
Coding Theory
Dr. Andrew Thangaraj

Department of Electronics and Communication Engineering
Indian Institute of Technology, Madras

Lecture - 23
LDPC Codes

(Refer Slide Time: 00:15)

So, let us once again begin with a quick recap of what we have been talking about. So, in

the area of soft decoders, I was talking about how you can use the code words of the dual

cord to do decoding. So, that is main idea, that idea I think is central to understanding

this many decoders that we will describe from now on. Code words of the dual are used

to decode, so this is very important.

So, not necessarily the lineally independent code words in the parity check matrix, but

any code word of the dual can give you information about say 1 particular bit of the code

word that you are interested. So, usually if you think of a code, so if you think of a

received vector r so you have r 1, r 2 through r n. And suppose you want to somehow

from this vector r get let us say the a posteriori LLR for the first bit. So, you are

interested in terms like capital l.

So, this is basically a posteriori probability for LLR, it is not just probability a posteriori

LLR for the first bit of the code word. We saw a description how this can be expressed in

terms of the individual scalar LLR. So, this is like the vector LLR, so this is basically log

of probability that the first bit is zero, given the entire received vector r divided by

probability that the first bit is 1 given the entire received vector r. So, you can write an

expression involving the small l i for a capital l 1 and I describe how to do that

accurately and that is a big nasty expression.

A useful way of simplifying that is to look at code words of the dual. So, each code word

of the dual, which involves bit 1. What do I mean by saying involves bit 1 in the first

position it should it be 1. So, if you have any code word of the dual, which has a 1 in the

first position that can be used to get some extrinsic information about the first bit. So, the

idea was to write this in terms of l 1 plus extrinsic. And then you split this as extrinsic

information over every code word of the dual, which involves the first bit or which

checks the first bit that is the idea.

(Refer Slide Time: 03:33)

So, if you have a code word of the dual let us say c prime, c prime 1, c prime 2, c prime n

is the code word of the dual. Then we know that the transmitted code word c dot c pot

was 0 or what is true c 1, c 1 prime plus c 2 c 2 prime plus so on till c n prime is zero.

Now remember c n prime has to be equal to 1, so this k is equal to 1. So, I have c 1 plus

then c 1 c prime will be 1 in certain positions, it will 0 in some other positions.

So, maybe you can say c prime i equals 1 for i equals i 1, i 2 so on. So, let say some i w,

so w ones in c prime of course, i 1 is equal to 1 so the remaining ones are also 1. So, if

you plug this into this equation, you would get c 1 equals what c i 2 x or c i 3 x or so on

till c i w. So, every code word of the dual, which has c prime 1 equal to 1 gives you a

parity check in equation involving c 1. So, this can be used for getting extrinsic

information.

So, this is a bit of a crucial idea and any decoders, so you have the entire code word you

have you have the entire code received vector r. Of course, I can split my a posteriori

LLR as the intrinsic l 1 plus some extrinsic information and this extrinsic information is

going to be a big complicated expression. If you want to evaluate it exactly, but

approximate evaluation usually involve looking at code words of the dual, which have c

1 prime equal to 1, the first position should be 1 at the in the dual.

If that is the case then if you look at the condition that satisfied between the code and the

dual is you know c dot c prime has to be 0 that gives you some equation involving c 1.

So, if you use this to provide extrinsic information, it is going to be a simpler operation

to deal with through the poster looking at the entire expression and trying to evaluate it,

you can try and attack it this way.

Now, the idea is to look at multiple code words in the dual and see when you get

independent extrinsic information as long as you keep getting independent extrinsic

information, you can keep adding the extrinsic LLR’s. The trouble is you cannot really

keep track of everything there; eventually you will also get some dependent information

how do you deal with that, that is the question. So, the various approximate decoders to

various standard tricks are to simply assume independence even if it is not there. So, that

this is the basic general principle behind approximate iterative decoders for at least l d p

c codes.

So, in general also this is the philosophy, this is very useful to keep in mind. So, the only

kind of remaining detail here if you are going to do this, you know how to get this

extrinsic information. Given this equations, it is the two time hyperbolic inverse and

hyperbolic products. It is very straight forward to get the extrinsic information from here.

The only remaining information is from the dual, what are the code words from the dual

that I should consider and in what sequence, where which one should I consider first,

which one I should consider next etcetera.

So, that is essentially the problem that will be that is left here. So, this is where we kind

of stop for the soft decoders, but remember I mean this can be actually done for any

decoder need not necessarily be soft or anything. So, even if you had hard so even if you

are received vector r is just bits over the binary symmetric channel, you are getting only

bits. Maybe you cannot think of a log likelihood ratio, in fact you can think of that also,

but maybe you do not want to think of a log likelihood ration.

But nevertheless you can use these equations for doing decoding. You mean for the

binary symmetric channel because this is a valid equation for any channel. So, if you

look at this bit, the bits on the right hand side they will give you some information about

the first bit. So, the principle to remember is you want dual code words of low weight,

why do we need low weight?

Student: ((Refer Time: 08:32))

So, then this extrinsic information is more meaningful. So, as you keep increasing the

weight, extrinsic information will be 0, weight become very large extrinsic information

is 0 and you do not get anything. You want it to be non 0 then if it has to be non 0, it is

much more likely to be non 0 if you have lower weight that the main idea here. So, you

want low weight dual code words and like I pointed out, you can use it for any decoding.

Even if you have a hard decision decoder you can use such things that is the other point

may be, which I did not emphasis. So, height in the contacts of soft decoders, but if you

have hard decoders, you can use this equation in the hard decode. Then the third crucial

point is independence, so you want we do not want the dual code words to overlap in any

other position other than at the first position.

So, this i ones are the i 2 to i w, if you look at another code word they should not be the

same i 1 can be 1, but there should be no overlap. There is no overlap then you will have

independent information and you can keep on adding without any problem. So, these are

general principles which are quite useful to keep in mind. So, when I describe the

decoder if you keep this principles in mind some of the steps will make sense otherwise,

it will seem like it is just an ad of decoder that people have come up with. So, the next

thing we say was definition of low density parity check codes.

(Refer Slide Time: 10:12)

So, in particular I spoke about regular low density parity check codes. So, these are

parameterized by 2 quantities w c, which is the column weight and w r is the constant

row weight. So, these codes basically have sparse parity check matrixes and in particular

1 type of code is the regular code, where each column has w c ones and each row has w r

ones. So, your block length is n then your parity check matrix will actually be an n times

w c by w r times across n matrix by n matrix.

So, this will be the number the rows, this quantity here is a number of rows you can

show that it is not too difficult. And there are many ways of constructing it one method is

Gallegan construction, which works if w r itself divides n, there is a way of splitting the

matrix into w r parts and picking each one in an obvious way and then doing arbitrary

permutations. So, crucial thing to remember as this is not unique so it is in fact, if you

say a regular LDPC code you are not talking about one code. So, you are about in fact

and ensemble of codes, this actually an ensemble of matrixes.

So, we will see later that ensemble of matrixes shared some properties particularly under

certain types of decoding this have some good properties. So, it makes sense think two of

them together as one ensemble. So, from a design point of view important issue as use of

what value should you take for w r and w c etcetera? One parameter there is the design

rate just simply 1 minus w c y w r, it turns out the rate of the code is always greater than

or equal to this design rate.

How did this come over? The number of rows is of course n w c by w r which means the

rank is less than or equal to n w c by w r rank is n minus k. So, k is greater than or equal

to n minus n w c by w r. So, rate is greater than equal to 1 minus w c by w s. So,

Student: ((Refer Time: 13:24))

So, the question was basically can the design rate be negative? From purely matrix point

of view yes it can be negative, but from a code point of view maybe it does not make too

much sense to have it as negative usually.

Student: ((Refer Time: 13:47))

So, if your rate is usually positive right.

Student: ((Refer Time: 13:53))

 Yes actually it is also possible so that is the other part of the issue. Even if your design

rate is negative the rank can at most be n at least mean not at most be n, it cannot be

greater than n. So, it might end up being invertible matrix so in which case code is just a

trivial all 0 code, that is the only danger or maybe the rank is less than n, in which case

the actual rate might still be positive. So, that is why this what design rate is a bit

misleading, that is the best thing we can come up with. But what will happen if your w c

and w r are small? Let say for instance 3 and 6, w c is 3, w r is 6; you construct a random

matrix like that.

In the Gallegan construction, you will see that there will exactly 2 lineally dependent

rows nothing more than 2 will be lineally dependent. So, you can see very easily in the

construction, where we construct there will be at least 2 rows, which are lineally

dependent on the others. So, if you think about it you can add up everything in the first

section, you get the all ones in the next section also you get all ones etcetera. So, that is

for w r equals w c equals 3 so you get 2, which are lineally dependent nothing else will

be lineally dependent.

(Refer Slide Time: 15:26)

You can see that also mostly in a random construction, it is very difficult to get lineally

dependent rows. So, the next crucial idea is this notion of a tanner graph, tanner graph is

a graphical representation of parity check matrix. So, the idea is I have a bi-parted graph

on the left nodes; the left nodes are called bit nodes. These are also sometimes called

variable nodes, but we will use bit nodes almost exclusively. So, you can in fact number

them if you like from 1 to n, there will be n of them.

And on the right side you have nodes that are called check nodes. If you number them

from 1 on you will get for the regular codes, you will get n w c by w r of them and the

edges you put basically are, they represent ones in the parity check matrix. So, if you go

to the first row, the first row will contain ones in certain bit positions, you simply

connect all those bit positions to think so that is the tanner graph.

Some things to keep in mind here each node is said to have a certain degree in this

graphical representation. So, what is the degree? Degree of node is this is equal equals

the number of edges incident on it or connected to it. So, what will be the degree of a bit

node in a tanner graph it will be equal to w c. What will be the degree of the check node,

it will be w r. So, that is something that you can see very easily. So, based on the tanner

graph you can come up with something known as a socket construction for regular

ensemble where, for each node you have as many sockets as its degree.

So, on the left side you would have w c sockets for each node, on the right side you

would have w r sockets foe each node. In total you would have n times w c sockets on

both the left side and the right side. If you add up everything and then you define a

permutation from permutation of n w c numbers from 1 to n w c that tells you, a way of

connecting the edges and it maintains the degree constraint. Every node will have every

left node will have exactly degree w c, every right node will have exactly degree w r.

The only confusion there is 2 nodes, 1 bit node and 1 check node might have more than 1

edge, so you should have some way of resolving that. There are many ways of resolving

it, for instance you could say if there are more than one edges I may drop one edge or

something like that. So, you can come up with some something like that it does not really

matter or another thing to do is to say I will only look at those permutations, which do

not give me multiple edges between 2 nodes, you could say that.

If you say that then it will map properly to a parity check matrix otherwise it will it will

map to multiple parity check matrixes or something, but it is not a big deal you do not

have to worry about it. You can show that an overwhelmingly large number of

permutations will not give you multiple edges or does not really matter in practice. So,

that is about constructions Gallegan’s construction and the socket construction. So, why

the tanner graph? So, you might say parity check matrix itself has all these information,

why do I need to go to the tanner graph?

So, it turns the decoder that you will be considering for LDPC codes, which works

really-really well and gives provides all capacity achieving performance etcetera is

described usually on the tanner graph. So, you remember I was talking about sub optimal

decoders just a little while ago I was saying, only thing that you have to specify is what

code words of the dual are you looking at and in what sequence.

So, that is what is you are specified any way in a in a sub optimal decoder we are going

to do. We are going to look at one code word of the dual at the time. So, which code was

do you want you look at and then what sequence etcetera has to be specified, it tends out

that tanner graph specifies helps in the specification very efficient way. So, that is the

main utility of the tanner graph the decoders are described very nicely in the tanner

graph.

Other than that it is it is just an entity of course, today there is a general area called

inference in graphical models. So, it is a very popular area other people are doing on it. It

has connections to statistical mechanics, statistical physics and information theory. So,

many other connections of that of course, the graph itself have a lot of importance. Not

saying it does not have importance, but for us at least in the first course we will be just

concerned with how it not the parity check matrix and how it specifies the sequence set,

which you are looking at code words of the dual in the decode.

So, that is the thing that will be interesting to us. So, we have seen the definition of low

density parity check codes, we have seen how to construct them. So, at least technically

we have seen how to construct them you can write a Mat lab program or a C program to

do the construction given a w c and a w r. Then the next the most crucial step is a

decoding, but before that lets quickly see encoding and get rid of it and then we will see

what how decoding needs to work on.

(Refer Slide Time: 21:39)

So, encoding is really not nothing much to say about encoders I will mention them very

briefly. So, you have a parity check matrix from the let us say h is from the n w c w r

ensemble. I should also point out that there are many more LDPC codes then just regular

codes. So, there are all kinds of sparse matrixes that do not respect regularity and there is

a lot of benefit and going to regular codes also.

Codes that are not regular, but for now we will see a regular codes for a while and then

later on will move to irregular codes. So, suppose you have a parity check matrix from n

w c w r ensemble, how will you go about designing encode of other code, what will you

do? What is one yes one is to find the generate matrix, exactly that is that is the method.

So, how will you find the generator matrix? So, you have to convert the parity check

matrix to the standard form, the systematic form. So, you do row operations and convert

the parity check matrix to systematic form, what form would that be let us say p i.

And after this you can use the matrix speed to do encoding. So, how will you do

encoding, if you have a message m which is k bits, you are going to say the code word is

m and then m p transpose so that is the encoding. So, this gives you a valid code word

and you can do this. The only trick here is only problem should I speak here is how

complex is this encoding. So, how many operations does it take as a function of n for

instance.

You would like it to be a linear function n for every code word that you are putting out

you would like to do the same amount of work. So, you do not want to do a constant

amount of work, you do not want to do too much more work, but it turns out when you

do row operations, this sparse character will be lost. So, was row operations involve

adding a lot of rows you have just w r rows, which might be a very small, but w r ones in

each row, which might be a very small number, but when you keep doing row

operations, you are going to increase that number a lot.

So, this p in general will be a dense matrix, it will be dense, but it is not too scary

because what is the size of P, size of P is simply n minus k cross k. So, at most it is going

to be N Square or something so there will be n squared ones maximum number of ones

that are in p can be about N Square. So, the complexity of this encoder can go as much as

n cube exactly something like that. So, roughly n k in complexity we will say s of this

and encoding so it turns out can do something smarter.

So, instead of doing row operations where your adding rows this is what costs increase in

the weight. If you only do row swaps and column swaps then you are not increasing the

weight of any row, you are not changing the sparse character of the matrix. So, there

efficient algorithms to do only row swaps and column swaps and convert parity check

matrix to some other form, which looks similar to this. So, there is efficient encoding

methods first thing you can try is, there was a question about maybe you can change the

design of h 2 for some constraints on it.

We will come to that soon enough, but before that one way to fix this n cube complexity

is to say that I will do from h row swaps and column swaps. And then maybe I will get a

matrix of the form some p and then some t where this t is some triangular matrix. It may

not be fully triangular may be some small part of it some small delta part of it might be

dense for some reason. To make it fully triangular you might have to live with a small

dense part for the matrix, but except for that small dense part most of the other parts

were done purely by row swaps and column swaps so the weight did not increase in

some significant fashion.

So, in fact you can do this and you can show that the complexity here can be utmost

linear so this would have complexity. So, when I say complexity I am talking about the

number of operations so how many bit resource you have to do to finish the encoding.

So, it is going to be of the order of n power 3 here. So, you can do this smartly there are

papers that have been written, you can write programs based on those papers and do it

very-very smartly and mark this delta really-really small.

So, except for a very small tiny part of your matrix everything else is sparse and you

have this p n upper triangular nature. So, it is very-very easy to do an inverse in this

format and you can do encoding with this also. You can put your message here find the

last bit then do a back calculation since only a small part is dense the back calculation

will be done very quickly. So, that is the idea, you can do this and then the complexity

here becomes roughly n.

So, almost linear that is one way to solve the problem at the encoding side, the other

problem is what was suggested. The other suggestion was maybe you can design h in a

very smart way to make encoding easier. So, that is actually what is done in many

standards today, the standard except LDPC codes, which have a very simple encoder for

the simple encoder based on the structure of the parity check matrix. So, it is a little bit

more complicated maybe towards the end I will describe how that is done.

So, for now this is a better situation to keep in mind. The main idea is given a parity

check matrix any way you can come up with an encoder, if you do not care too much

about having a little bit more complexity, n cube this is not so scary, it is still polynomial

you can do it very easily that is not a problem. But even if you are worried about linear

complexity, there are methods very standard methods which I am not describing here,

but they do exist which will help you simplify this decoder encoder because of the sparse

nature.

So, you are doing some smart swaps and column swaps to get the results. So, this is all I

want to say about encoding as you can imagine encoding is a simple problem. So, it is

not really that complicated then we saw before never spent too much time discussing

encoders because it is reasonably simple. We can do it often relatively much more

complex problem is a decoder, which is what we have to spend more time on this. Any

questions on this, everybody is particularly after I said it is not important, nobody is

going to ask questions on something like this.

(Refer Slide Time: 29:37)

That is all I wanted to say about encoding so what can we do now? So, if you want to

summarize we can construct LDPC matrices and what kind of LDPC matrixes n w r w c

w r, let us say n w c w r we know how to construct. And usually as you can imagine, you

would keep these 2 constraint, this 2 very small or when I say constraint its always

independent of n that is what I mean when I say constraint.

So, these would be relatively small a very standard choice would be to put w c equals 3

and w r would be 3 by 1 minus rate, the rate that you want. So, this is a this is a very

standard choice and then you would increase n, n would let say hundred to start off with,

then if you see that is not good enough you might want to go to thousand, then you might

want to go to ten thousand etcetera. So, this is how you construct and try out these codes.

So, when I say construct you are not going to construct all possible matrixes out there,

some random instance of this ensemble.

So, you are going to just pick the column weights randomly, the row weights randomly

and hope that you get 1 random number that is ensemble, which is good. So, that is the

idea so you have to write computer programs for this not just sitting down with a pen and

paper and constructing this. It is no way which you can do this right 10000 with 3 n it not

going to work not going to be able to do that, but still it will be efficient. As in many of

these matrixes are sparse and many computer programs many I mean even Mat lab have

lot of algorithm for spares matrixes for storing them.

You do not have to for instance if it is a 5000 by 10000 matrixes that is a lot of entries,

but you do not have to store every single entry you know it is sparse. So, you only show

store the locations and the values of the non zero entries so storages efficient and all that.

So, you have to all that in your program only then it will work otherwise you need some

16 Giga 32 Giga machine of ram to make things to working may not be efficient.

 So, it is easy to write programs given that you are careful with memory in some high

level ray, if you are careful it is ok. The next thing is we can we can encode there is no

problem using some standard ideas. So, of course, the most crucial part is decoders so

what is it about these low density parity check matrixes is that, there is some there should

be something. So, popular some crucial property that they have, that that gives you a

very efficient decoders is the main study here.

So, what I am going to do is basically I am going to describe decoders for the binary

symmetric channel first. There are various approaches you can take to this describing the

decoders, we can do it in so many different ways, but what I found to work very well

based on past years to first describe the other binary symmetric channel. It will be a sub

optimal decoder; it will use the principle of looking code words of the dual through the

tanner graph and then getting some information about every bit.

So, it will be bitwise, it will be suboptimal and it will use the tanner graph. So, those are

the generic properties and the first decoder I am going to describe was actually given by

Gallagher himself in the first in his thesis it is called Gallagher A decoder for the BSC.

When I say Gallagher A it is automatically assumed that it is for the BSC. So, what kind

of pictures are we looking at now binary symmetric channel and the Gallagher A

decoder.

So, you have a message m which gets encoded by a let us say w c w r LDPC code.

Regular LDPC code you get a code word c it goes through a binary symmetric channel,

which let us say a transition probability p then you are going to run this decoder on the

receive vector r, which will now be bits. So, all of these things will be bits will be

running your decoder on this. And this will produce c 1 cap, c 2 cap so on. Like I said all

these things will be bitwise and it will work like this.

So, this decoder is clearly what is called hard decision decoder, it is not a soft decision

decoder, will see soft decision decoder soon enough after we finish this, after we analyze

this and understand it will move towards soft decision decoders as well. There are so

many a general principle behind this decoder it will takes a lot of time to describe it also.

We have to go through it very slowly.

So, this is a setup so when I say a receive vector r now I am going to say r 1, r 2 through

r n, but each r a is a bit 0 or 1 obtained when a code word c was transmitted through a

binary symmetric channel with transition probability. So, what is interesting here is when

Gallagher wrote his thesis; he did not mentioned tanner graphs. So, his description of the

decoder was always through the parity check matrix.

So, what I am going to do next is to first describe the decoder through the parity check

matrix, then look at the corresponding tanner graph interpretation. And you will see that

the tanner graph interpretation is very natural and nice and can be extended very nicely,

it gives you a feel for what is happening. So, even the parity check matrix is probably

good, but the tanner graph makes it much better to understand what happens?

(Refer Slide Time: 36:10)

 So, what have given now we are given a receive vector r, r 1, r 2, r n and then we know

that the code word that was transmitted satisfied several parity check equations given by

the parity check matrix h. What else do we know this comes from a w c w r ensemble, so

if I want to decode the first bit c 1, remember when I do bitwise decoding there is

intrinsic and extrinsic information?

What is the intrinsic information that I have about c 1 its r 1, r 1 is a bit itself c 1 is equal

to r 1 with probability 1 minus p and it is not r 1 with probability p and p is less than half.

So, with higher probability it is going to be equal to r 1. So, the intrinsic information is

simply r 1 so the bit r 1 itself is the intrinsic information. And then now I have to worry

about what kind of extrinsic information I can get about c 1 from the code words of the

dual. And what do I need, I need code words from the dual which have a one at the first

position just by staring at the parity check matrix.

How many code words can I come up with immediately let us say in the first round, first

round what are the parity checks that you can come up with immediately, w c of them

you can come up with. What is the w c of them wherever you have ones at the first

column? So, I know on the first column there will be a bunch of zeros and then there will

be a 1, then there will be another 1, then there will be another 1. In my illustrations I will

assume w c is 3 for us just to keep it simple.

So, you have three ones here that will be in general w c ones and those w c parity checks

those corresponding rows will definitely give you extrinsic information about c 1. So, let

us say the first one that you take here has a 1 in position let us say i 1, i 2 then it has a 1

in position i 3 so on till 1 n position i. It should be actually w r minus w r then they lefts

0 l for it, there are w r ones like that.

And what information does this give me, this thing is telling me c 1 x or c i 2 x or so on

till c i w r was actually equal to 0. So, from this equation what extrinsic information can I

get about c 1 from r i to r i w r is the question. So, remember these are all hard decisions

now, when it was soft decision I had to worry about probability and all that. When it is

hard decisions I cannot do anything more, the only thing I can say is extrinsic

information from this equation for instance is simply there is another estimate for c 1,

which is simply r i 2 x or r i 3 x or r i w r.

The intrinsic information is giving me one estimate for c 1, which is r 1 itself. The first

extrinsic information I am looking at was parity check am looking at gives me some one

more estimate for the same bit c 1. It is telling me the c 1 can also be equal to r i 2 plus r

i 3 plus so on till r i w r. So, remember c 1 was equal to r 1 with probability 1 minus p,

what the corresponding probability here is, with what probability will c 1 is equal to this

k.

Student: We will have to take all combinations ((Refer Time: 40:48))

I am now xoring w r minus 1 other bits which could which each of them could be in error

with probability p independently. If an even number of them became an error, then my

estimate is going to be ok, but if an odd number of them are in error, then my estimate is

wrong. So, the only probability of the look at this out of w r minus 1 bit, what is the

probability that an odd number of them will become will be in error given that each one

of them is independently in error with probability p.

So, that is a calculation you can do with binomial expression and so on. You will see that

the probability will work out something 1 minus 1 minus 2 p power w r minus 1 by 2.

So, this is a probability of correctness of this. This is simply 1 minus p, is it 1 I think it is

plus 1, this should be plus no. So, you want an even number of errors so the odds should

go away. So, I should add its correct p 0 should be 1 looking at probability of correct

decision. So, this is the probability which with this estimate is correct. Now, I am going

to look at the next row that I have here.

Remember I have w c rows now what will happen in the next row so this next row will

now have let say 1 in the j 2, then some other 1 here j 3 so on till the last 1 maybe is in j

w r. So, I have deliberately put this one’s even in this picture in a certain way what is this

that I have done. I am picking them to be different from i 2, i 3 i omega r so that is the

crucial idea here. Now if the second equation had ones in positions which did not overlap

with the ones of the previous ones, previous check that I used.

Then that equation that I get will give me an estimate which is statistically independent

from both the previous estimates they had. r 1 is clearly statistically independent of all

this guys then the next estimate law should be statistically independent. So, likewise I

will get how many estimates in the first round immediately I will get w c estimates. So,

that is the hats he first steps in the decoding. So, you could call it you could call it the

row iteration.

This is the first half iteration looks at rows of the parity check matrix and generates

estimates for the bit. Then now the next half of the iteration will try to process all these

estimates and come up with some better final estimate for the bit that is the split alright.

So, this step is clear right the row step is clear you look at each row, then try and come

up with an estimate for the particular bit that you are interested in c 1 yes. So, that is the

next question.

So, of course, now so the question was should you construct h so that this condition is

satisfied yes absolutely? Definitely it would help right. So, second row should not

overlap the first row here in any position. So, that is one of the crucial constructions

crucial conditions imposed on the construction. So, the three rows that you have

corresponding to the first position or in general the w c rows you have in the first

position will definitely overlap in the first position cannot do anything about it, but they

should not overlap anywhere else.

So, that the estimates you are getting end up being independent and that is nice. So, as

we go along as we do the decoding you will see there are some nice conditions like this

that will come. We have to enforce them in the construction. So, far we just said

construction is every matrix will pick, but maybe you should not pick every matrix. You

should enforce some smart condition like this to get better decoders. So, the row step is

clear right.

So, let me describe the steps kind of informally and then finally, I will write it down,

when I write it down I will write the complete expression, but you will see that that is

much easier to write in the tanner graph then in the parity check matrix. Parity check

matrix is little bit more confusing to write. So, row step is clear. Now, the next thing to

remember is what I will do for c 2.

Just look at the corresponding column for c 2 and repeat the same steps for c 3 again do

the same thing, c 4 again do the same thing. So, in fact you can do this step for all the

bits at the same time. If you like if you have enough memory you can do this operation in

parallel. In fact you can also save a lot of these operations. So, if you look at c I 2 you

know, that also involves the computation of the same parity check.

So, you can do that computation first and then update all the bits that it was involved in

for this. You can do it very smartly if you like or you can do it sequentially bit after bit

evaluate all the checks and figure out what happens. So, there are various ways if

implementing it that is the detail, but you have to do it for all the bits alright. So, I have

been saying that this is like the first half of the first iteration. Then you have the second

half of the second iteration and then there will be multiple iterations.

So, you will see what happens there later is it. So, the end of the first half of the first

iteration you have w c estimates or how many estimates exactly w c plus 1 estimate for

each bit is it. We have, w c plus 1 estimate what is the plus 1 the intrinsic estimate. So,

you have w c extrinsic estimates w c extrinsic estimates and you have 1 intrinsic estimate

for each bit at the end of the first iteration. So, the extrinsic 1 is very easy. So, each of

these estimates you might want to call them something.

So, for instance you might want to call them. So, we will come to that later if you like,

but maybe it is useful. So, let me say each estimate w c of them these a things are maybe

we have denote them as u what is a good notation man. So, I want to put 1 here to

indicate iteration and then 1 here to indicate the bit position and this is the extrinsic

information. So, this is not u 2 still u 1. So, this is how I will denote the estimates that I

am getting, the intrinsic estimates is simply r 1.

The first extrinsic estimate I am getting about the first bit in the first iteration is u super

script is for the iteration number. In the subscript there are two of them. The first

subscribe denotes the bit position itself the second subscribe denotes the number of the

extrinsic information number of the row. First one will give you the first ones the second

one will ((Refer Time: 48:42)).

(Refer Slide Time: 48:49)

So, at the end of the first half of first iteration of course, you have the intrinsic estimates

r 1 r 2 r n. Then you also have all these extrinsic estimates right u 1 i 1 u 1 i 2 all the way

to u 1 i w c for I from 1 to n. If you took care of the constraint, what is the constraint the

rows of the parity check matrix do not overlap in more than one positions. So, that is the

generic constraint, if the rows of the parity check matrix do not overlap in more than 1

position, then all these estimates will be in fact independent for each weight.

So, these things are independent if no 2 rows of h overlap in more than one position.

When I say overlap it basically overlaps in ones of course, they will overlap in 0 so we

do not care they do not more than one position. So, if you take care of this constraint

then this will be independent. So, in the first half of the first is always called row

processing. It is clearly the rows of the parity check matrix are involved so it is called

row processing. The second half is called the column processing. So, let us see what you

can do in the second half, so which is also called column processing. So, what can we

do?

So, let us look at the first position, we will fix i equals 1 we of course, have r 1. Then you

have u 1 1 so on till u 1 1 w c. So, let us just empirically at this situation which of this

estimates is most reliable r 1. So, you cannot make anything better than r 1, so r 1 is

definitely a best estimate any xoring you do will definitely be poorer than 1 minus p in

success probability. You can you can show that if you want I mean its intuitively kind of

clear, more than 1 bit it is going to be bad.

It depends on the weight of course, if w r is equal to 2, then I guess you will get 1 more

equal reliability, but it can never be greater than r 1 usually w r is not going to be 2 w c is

going to be 3, w r will be some 6 or something. So, it is going to be larger and it will

always be poorer. So, you have to in your column processing rely a little bit more on r 1

than you rely on the other things. So, you can now come up several ad hoc methods, the

method thus described as Gallagher is the following. So, what I am going to describe

next is the Gallagher A processing for columns second half of the first iteration.

(Refer Slide Time: 52:57)

So, you will do is if u 1 1 1 equals u 1 1 2 and they are all equal, all these estimates are

let say equal to some b. So, let me just make sure I get this absolutely right because it can

be it is a bit dicey to explain it, so I should do it very carefully. So, let me just maybe

step back a little bit before I do this and say let me step back before, so let me not

describe this first. So, there are 2 things that you have to do first. So, in the column

processing there are 2 parts.

(Refer Slide Time: 54:12)

 So, there are 2 parts to column processing, the first part is the easy part. First part is

making decision, which is very easy so this part is easy. And then the second part is

preparing for the next iteration, so this part is a little bit trickier. So, what is started to

describe was actually the second part, but before that I should tell you what the first part

is only then will be happy.

So, let us say c had 1 1 is some kind of decision we make on the first bit. So, this can

simply be majority, this is one way of doing it, you can say this is simply majority of r 1

u 1 1 etcetera you could do this. So, this is not too difficult or if you want you can give

some more emphasis to r 1 you can say if r 1, I would give more weight age to r 1

etcetera. So, you can do this in multiple ways it turns out this is not very crucial so the

making decisions is very easy.

So, you are a paid for c i 1 so that is the first part you simply make a decision, but if you

want stop at the first iteration believe me your decoding will not be very successful. So,

you would not you are not going to get much more. The crucial thing is to doing is the

second part by which you do multiple iterations. So, for doing the multiple iterations

with the matrix, I will try and describe it only a first shot at the description it is going to

be confusing to you, but then later on I will do the same description with a tanner graph.

And you will see in the tanner graph that the description becomes very smooth and

simple. So, even if you do not understand it stay with me for a while, I will quickly go

through the description here in the matrix point of view because I think you should say it

once. So, that you get a feel for what is what is really happening. So, in the second part

when you prepare for the next iteration, remember what has to happen in the first half of

the next iteration.

You have to do row processing, which means each row should now have some estimate

of what the connected bit was. In the each row, how do you do the processing? You

simply take the Rs and you add it up, but the R itself was used in the first iteration. In the

second iteration you have to do something slightly better, you cannot repeat the same r.

If you repeat the same r, you will simply be doing the same thing again and again you

would not get anything new.

So, what you have to do is, in this instead of these r s you have to use better estimates for

c i 2. In the first iteration I would have got some estimate for c i 2, which used r i 2 and

some other information. So, that estimate I have to use here that is the main idea. So, I

have to use some better estimate for c i 2 then simply r i 2. Initially I used it because that

is what I got from the channel I did not have anything else so I used it initially. In the

first half of the next iteration I should use a better estimate for i 2 c i 2 in this in each of

these equations?

So, the duty of the second part of the second half of the first iteration is it to simply come

up with what estimates to use for each bit in the next step. So, turns out you should not

use the same estimate for every single row. So, remember if you go back and look at this

initially in the first iteration in the row processing, you simply used r 1 for every row that

is even was not involved in.

(Refer Slide Time: 57:12)

So, let me go to i 2 for instance, maybe i 2 was involved in three rows. You used the

same r I 2 for each of these 3 rows as an estimate. It turns out in the next iteration you

have to use a different estimate here, and a different estimate here, and a different

estimate here. So, it is not a good idea to use the same estimate of c i 2 in all the three

rows. In the first row you have to use an estimate a different of c i 2, the second row you

have to use another estimate, third row you have to use yet another estimate in the first

iteration.

If i 2 was involved in three rows, you use the same estimate r i 2 for each of those rows.

In the next iteration you have to use different estimates, the reason is I will tell you why

you have to do that. Suppose you want to figure out what better estimate to use for c i 2

in this particular row, you have to use r i 2 then you have to use the estimates that you

got from this second row. And this third row only you cannot use the estimate you got

from this particular row.

Once again the reason is that will directly kill your independence assumptions. So, you

want to keep successive estimates as independent as possible. See suppose you use the

estimate you got from this once again in a loop inside, you will be using the same thing

over and over again and you are passing it inside the same parity check. So, you will

have a lot of repetitions and it is not a good idea. So, this part is not very clear from the

matrix point of view, but if you look at it from the tanner graph point of view, it will be

much clearer.

So, it is not a good idea to use the same estimate for each row, you have to use different

estimates for each row. So, it turns out beginning with the next iteration each bit position

will have 1 intrinsic information and it will have w c updated information, that is used in

the row processing. It will have w c of them not just 1 r i 2, you will use 1 estimate for

the first row, another estimate for the second row so no till the w c t h row you will use

another estimate.

(Refer Slide Time: 01:00:51)

So, those estimates we will denote as v what v 2 1 1, v 2 1 2 so on till v 2 1 w c. What is

this guy, estimate of c 1 used in first row in second iteration. What is this one similarly?

Estimate of c 1 used in the second row in which it appears during the second iteration so

likewise you have to keep repeating. So, in general you will also have what v i 1 2, v i 2

so on till 2 i w c. So, you will have w c different estimates for the each bit.

So, the question in the second part of the second half of the first iteration is to figure out

all these guys, you have to figure out what estimate to use in each row in the next

iteration. So, finally, when you mean when I put everything together maybe it will be a

little bit clearer. So, let us just do this describe it when I will come and say how it is

used. So, how do you decide this is crucial, so the way you decide v i 1 so I will just

describe how you describe v i 1.

(Refer Slide Time: 01:02:54)

 So I will just describe how you describe v i 1 if u 1 i 2 equals u 1 i 3 equals so on till u 1

i w c equals some b then you will set v i 1 2 to be equal to that b else you will simply set

v I 1 2 to be r i itself. So, remember i t h bit got an intrinsic estimate, which was r i itself

and then it got w c extrinsic estimates, it got the first estimate from the first row, second

estimate from the second row and so on. Now to update the estimate for the first row

what are we doing?

We are looking the estimates from second row, third row onwards. We do not look at the

estimate that you got from the first row itself, we look at the estimate we got from the

second row third row. If all those estimates agree and they are pointing in direction

which is b then you simply say the estimate I will use for my first row was that b. In case

there is any disagreement what do you do, you simply go back and rely on the intrinsic

information for that that particular value.

So, that is the idea here so if you want you can go back and look at this picture it will be

a little bit clearer here. So, remember if you now look at i 2 t h position, you will get one

intrinsic information r i 2 and then you will get one extrinsic information from this row,

another from this row, another from this row. In the updated version for this row what

am I going to look at? I am going to look at these two extrinsic information if they agree

what will I do, I will set that test the updated value for i 2 in this row.

If they disagree then I will say I will simply reuse r i 2 that is the idea because r i 2

anyway was a good estimate. So, that is Gallagher A decoding algorithm, which is what

Gallagher A decoding algorithm does its not best storage, not the greatest or anything.

So, it just an ad hoc method that is what its works a lot. There are some principles here,

which are very good. It works very well that is what I mean. So, hopefully this is clear so

what will I do for v i 2, if u i 1 equals u i 3 and so on till u i w c equals a particular bit

then I will set v i 2 2 to be equal to p else this will again be r i 2.

If you want we can go back once again to this picture, what is actually happening here

is? For the i 2 t h bit if I want to update this guy, I will see the estimate that I got from

the first row and the estimate that I got from the third row. If they agree I will set the new

value for this to be has agreed by value else I will simply reuse r i 2. That is it, I mean

that is all we are done I have described the entire decoder, what will you do in the next

iteration? May be I should just describe the row processing for the second iteration or let

put r i 2 yes, it is just r m.

(Refer Slide Time: 01:07:27)

 So, maybe I should describe row processing of iteration 2, what will happen in the row

processing for iteration 2? If you want to look at i t h bit, you will compute u, u 2 i 1 u 2 i

2 so on till u 2 i w c, how will you compute this guy. So, it is a little bit tricky. So, you

will use new estimates for each bit corresponding to that particular row. So, for instance

this one maybe so originally it might have been connected or something so you will have

to connect.

Use the new estimates so let me set i equal to 1 for instance if I did that u 1 1 2 how will

this be computed. So, remember what was my equation c 1 equals c i 2 plus c i 3 plus so

on till c i w c. Now, for i 2 t h bit i i originally I used r i 2. Now I will be using v i 2, I do

not know the number exactly, but it will be using something. What is that number? Why

did I put a question mark there? So, I have to figure out in which row connected to i 2 1

will occur so that a bit more tricky, you get top write in the matrix properly only then

you will understand.

So, just the numbering may not be the same, but some v 2 i 2 comma something has to

be used their, maybe it is 1, maybe it is 2, may be its 3. I do not know depends on how

the rows take up, so likewise here I will use v i 3. I will put a question mark some guy

here. Similarly, here also the main point here is the first row connected to the first bit

will have will this connected to i 2, i 3 so on. Now, this i two t h bit does not have 1

estimate r i 2, it has several estimates for each row i will the corresponding estimates

suitably and compute my new estimates.

So, I have a way of going from v to u then what will I do, I can also go from u to v then I

can keep on repeating this iterations. So, of course, the question is when to stop. So, of

course, I mean all these are in fact several people published papers saying when to stop

when all this was active ten years ago. So, you can do that now, you know that now

nobody will publish it. So, one condition is you have estimates for all the bits, but

nothing is forcing them to be a code word.

So, one simple thing to do is compute h times estimated word transpose that being 0, you

simply stop, you got a code word, you stop that is one idea, but that may not happen, you

may end up in a situation where you never get a code work. So, what happens in

practices there is always a limitation based on your complexities, you cannot do more

than let us say ten iterations. So, you do for a while and then just stop you know just

desired I will output whatever I get after ten iterations for instance.

So, that is the way to do it. So, we are really getting close to the end of this lecture. So, I

will stop now and then we will see the similar description on the tanner graph. So, when

you will see then picture becomes much more clear and easy etcetera. And the other

thing to keep in mind is I was talking about using one code word of the dual using

multiple code words from the dual, but it looks like in the way I describe it you are using

only those code words of the dual that are in the parity check matrix itself.

So, stare at it and tell me if that correct or wrong, that is actually wrong using all kinds of

other code words also, but does it clear to you that I am using more code words than

those in the dual itself. Why is that exactly because see I think about it so I am using

several XORs and those XORs is happening kind of in the way and avoiding the same

row. You know that that is the kind of idea to keep in mind. So, I will come in explain

that also, it will be very-very clear in the tanner graph.

In the matrix it a little bit more confusing, but you can still see it you can see how more

code words of the dual are being used then that are there in the matrix itself and this

multiple iteration is keen doing that. So, that is what helps you do that. So, I will stop

here for now. Take a break and pick up from here.

