in a particular graph a 

particular edge is likely to be connected to a check node of degree j with the sudden 

probability. That probability will be equal to the fraction of edges that come out of 

degree j check nodes and this fraction can be very easily computed what will be this 

fraction j times R j times m divided by submission j R j m. 

So, m will cancel, so you simply get j R j by submission j R j, so since this quantity 

figures with the importance in our analysis we will call it row j. So, give it a new name 

this is the probability that the right degree of a randomly chosen edge is going to be 

equal to a particular j that is row j. So, this is also called the edge prospective degree 

distribution. 

So, R is the row prospective right degree distribution row is the edge prospective degree 

distribution, so basically says what the probability that the randomly chosen edge even in 

a particular graph will be connected to a degree j check node. So, the same question you 

can ask for the left degree probability that left degree of a randomly chosen edge equals i 

I am using i and j these are dummy guys. 

This will be also again fraction of edges arising from degree i bit nodes so we will call 

lambda i this is just notation, and just like before you can quickly, that this will be the 



formula right I L I divided by submission I L I So, these two fractions will play an 

important role in analysis, so that is fine let us accept those fractions as reality. Now, 

when I do that, let us see how I can go about doing this in this analysis without too much 

pain so what I am going to do is, I am once again going to look at the check node of 

degree j. 

(Refer Slide Time: 43:26) 

 

Then, look at the messages that are coming in it will have j node j edges connected to it 

so this will be j minus 1 and this will be the message that I am interested in what is the 

probability of error in this message. So, I would received some messages from this j 

minus one guys and I will be sending out a message in this direction I want to look at 

what is the probability that the error in this message. So, remember what the probability 

that all these incoming messages are in error that is going to be IID according to v l 

probability of error here is some P l and it is IID right that is given to me. 

Now, compute the probability of error in that message and for that I know the formula 

already so that formula is very simple this will be 1 minus 1 minus 2 P l power j minus 

one divided by 2, so that is the probability that I have an odd number of errors in this in 

this j minus one that I can do for a particular check node of a particular degree j, now this 

edge that is choose has a probability row j. So, in I mean if you instead of doing all that 

work I can give this hand waving justification say that it is justified by strong values, so 

that is the hand waving part. 



(Refer Slide Time: 47:54) 

 

So, not rigorously justified so you have a bit node let us say it is of degree i, then it will 

have i minus one guy's from home there will be incoming messages and there will be an 

outgoing message whose probability error I want to compute. So, once again this guy 

probability of error will be is very known to me, so this is going to be 1 minus P times q l 

q l minus 1, I do not know I think this I think q l minus 1 raise to the power i minus 1 

plus P times 1 minus one minus q l minus 1 raise to the power i minus 1. 

This is the formula that I know and what will I do for P l I simply sum over I going from 

one to capital I lambda i which is the probability that might randomly chosen edge. So, 

to speak has connected to a degree i bit node and then I do this same way this multiplied 

by one minus P q l minus 1 raise to the power i minus 1 plus P 1 minus one minus q l 

minus one raise to the power i minus 1. So, that is fine alright, so I have a wave from 

outgoing from q l minus one to P l and then I also have a way of going from P l to q l. 

Now, I can repeat this process and in general I will finally, a density evolution formula 

for P l which will be a function and the parameterization will be in simple terms you can 

write it as lambda of x and row of x what is lambda of x and row. There will be some 

polynomials involving the lambda, so I will write that down, so where lambda of x is 

simply submission lambda I it is it is common to write x power i minus 1 instead of x 

power i here for lambda. So, I will tell you y is soon enough, but it usually it turns like 

that row of x is written as submission row j once again x power j minus 1. 



There is a very simple reason why they do j minus one instead of j for node prospective 

it is common to do j. Then for edge prospective, we do j minus one that is all so this is 

the density evolution formula, but remember this is not valid for a particular graphs. It is 

valid when you average over all graphs, so how good is this is an important question that 

we have to ask we will answer that soon enough, but this is the idea, so what is the 

summary of this lecture finally. 

(Refer Slide Time: 51:14) 

. 

So, even for irregular codes, so you have same ideas extending what are the same ideas 

decoding message passing decoding definitely extends more importantly density 

evolution extends, it is average density evolution. We did not provide a very rigorous 

justification for it, but I said it can be justified in a more rigorous way than what I gave 

you right note. So, we will stop here for now and in the next lecture move on and see 

something more about this density evolution. 


