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So, let us once again begin with a quick recap of what we have been talking about. So, in 

the area of soft decoders, I was talking about how you can use the code words of the dual 

cord to do decoding. So, that is main idea, that idea I think is central to understanding 

this many decoders that we will describe from now on. Code words of the dual are used 

to decode, so this is very important.  

So, not necessarily the lineally independent code words in the parity check matrix, but 

any code word of the dual can give you information about say 1 particular bit of the code 

word that you are interested. So, usually if you think of a code, so if you think of a 

received vector r so you have r 1, r 2 through r n. And suppose you want to somehow 

from this vector r get let us say the a posteriori LLR for the first bit. So, you are 

interested in terms like capital l.  

So, this is basically a posteriori probability for LLR, it is not just probability a posteriori 

LLR for the first bit of the code word. We saw a description how this can be expressed in 

terms of the individual scalar LLR. So, this is like the vector LLR, so this is basically log 



of probability that the first bit is zero, given the entire received vector r divided by 

probability that the first bit is 1 given the entire received vector r. So, you can write an 

expression involving the small l i for a capital l 1 and I describe how to do that 

accurately and that is a big nasty expression.  

A useful way of simplifying that is to look at code words of the dual. So, each code word 

of the dual, which involves bit 1. What do I mean by saying involves bit 1 in the first 

position it should it be 1. So, if you have any code word of the dual, which has a 1 in the 

first position that can be used to get some extrinsic information about the first bit. So, the 

idea was to write this in terms of l 1 plus extrinsic. And then you split this as extrinsic 

information over every code word of the dual, which involves the first bit or which 

checks the first bit that is the idea. 
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So, if you have a code word of the dual let us say c prime, c prime 1, c prime 2, c prime n 

is the code word of the dual. Then we know that the transmitted code word c dot c pot 

was 0 or what is true c 1, c 1 prime plus c 2 c 2 prime plus so on till c n prime is zero. 

Now remember c n prime has to be equal to 1, so this k is equal to 1. So, I have c 1 plus 

then c 1 c prime will be 1 in certain positions, it will 0 in some other positions.  

So, maybe you can say c prime i equals 1 for i equals i 1, i 2 so on. So, let say some i w, 

so w ones in c prime of course, i 1 is equal to 1 so the remaining ones are also 1. So, if 

you plug this into this equation, you would get c 1 equals what c i 2 x or c i 3 x or so on 



till c i w. So, every code word of the dual, which has c prime 1 equal to 1 gives you a 

parity check in equation involving c 1. So, this can be used for getting extrinsic 

information.  

So, this is a bit of a crucial idea and any decoders, so you have the entire code word you 

have you have the entire code received vector r. Of course, I can split my a posteriori 

LLR as the intrinsic l 1 plus some extrinsic information and this extrinsic information is 

going to be a big complicated expression. If you want to evaluate it exactly, but 

approximate evaluation usually involve looking at code words of the dual, which have c 

1 prime equal to 1, the first position should be 1 at the in the dual.  

If that is the case then if you look at the condition that satisfied between the code and the 

dual is you know c dot c prime has to be 0 that gives you some equation involving c 1. 

So, if you use this to provide extrinsic information, it is going to be a simpler operation 

to deal with through the poster looking at the entire expression and trying to evaluate it, 

you can try and attack it this way.  

Now, the idea is to look at multiple code words in the dual and see when you get 

independent extrinsic information as long as you keep getting independent extrinsic 

information, you can keep adding the extrinsic LLR’s. The trouble is you cannot really 

keep track of everything there; eventually you will also get some dependent information 

how do you deal with that, that is the question. So, the various approximate decoders to 

various standard tricks are to simply assume independence even if it is not there. So, that 

this is the basic general principle behind approximate iterative decoders for at least l d p 

c codes. 

So, in general also this is the philosophy, this is very useful to keep in mind. So, the only 

kind of remaining detail here if you are going to do this, you know how to get this 

extrinsic information. Given this equations, it is the two time hyperbolic inverse and 

hyperbolic products. It is very straight forward to get the extrinsic information from here. 

The only remaining information is from the dual, what are the code words from the dual 

that I should consider and in what sequence, where which one should I consider first, 

which one I should consider next etcetera.  

So, that is essentially the problem that will be that is left here. So, this is where we kind 

of stop for the soft decoders, but remember I mean this can be actually done for any 



decoder need not necessarily be soft or anything. So, even if you had hard so even if you 

are received vector r is just bits over the binary symmetric channel, you are getting only 

bits. Maybe you cannot think of a log likelihood ratio, in fact you can think of that also, 

but maybe you do not want to think of a log likelihood ration.  

But nevertheless you can use these equations for doing decoding. You mean for the 

binary symmetric channel because this is a valid equation for any channel. So, if you 

look at this bit, the bits on the right hand side they will give you some information about 

the first bit. So, the principle to remember is you want dual code words of low weight, 

why do we need low weight?  
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So, then this extrinsic information is more meaningful. So, as you keep increasing the 

weight, extrinsic information will be 0, weight become very large extrinsic information 

is 0 and you do not get anything. You want it to be non 0 then if it has to be non 0, it is 

much more likely to be non 0 if you have lower weight that the main idea here. So, you 

want low weight dual code words and like I pointed out, you can use it for any decoding.  

Even if you have a hard decision decoder you can use such things that is the other point 

may be, which I did not emphasis. So, height in the contacts of soft decoders, but if you 

have hard decoders, you can use this equation in the hard decode. Then the third crucial 

point is independence, so you want we do not want the dual code words to overlap in any 

other position other than at the first position.  

So, this i ones are the i 2 to i w, if you look at another code word they should not be the 

same i 1 can be 1, but there should be no overlap. There is no overlap then you will have 

independent information and you can keep on adding without any problem. So, these are 

general principles which are quite useful to keep in mind. So, when I describe the 

decoder if you keep this principles in mind some of the steps will make sense otherwise, 

it will seem like it is just an ad of decoder that people have come up with. So, the next 

thing we say was definition of low density parity check codes. 
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So, in particular I spoke about regular low density parity check codes. So, these are 

parameterized by 2 quantities w c, which is the column weight and w r is the constant 

row weight. So, these codes basically have sparse parity check matrixes and in particular 

1 type of code is the regular code, where each column has w c ones and each row has w r 

ones. So, your block length is n then your parity check matrix will actually be an n times 

w c by w r times across n matrix by n matrix.  

So, this will be the number the rows, this quantity here is a number of rows you can 

show that it is not too difficult. And there are many ways of constructing it one method is 

Gallegan construction, which works if w r itself divides n, there is a way of splitting the 

matrix into w r parts and picking each one in an obvious way and then doing arbitrary 

permutations. So, crucial thing to remember as this is not unique so it is in fact, if you 

say a regular LDPC code you are not talking about one code. So, you are about in fact 

and ensemble of codes, this actually an ensemble of matrixes.  

So, we will see later that ensemble of matrixes shared some properties particularly under 

certain types of decoding this have some good properties. So, it makes sense think two of 

them together as one ensemble. So, from a design point of view important issue as use of 

what value should you take for w r and w c etcetera? One parameter there is the design 

rate just simply 1 minus w c y w r, it turns out the rate of the code is always greater than 

or equal to this design rate. 



How did this come over? The number of rows is of course n w c by w r which means the 

rank is less than or equal to n w c by w r rank is n minus k. So, k is greater than or equal 

to n minus n w c by w r. So, rate is greater than equal to 1 minus w c by w s. So,  
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So, the question was basically can the design rate be negative? From purely matrix point 

of view yes it can be negative, but from a code point of view maybe it does not make too 

much sense to have it as negative usually.  
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So, if your rate is usually positive right. 
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 Yes actually it is also possible so that is the other part of the issue. Even if your design 

rate is negative the rank can at most be n at least mean not at most be n, it cannot be 

greater than n. So, it might end up being invertible matrix so in which case code is just a 

trivial all 0 code, that is the only danger or maybe the rank is less than n, in which case 

the actual rate might still be positive. So, that is why this what design rate is a bit 

misleading, that is the best thing we can come up with. But what will happen if your w c 

and w r are small? Let say for instance 3 and 6, w c is 3, w r is 6; you construct a random 

matrix like that.  

In the Gallegan construction, you will see that there will exactly 2 lineally dependent 

rows nothing more than 2 will be lineally dependent. So, you can see very easily in the 

construction, where we construct there will be at least 2 rows, which are lineally 

dependent on the others. So, if you think about it you can add up everything in the first 

section, you get the all ones in the next section also you get all ones etcetera. So, that is 

for w r equals w c equals 3 so you get 2, which are lineally dependent nothing else will 

be lineally dependent. 
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You can see that also mostly in a random construction, it is very difficult to get lineally 

dependent rows. So, the next crucial idea is this notion of a tanner graph, tanner graph is 

a graphical representation of parity check matrix. So, the idea is I have a bi-parted graph 

on the left nodes; the left nodes are called bit nodes. These are also sometimes called 

variable nodes, but we will use bit nodes almost exclusively. So, you can in fact number 

them if you like from 1 to n, there will be n of them.  

And on the right side you have nodes that are called check nodes. If you number them 

from 1 on you will get for the regular codes, you will get n w c by w r of them and the 

edges you put basically are, they represent ones in the parity check matrix. So, if you go 

to the first row, the first row will contain ones in certain bit positions, you simply 

connect all those bit positions to think so that is the tanner graph.  

Some things to keep in mind here each node is said to have a certain degree in this 

graphical representation. So, what is the degree? Degree of node is this is equal equals 

the number of edges incident on it or connected to it. So, what will be the degree of a bit 

node in a tanner graph it will be equal to w c. What will be the degree of the check node, 

it will be w r. So, that is something that you can see very easily. So, based on the tanner 

graph you can come up with something known as a socket construction for regular 

ensemble where, for each node you have as many sockets as its degree.  



So, on the left side you would have w c sockets for each node, on the right side you 

would have w r sockets foe each node. In total you would have n times w c sockets on 

both the left side and the right side. If you add up everything and then you define a 

permutation from permutation of n w c numbers from 1 to n w c that tells you, a way of 

connecting the edges and it maintains the degree constraint. Every node will have every 

left node will have exactly degree w c, every right node will have exactly degree w r.  

The only confusion there is 2 nodes, 1 bit node and 1 check node might have more than 1 

edge, so you should have some way of resolving that. There are many ways of resolving 

it, for instance you could say if there are more than one edges I may drop one edge or 

something like that. So, you can come up with some something like that it does not really 

matter or another thing to do is to say I will only look at those permutations, which do 

not give me multiple edges between 2 nodes, you could say that.  

If you say that then it will map properly to a parity check matrix otherwise it will it will 

map to multiple parity check matrixes or something, but it is not a big deal you do not 

have to worry about it. You can show that an overwhelmingly large number of 

permutations will not give you multiple edges or does not really matter in practice. So, 

that is about constructions Gallegan’s construction and the socket construction. So, why 

the tanner graph? So, you might say parity check matrix itself has all these information, 

why do I need to go to the tanner graph?  

So, it turns the decoder that you will be considering for LDPC codes, which works 

really-really well and gives provides all capacity achieving performance etcetera is 

described usually on the tanner graph. So, you remember I was talking about sub optimal 

decoders just a little while ago I was saying, only thing that you have to specify is what 

code words of the dual are you looking at and in what sequence. 

So, that is what is you are specified any way in a in a sub optimal decoder we are going 

to do. We are going to look at one code word of the dual at the time. So, which code was 

do you want you look at and then what sequence etcetera has to be specified, it tends out 

that tanner graph specifies helps in the specification very efficient way. So, that is the 

main utility of the tanner graph the decoders are described very nicely in the tanner 

graph.  



Other than that it is it is just an entity of course, today there is a general area called 

inference in graphical models. So, it is a very popular area other people are doing on it. It 

has connections to statistical mechanics, statistical physics and information theory. So, 

many other connections of that of course, the graph itself have a lot of importance. Not 

saying it does not have importance, but for us at least in the first course we will be just 

concerned with how it not the parity check matrix and how it specifies the sequence set, 

which you are looking at code words of the dual in the decode.  

So, that is the thing that will be interesting to us. So, we have seen the definition of low 

density parity check codes, we have seen how to construct them. So, at least technically 

we have seen how to construct them you can write a Mat lab program or a C program to 

do the construction given a w c and a w r. Then the next the most crucial step is a 

decoding, but before that lets quickly see encoding and get rid of it and then we will see 

what how decoding needs to work on. 
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So, encoding is really not nothing much to say about encoders I will mention them very 

briefly. So, you have a parity check matrix from the let us say h is from the n w c w r 

ensemble. I should also point out that there are many more LDPC codes then just regular 

codes. So, there are all kinds of sparse matrixes that do not respect regularity and there is 

a lot of benefit and going to regular codes also.  



Codes that are not regular, but for now we will see a regular codes for a while and then 

later on will move to irregular codes. So, suppose you have a parity check matrix from n 

w c w r ensemble, how will you go about designing encode of other code, what will you 

do? What is one yes one is to find the generate matrix, exactly that is that is the method. 

So, how will you find the generator matrix? So, you have to convert the parity check 

matrix to the standard form, the systematic form. So, you do row operations and convert 

the parity check matrix to systematic form, what form would that be let us say p i. 

And after this you can use the matrix speed to do encoding. So, how will you do 

encoding, if you have a message m which is k bits, you are going to say the code word is 

m and then m p transpose so that is the encoding. So, this gives you a valid code word 

and you can do this. The only trick here is only problem should I speak here is how 

complex is this encoding. So, how many operations does it take as a function of n for 

instance.  

You would like it to be a linear function n for every code word that you are putting out 

you would like to do the same amount of work. So, you do not want to do a constant 

amount of work, you do not want to do too much more work, but it turns out when you 

do row operations, this sparse character will be lost. So, was row operations involve 

adding a lot of rows you have just w r rows, which might be a very small, but w r ones in 

each row, which might be a very small number, but when you keep doing row 

operations, you are going to increase that number a lot.  

So, this p in general will be a dense matrix, it will be dense, but it is not too scary 

because what is the size of P, size of P is simply n minus k cross k. So, at most it is going 

to be N Square or something so there will be n squared ones maximum number of ones 

that are in p can be about N Square. So, the complexity of this encoder can go as much as 

n cube exactly something like that. So, roughly n k in complexity we will say s of this 

and encoding so it turns out can do something smarter.  

So, instead of doing row operations where your adding rows this is what costs increase in 

the weight. If you only do row swaps and column swaps then you are not increasing the 

weight of any row, you are not changing the sparse character of the matrix. So, there 

efficient algorithms to do only row swaps and column swaps and convert parity check 

matrix to some other form, which looks similar to this. So, there is efficient encoding 



methods first thing you can try is, there was a question about maybe you can change the 

design of h 2 for some constraints on it.  

We will come to that soon enough, but before that one way to fix this n cube complexity 

is to say that I will do from h row swaps and column swaps. And then maybe I will get a 

matrix of the form some p and then some t where this t is some triangular matrix. It may 

not be fully triangular may be some small part of it some small delta part of it might be 

dense for some reason. To make it fully triangular you might have to live with a small 

dense part for the matrix, but except for that small dense part most of the other parts 

were done purely by row swaps and column swaps so the weight did not increase in 

some significant fashion.  

So, in fact you can do this and you can show that the complexity here can be utmost 

linear so this would have complexity. So, when I say complexity I am talking about the 

number of operations so how many bit resource you have to do to finish the encoding. 

So, it is going to be of the order of n power 3 here. So, you can do this smartly there are 

papers that have been written, you can write programs based on those papers and do it 

very-very smartly and mark this delta really-really small.  

So, except for a very small tiny part of your matrix everything else is sparse and you 

have this p n upper triangular nature. So, it is very-very easy to do an inverse in this 

format and you can do encoding with this also. You can put your message here find the 

last bit then do a back calculation since only a small part is dense the back calculation 

will be done very quickly. So, that is the idea, you can do this and then the complexity 

here becomes roughly n.  

So, almost linear that is one way to solve the problem at the encoding side, the other 

problem is what was suggested. The other suggestion was maybe you can design h in a 

very smart way to make encoding easier. So, that is actually what is done in many 

standards today, the standard except LDPC codes, which have a very simple encoder for 

the simple encoder based on the structure of the parity check matrix. So, it is a little bit 

more complicated maybe towards the end I will describe how that is done.  

So, for now this is a better situation to keep in mind. The main idea is given a parity 

check matrix any way you can come up with an encoder, if you do not care too much 

about having a little bit more complexity, n cube this is not so scary, it is still polynomial 



you can do it very easily that is not a problem. But even if you are worried about linear 

complexity, there are methods very standard methods which I am not describing here, 

but they do exist which will help you simplify this decoder encoder because of the sparse 

nature.  

So, you are doing some smart swaps and column swaps to get the results. So, this is all I 

want to say about encoding as you can imagine encoding is a simple problem. So, it is 

not really that complicated then we saw before never spent too much time discussing 

encoders because it is reasonably simple. We can do it often relatively much more 

complex problem is a decoder, which is what we have to spend more time on this. Any 

questions on this, everybody is particularly after I said it is not important, nobody is 

going to ask questions on something like this. 
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That is all I wanted to say about encoding so what can we do now? So, if you want to 

summarize we can construct LDPC matrices and what kind of LDPC matrixes n w r w c 

w r, let us say n w c w r we know how to construct. And usually as you can imagine, you 

would keep these 2 constraint, this 2 very small or when I say constraint its always 

independent of n that is what I mean when I say constraint.  

So, these would be relatively small a very standard choice would be to put w c equals 3 

and w r would be 3 by 1 minus rate, the rate that you want. So, this is a this is a very 

standard choice and then you would increase n, n would let say hundred to start off with, 



then if you see that is not good enough you might want to go to thousand, then you might 

want to go to ten thousand etcetera. So, this is how you construct and try out these codes. 

So, when I say construct you are not going to construct all possible matrixes out there, 

some random instance of this ensemble.  

So, you are going to just pick the column weights randomly, the row weights randomly 

and hope that you get 1 random number that is ensemble, which is good. So, that is the 

idea so you have to write computer programs for this not just sitting down with a pen and 

paper and constructing this. It is no way which you can do this right 10000 with 3 n it not 

going to work not going to be able to do that, but still it will be efficient. As in many of 

these matrixes are sparse and many computer programs many I mean even Mat lab have 

lot of algorithm for spares matrixes for storing them.  

You do not have to for instance if it is a 5000 by 10000 matrixes that is a lot of entries, 

but you do not have to store every single entry you know it is sparse. So, you only show 

store the locations and the values of the non zero entries so storages efficient and all that. 

So, you have to all that in your program only then it will work otherwise you need some 

16 Giga 32 Giga machine of ram to make things to working may not be efficient. 

 So, it is easy to write programs given that you are careful with memory in some high 

level ray, if you are careful it is ok. The next thing is we can we can encode there is no 

problem using some standard ideas. So, of course, the most crucial part is decoders so 

what is it about these low density parity check matrixes is that, there is some there should 

be something. So, popular some crucial property that they have, that that gives you a 

very efficient decoders is the main study here.  

So, what I am going to do is basically I am going to describe decoders for the binary 

symmetric channel first. There are various approaches you can take to this describing the 

decoders, we can do it in so many different ways, but what I found to work very well 

based on past years to first describe the other binary symmetric channel. It will be a sub 

optimal decoder; it will use the principle of looking code words of the dual through the 

tanner graph and then getting some information about every bit.  

So, it will be bitwise, it will be suboptimal and it will use the tanner graph. So, those are 

the generic properties and the first decoder I am going to describe was actually given by 

Gallagher himself in the first in his thesis it is called Gallagher A decoder for the BSC. 



When I say Gallagher A it is automatically assumed that it is for the BSC. So, what kind 

of pictures are we looking at now binary symmetric channel and the Gallagher A 

decoder.  

So, you have a message m which gets encoded by a let us say w c w r LDPC code. 

Regular LDPC code you get a code word c it goes through a binary symmetric channel, 

which let us say a transition probability p then you are going to run this decoder on the 

receive vector r, which will now be bits. So, all of these things will be bits will be 

running your decoder on this. And this will produce c 1 cap, c 2 cap so on. Like I said all 

these things will be bitwise and it will work like this.  

So, this decoder is clearly what is called hard decision decoder, it is not a soft decision 

decoder, will see soft decision decoder soon enough after we finish this, after we analyze 

this and understand it will move towards soft decision decoders as well. There are so 

many a general principle behind this decoder it will takes a lot of time to describe it also. 

We have to go through it very slowly.  

So, this is a setup so when I say a receive vector r now I am going to say r 1, r 2 through 

r n, but each r a is a bit 0 or 1 obtained when a code word c was transmitted through a 

binary symmetric channel with transition probability. So, what is interesting here is when 

Gallagher wrote his thesis; he did not mentioned tanner graphs. So, his description of the 

decoder was always through the parity check matrix.  

So, what I am going to do next is to first describe the decoder through the parity check 

matrix, then look at the corresponding tanner graph interpretation. And you will see that 

the tanner graph interpretation is very natural and nice and can be extended very nicely, 

it gives you a feel for what is happening. So, even the parity check matrix is probably 

good, but the tanner graph makes it much better to understand what happens? 
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 So, what have given now we are given a receive vector r, r 1, r 2, r n and then we know 

that the code word that was transmitted satisfied several parity check equations given by 

the parity check matrix h. What else do we know this comes from a w c w r ensemble, so 

if I want to decode the first bit c 1, remember when I do bitwise decoding there is 

intrinsic and extrinsic information?  

What is the intrinsic information that I have about c 1 its r 1, r 1 is a bit itself c 1 is equal 

to r 1 with probability 1 minus p and it is not r 1 with probability p and p is less than half. 

So, with higher probability it is going to be equal to r 1. So, the intrinsic information is 

simply r 1 so the bit r 1 itself is the intrinsic information. And then now I have to worry 

about what kind of extrinsic information I can get about c 1 from the code words of the 

dual. And what do I need, I need code words from the dual which have a one at the first 

position just by staring at the parity check matrix.  

How many code words can I come up with immediately let us say in the first round, first 

round what are the parity checks that you can come up with immediately, w c of them 

you can come up with. What is the w c of them wherever you have ones at the first 

column? So, I know on the first column there will be a bunch of zeros and then there will 

be a 1, then there will be another 1, then there will be another 1. In my illustrations I will 

assume w c is 3 for us just to keep it simple.  



So, you have three ones here that will be in general w c ones and those w c parity checks 

those corresponding rows will definitely give you extrinsic information about c 1. So, let 

us say the first one that you take here has a 1 in position let us say i 1, i 2 then it has a 1 

in position i 3 so on till 1 n position i. It should be actually w r minus w r then they lefts 

0 l for it, there are w r ones like that.  

And what information does this give me, this thing is telling me c 1 x or c i 2 x or so on 

till c i w r was actually equal to 0. So, from this equation what extrinsic information can I 

get about c 1 from r i to r i w r is the question. So, remember these are all hard decisions 

now, when it was soft decision I had to worry about probability and all that. When it is 

hard decisions I cannot do anything more, the only thing I can say is extrinsic 

information from this equation for instance is simply there is another estimate for c 1, 

which is simply r i 2 x or r i 3 x or r i w r.  

The intrinsic information is giving me one estimate for c 1, which is r 1 itself. The first 

extrinsic information I am looking at was parity check am looking at gives me some one 

more estimate for the same bit c 1. It is telling me the c 1 can also be equal to r i 2 plus r 

i 3 plus so on till r i w r. So, remember c 1 was equal to r 1 with probability 1 minus p, 

what the corresponding probability here is, with what probability will c 1 is equal to this 

k.  

Student: We will have to take all combinations ((Refer Time: 40:48)) 

I am now xoring w r minus 1 other bits which could which each of them could be in error 

with probability p independently. If an even number of them became an error, then my 

estimate is going to be ok, but if an odd number of them are in error, then my estimate is 

wrong. So, the only probability of the look at this out of w r minus 1 bit, what is the 

probability that an odd number of them will become will be in error given that each one 

of them is independently in error with probability p.  

So, that is a calculation you can do with binomial expression and so on. You will see that 

the probability will work out something 1 minus 1 minus 2 p power w r minus 1 by 2. 

So, this is a probability of correctness of this. This is simply 1 minus p, is it 1 I think it is 

plus 1, this should be plus no. So, you want an even number of errors so the odds should 

go away. So, I should add its correct p 0 should be 1 looking at probability of correct 



decision. So, this is the probability which with this estimate is correct. Now, I am going 

to look at the next row that I have here.  

Remember I have w c rows now what will happen in the next row so this next row will 

now have let say 1 in the j 2, then some other 1 here j 3 so on till the last 1 maybe is in j 

w r. So, I have deliberately put this one’s even in this picture in a certain way what is this 

that I have done. I am picking them to be different from i 2, i 3 i omega r so that is the 

crucial idea here. Now if the second equation had ones in positions which did not overlap 

with the ones of the previous ones, previous check that I used.  

Then that equation that I get will give me an estimate which is statistically independent 

from both the previous estimates they had. r 1 is clearly statistically independent of all 

this guys then the next estimate law should be statistically independent. So, likewise I 

will get how many estimates in the first round immediately I will get w c estimates. So, 

that is the hats he first steps in the decoding. So, you could call it you could call it the 

row iteration.  

This is the first half iteration looks at rows of the parity check matrix and generates 

estimates for the bit. Then now the next half of the iteration will try to process all these 

estimates and come up with some better final estimate for the bit that is the split alright. 

So, this step is clear right the row step is clear you look at each row, then try and come 

up with an estimate for the particular bit that you are interested in c 1 yes. So, that is the 

next question.  

So, of course, now so the question was should you construct h so that this condition is 

satisfied yes absolutely? Definitely it would help right. So, second row should not 

overlap the first row here in any position. So, that is one of the crucial constructions 

crucial conditions imposed on the construction. So, the three rows that you have 

corresponding to the first position or in general the w c rows you have in the first 

position will definitely overlap in the first position cannot do anything about it, but they 

should not overlap anywhere else.  

So, that the estimates you are getting end up being independent and that is nice. So, as 

we go along as we do the decoding you will see there are some nice conditions like this 

that will come. We have to enforce them in the construction. So, far we just said 

construction is every matrix will pick, but maybe you should not pick every matrix. You 



should enforce some smart condition like this to get better decoders. So, the row step is 

clear right.  

So, let me describe the steps kind of informally and then finally, I will write it down, 

when I write it down I will write the complete expression, but you will see that that is 

much easier to write in the tanner graph then in the parity check matrix. Parity check 

matrix is little bit more confusing to write. So, row step is clear. Now, the next thing to 

remember is what I will do for c 2.  

Just look at the corresponding column for c 2 and repeat the same steps for c 3 again do 

the same thing, c 4 again do the same thing. So, in fact you can do this step for all the 

bits at the same time. If you like if you have enough memory you can do this operation in 

parallel. In fact you can also save a lot of these operations. So, if you look at c I 2 you 

know, that also involves the computation of the same parity check. 

So, you can do that computation first and then update all the bits that it was involved in 

for this. You can do it very smartly if you like or you can do it sequentially bit after bit 

evaluate all the checks and figure out what happens. So, there are various ways if 

implementing it that is the detail, but you have to do it for all the bits alright. So, I have 

been saying that this is like the first half of the first iteration. Then you have the second 

half of the second iteration and then there will be multiple iterations. 

So, you will see what happens there later is it. So, the end of the first half of the first 

iteration you have w c estimates or how many estimates exactly w c plus 1 estimate for 

each bit is it. We have, w c plus 1 estimate what is the plus 1 the intrinsic estimate. So, 

you have w c extrinsic estimates w c extrinsic estimates and you have 1 intrinsic estimate 

for each bit at the end of the first iteration. So, the extrinsic 1 is very easy. So, each of 

these estimates you might want to call them something.  

So, for instance you might want to call them. So, we will come to that later if you like, 

but maybe it is useful. So, let me say each estimate w c of them these a things are maybe 

we have denote them as u what is a good notation man. So, I want to put 1 here to 

indicate iteration and then 1 here to indicate the bit position and this is the extrinsic 

information. So, this is not u 2 still u 1. So, this is how I will denote the estimates that I 

am getting, the intrinsic estimates is simply r 1.  



The first extrinsic estimate I am getting about the first bit in the first iteration is u super 

script is for the iteration number. In the subscript there are two of them. The first 

subscribe denotes the bit position itself the second subscribe denotes the number of the 

extrinsic information number of the row. First one will give you the first ones the second 

one will ((Refer Time: 48:42)). 
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So, at the end of the first half of first iteration of course, you have the intrinsic estimates 

r 1 r 2 r n. Then you also have all these extrinsic estimates right u 1 i 1 u 1 i 2 all the way 

to u 1 i w c for I from 1 to n. If you took care of the constraint, what is the constraint the 

rows of the parity check matrix do not overlap in more than one positions. So, that is the 

generic constraint, if the rows of the parity check matrix do not overlap in more than 1 

position, then all these estimates will be in fact independent for each weight. 

So, these things are independent if no 2 rows of h overlap in more than one position. 

When I say overlap it basically overlaps in ones of course, they will overlap in 0 so we 

do not care they do not more than one position. So, if you take care of this constraint 

then this will be independent. So, in the first half of the first is always called row 

processing. It is clearly the rows of the parity check matrix are involved so it is called 

row processing. The second half is called the column processing. So, let us see what you 

can do in the second half, so which is also called column processing. So, what can we 

do? 



So, let us look at the first position, we will fix i equals 1 we of course, have r 1. Then you 

have u 1 1 so on till u 1 1 w c. So, let us just empirically at this situation which of this 

estimates is most reliable r 1. So, you cannot make anything better than r 1, so r 1 is 

definitely a best estimate any xoring you do will definitely be poorer than 1 minus p in 

success probability. You can you can show that if you want I mean its intuitively kind of 

clear, more than 1 bit it is going to be bad. 

It depends on the weight of course, if w r is equal to 2, then I guess you will get 1 more 

equal reliability, but it can never be greater than r 1 usually w r is not going to be 2 w c is 

going to be 3, w r will be some 6 or something. So, it is going to be larger and it will 

always be poorer. So, you have to in your column processing rely a little bit more on r 1 

than you rely on the other things. So, you can now come up several ad hoc methods, the 

method thus described as Gallagher is the following. So, what I am going to describe 

next is the Gallagher A processing for columns second half of the first iteration.  

(Refer Slide Time: 52:57) 

 

So, you will do is if u 1 1 1 equals u 1 1 2 and they are all equal, all these estimates are 

let say equal to some b. So, let me just make sure I get this absolutely right because it can 

be it is a bit dicey to explain it, so I should do it very carefully. So, let me just maybe 

step back a little bit before I do this and say let me step back before, so let me not 

describe this first. So, there are 2 things that you have to do first. So, in the column 

processing there are 2 parts. 
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 So, there are 2 parts to column processing, the first part is the easy part. First part is 

making decision, which is very easy so this part is easy. And then the second part is 

preparing for the next iteration, so this part is a little bit trickier. So, what is started to 

describe was actually the second part, but before that I should tell you what the first part 

is only then will be happy.  

So, let us say c had 1 1 is some kind of decision we make on the first bit. So, this can 

simply be majority, this is one way of doing it, you can say this is simply majority of r 1 

u 1 1 etcetera you could do this. So, this is not too difficult or if you want you can give 

some more emphasis to r 1 you can say if r 1, I would give more weight age to r 1 

etcetera. So, you can do this in multiple ways it turns out this is not very crucial so the 

making decisions is very easy.  

So, you are a paid for c i 1 so that is the first part you simply make a decision, but if you 

want stop at the first iteration believe me your decoding will not be very successful. So, 

you would not you are not going to get much more. The crucial thing is to doing is the 

second part by which you do multiple iterations. So, for doing the multiple iterations 

with the matrix, I will try and describe it only a first shot at the description it is going to 

be confusing to you, but then later on I will do the same description with a tanner graph.  

And you will see in the tanner graph that the description becomes very smooth and 

simple. So, even if you do not understand it stay with me for a while, I will quickly go 



through the description here in the matrix point of view because I think you should say it 

once. So, that you get a feel for what is what is really happening. So, in the second part 

when you prepare for the next iteration, remember what has to happen in the first half of 

the next iteration.  

You have to do row processing, which means each row should now have some estimate 

of what the connected bit was. In the each row, how do you do the processing? You 

simply take the Rs and you add it up, but the R itself was used in the first iteration. In the 

second iteration you have to do something slightly better, you cannot repeat the same r. 

If you repeat the same r, you will simply be doing the same thing again and again you 

would not get anything new.  

So, what you have to do is, in this instead of these r s you have to use better estimates for 

c i 2. In the first iteration I would have got some estimate for c i 2, which used r i 2 and 

some other information. So, that estimate I have to use here that is the main idea. So, I 

have to use some better estimate for c i 2 then simply r i 2. Initially I used it because that 

is what I got from the channel I did not have anything else so I used it initially. In the 

first half of the next iteration I should use a better estimate for i 2 c i 2 in this in each of 

these equations?  

So, the duty of the second part of the second half of the first iteration is it to simply come 

up with what estimates to use for each bit in the next step. So, turns out you should not 

use the same estimate for every single row. So, remember if you go back and look at this 

initially in the first iteration in the row processing, you simply used r 1 for every row that 

is even was not involved in. 
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So, let me go to i 2 for instance, maybe i 2 was involved in three rows. You used the 

same r I 2 for each of these 3 rows as an estimate. It turns out in the next iteration you 

have to use a different estimate here, and a different estimate here, and a different 

estimate here. So, it is not a good idea to use the same estimate of c i 2 in all the three 

rows. In the first row you have to use an estimate a different of c i 2, the second row you 

have to use another estimate, third row you have to use yet another estimate in the first 

iteration.  

If i 2 was involved in three rows, you use the same estimate r i 2 for each of those rows. 

In the next iteration you have to use different estimates, the reason is I will tell you why 

you have to do that. Suppose you want to figure out what better estimate to use for c i 2 

in this particular row, you have to use r i 2 then you have to use the estimates that you 

got from this second row. And this third row only you cannot use the estimate you got 

from this particular row.  

Once again the reason is that will directly kill your independence assumptions. So, you 

want to keep successive estimates as independent as possible. See suppose you use the 

estimate you got from this once again in a loop inside, you will be using the same thing 

over and over again and you are passing it inside the same parity check. So, you will 

have a lot of repetitions and it is not a good idea. So, this part is not very clear from the 



matrix point of view, but if you look at it from the tanner graph point of view, it will be 

much clearer.  

So, it is not a good idea to use the same estimate for each row, you have to use different 

estimates for each row. So, it turns out beginning with the next iteration each bit position 

will have 1 intrinsic information and it will have w c updated information, that is used in 

the row processing. It will have w c of them not just 1 r i 2, you will use 1 estimate for 

the first row, another estimate for the second row so no till the w c t h row you will use 

another estimate. 
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So, those estimates we will denote as v what v 2 1 1, v 2 1 2 so on till v 2 1 w c. What is 

this guy, estimate of c 1 used in first row in second iteration. What is this one similarly? 

Estimate of c 1 used in the second row in which it appears during the second iteration so 

likewise you have to keep repeating. So, in general you will also have what v i 1 2, v i 2 

so on till 2 i w c. So, you will have w c different estimates for the each bit.  

So, the question in the second part of the second half of the first iteration is to figure out 

all these guys, you have to figure out what estimate to use in each row in the next 

iteration. So, finally, when you mean when I put everything together maybe it will be a 

little bit clearer. So, let us just do this describe it when I will come and say how it is 

used. So, how do you decide this is crucial, so the way you decide v i 1 so I will just 

describe how you describe v i 1. 
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 So I will just describe how you describe v i 1 if u 1 i 2 equals u 1 i 3 equals so on till u 1 

i w c equals some b then you will set v i 1 2 to be equal to that b else you will simply set 

v I 1 2 to be r i itself. So, remember i t h bit got an intrinsic estimate, which was r i itself 

and then it got w c extrinsic estimates, it got the first estimate from the first row, second 

estimate from the second row and so on. Now to update the estimate for the first row 

what are we doing?  

We are looking the estimates from second row, third row onwards. We do not look at the 

estimate that you got from the first row itself, we look at the estimate we got from the 

second row third row. If all those estimates agree and they are pointing in direction 

which is b then you simply say the estimate I will use for my first row was that b. In case 

there is any disagreement what do you do, you simply go back and rely on the intrinsic 

information for that that particular value.  

So, that is the idea here so if you want you can go back and look at this picture it will be 

a little bit clearer here. So, remember if you now look at i 2 t h position, you will get one 

intrinsic information r i 2 and then you will get one extrinsic information from this row, 

another from this row, another from this row. In the updated version for this row what 

am I going to look at? I am going to look at these two extrinsic information if they agree 

what will I do, I will set that test the updated value for i 2 in this row.  



If they disagree then I will say I will simply reuse r i 2 that is the idea because r i 2 

anyway was a good estimate. So, that is Gallagher A decoding algorithm, which is what 

Gallagher A decoding algorithm does its not best storage, not the greatest or anything. 

So, it just an ad hoc method that is what its works a lot. There are some principles here, 

which are very good. It works very well that is what I mean. So, hopefully this is clear so 

what will I do for v i 2, if u i 1 equals u i 3 and so on till u i w c equals a particular bit 

then I will set v i 2 2 to be equal to p else this will again be r i 2.  

If you want we can go back once again to this picture, what is actually happening here 

is? For the i 2 t h bit if I want to update this guy, I will see the estimate that I got from 

the first row and the estimate that I got from the third row. If they agree I will set the new 

value for this to be has agreed by value else I will simply reuse r i 2. That is it, I mean 

that is all we are done I have described the entire decoder, what will you do in the next 

iteration? May be I should just describe the row processing for the second iteration or let 

put r i 2 yes, it is just r m.  
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 So, maybe I should describe row processing of iteration 2, what will happen in the row 

processing for iteration 2? If you want to look at i t h bit, you will compute u, u 2 i 1 u 2 i 

2 so on till u 2 i w c, how will you compute this guy. So, it is a little bit tricky. So, you 

will use new estimates for each bit corresponding to that particular row. So, for instance 



this one maybe so originally it might have been connected or something so you will have 

to connect.  

Use the new estimates so let me set i equal to 1 for instance if I did that u 1 1 2 how will 

this be computed. So, remember what was my equation c 1 equals c i 2 plus c i 3 plus so 

on till c i w c. Now, for i 2 t h bit i i originally I used r i 2. Now I will be using v i 2, I do 

not know the number exactly, but it will be using something. What is that number? Why 

did I put a question mark there? So, I have to figure out in which row connected to i 2 1 

will occur so that a bit more tricky, you get top write in the matrix properly only then 

you will understand.  

So, just the numbering may not be the same, but some v 2 i 2 comma something has to 

be used their, maybe it is 1, maybe it is 2, may be its 3. I do not know depends on how 

the rows take up, so likewise here I will use v i 3. I will put a question mark some guy 

here. Similarly, here also the main point here is the first row connected to the first bit 

will have will this connected to i 2, i 3 so on. Now, this i two t h bit does not have 1 

estimate r i 2, it has several estimates for each row i will the corresponding estimates 

suitably and compute my new estimates.  

So, I have a way of going from v to u then what will I do, I can also go from u to v then I 

can keep on repeating this iterations. So, of course, the question is when to stop. So, of 

course, I mean all these are in fact several people published papers saying when to stop 

when all this was active ten years ago. So, you can do that now, you know that now 

nobody will publish it. So, one condition is you have estimates for all the bits, but 

nothing is forcing them to be a code word.  

So, one simple thing to do is compute h times estimated word transpose that being 0, you 

simply stop, you got a code word, you stop that is one idea, but that may not happen, you 

may end up in a situation where you never get a code work. So, what happens in 

practices there is always a limitation based on your complexities, you cannot do more 

than let us say ten iterations. So, you do for a while and then just stop you know just 

desired I will output whatever I get after ten iterations for instance.  

So, that is the way to do it. So, we are really getting close to the end of this lecture. So, I 

will stop now and then we will see the similar description on the tanner graph. So, when 

you will see then picture becomes much more clear and easy etcetera. And the other 



thing to keep in mind is I was talking about using one code word of the dual using 

multiple code words from the dual, but it looks like in the way I describe it you are using 

only those code words of the dual that are in the parity check matrix itself.  

So, stare at it and tell me if that correct or wrong, that is actually wrong using all kinds of 

other code words also, but does it clear to you that I am using more code words than 

those in the dual itself. Why is that exactly because see I think about it so I am using 

several XORs and those XORs is happening kind of in the way and avoiding the same 

row. You know that that is the kind of idea to keep in mind. So, I will come in explain 

that also, it will be very-very clear in the tanner graph.  

In the matrix it a little bit more confusing, but you can still see it you can see how more 

code words of the dual are being used then that are there in the matrix itself and this 

multiple iteration is keen doing that. So, that is what helps you do that. So, I will stop 

here for now. Take a break and pick up from here.  


