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So, let us begin with as usual the recap, the last thing we were doing we were talking 

about the decoding Reed Solomon codes. So, let me quickly remind you what the what 

the entire idea was, so you have, so the first thing is we are going to view everything as 

polynomials if you remember correctly. So, we are going to say you have a code word 

polynomial, which gets transmitted through the channel and that is modeled as addition 

with a error polynomial to get a received polynomial. 

So, this is what you have given and each of this polynomials n minus 1 terms, so those 

are all understood. So, r of x becomes c of x plus e of x and the goal is to find e of x, that 

is the idea of this decoder. You have to find c of x of course, from r of x, but we try to 

find e of x. So, for that purpose, we do basically bounded distance assumption and we 

say that there are let us say for instance w errors in e of x only w non zero terms out of 

the possible n terms. Only w of them are non zero and we use a notation for it, basically 

you say its y 1 x power i 1 plus y 2 x power i 2 so on till y w x power i w. 



So, we assume that the error polynomial is in this form, so that is the first simplification 

the bounded distance decoder assumption. When I say BDD it is bounded distance 

decoding, so you make that assumption and if your RS code is let us say t error 

correcting, you usually assume that this w is less than or equal to t. So, you have at most 

t errors, so the first task is to find syndromes the syndrome be i th syndrome its defined 

as r evaluated at alpha power i, what is alpha, alpha belongs to some Galva field used in 

constructing the code. 

So, hope it is clear what I mean by RS alpha and we saw that the this is the same as e of 

alpha power i for i between 1 and 2 t. So, the first 2 t powers of alpha shows show up as 

rows in the parity check matrix, so alpha power i will c of alpha power will be 0. So, if 

you can evaluate r of alpha power i you get e of alpha power i. So, in effect you can 

write s i as summation, so I will just write this notation in short hand since I am repeating 

everything hope fully. 

It is clear to you what i mean y j x j power i and what is this x j x j is alpha power i sub j 

where this is the error locator. So, this s i’s can be evaluated and you have non linear 

equations, so these are basically power sum equations sums of powers of x. You want to 

determine the error locator, so the goal is to find obviously the error locator x j and the 

error magnitude y j you have to find out both.  
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So, the trick the main trick is to once again think of polynomials and define a syndrome 

polynomial which is s i x power i and then also define another locator polynomial which 

is product one plus j equals one to w. So, these are the two polynomials we define a 

syndrome polynomial and an error locator polynomial. We in fact think of this 

polynomial in its expanded form, it will be it will be 1 plus lambda 1 x plus so on till 

lambda w x power w. 

Then, it turns out you can show in the product s of x times lambda of x coefficients of x 

power w plus 1 through x power 2 t equals 0. So, this gives you linear equations for the 

lambda. So, from here you get linear equations for lambda j, so basically the way you 

when then you have to worry about when that linear equation is solvable etcetera. 

So, for that we use this definition of a matrix which is which defines as m of mu for 

some mu between one, and t what is m of mu s, mu s mu minus 1 all the way to s 1 then 

s mu plus 1 s mu s 2 all the way down to s 2 mu minus 1 all the way to s mu. This is the 

matrix you start with mu equals t and find the determinant of this matrix, if this matrix 

has non zero determinant, then you conclude that w equals t if it has zero determinant. 

Then, what do you do try mu equals t minus 1, so that way you keep reducing it till the 

determinant becomes non zero at which point you would have found w. 

Once you found w, you can simply invert this matrix then multiply with what m of w 

inverse multiplied with s w plus 1 s w plus 2 all the way till s 2 w. This will give you 

lambda 1, lambda 2 is that, so you are not done at this point, you have only found the 

error locator polynomial from the error locator polynomial. You have to find the error 

locators, so basically you go through the Galva field and find all the roots of lambda of x. 

If you get exactly w distinct roots, then you have succeeded in you RS decoding, if 

anything else happens something has gone wrong. 

So, you find the x once, you find the error locators, how do you find the magnitude go 

back and plug in into the syndrome expression. We get linear equation for the error 

magnitudes, solve them once again get your answer, so that is the that is the idea behind 

the decoding it is kind of a lengthy process and it will hardly ever show up in an exam. 

So, maybe you should not pay attention, but it is good to know that this is the method. 

One thing I should warn you is in practice there are lots of Reed Solomon decoders 

around Reed Solomon codes are the most common codes out there. 



So, hard disks have them CD drives have them, DVD drives, I mean everything has Reed 

Solomon codes in them and nobody will use this decoder. Of course, there are other 

versions of this decoder, which are little bit more sophisticated, much simpler to 

implement etcetera. So, those are the versions that they use, but the basic trick will 

always remain the same you will define a error locator polynomial and use the fact that 

syndrome times error locator will give you some linear equations. 

Ultimately, that is what you use and waste of solving those things, smartly there are in 

fact for in sense iterative way of finding lambda of x thing like that is used. So, to 

complete the picture and just show you how it really works, we are going to do a very 

simple example. So, it will be a contrived example that will come up with to give you a 

feel for how it works and then we will just move on. 
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So, I will take a toy example, of course in reality in practice you would use much larger 

fields, but if I use large fields, now then we cannot do the computations that easy. So, use 

a very small field and we will try and correct two errors just to just to make the problem 

little bit more interesting. So, that is the example we are going to stick with alpha, let us 

say g f 2 power 3, so alpha power 7 is 1 and then alpha power 3 is 1 plus alpha. So, it is 

good to make the table. So, you have 0 1 alpha square alpha power 1, 1 plus alpha power 

4 is alpha plus alpha square, alpha power 5 is what alpha square plus alpha plus 1, alpha 



6 is what is the only other missing 1 plus alpha square keep this table with us help us in 

computation. 

Let us say n equals 7 and t equals 2 n is 7 and t is 2 what are the four roots, the four roots 

of my code or four 0s of my code, sorry are alpha, alpha square, alpha power 3 and alpha 

power 4. So, those are the four 0s of my code, so if I have any code word of any received 

word, I will compute syndrome by plugging in alpha, alpha square, alpha power 3 and 

alpha power 4. For example, we need to come up with a received code word first, for that 

we need what you need to come up with the received code word approximate code. 

For that, you have to compute the generator polynomial and play around, let us do that 

first generator is going to be x plus alpha times x plus alpha square and x plus alpha 

power 3 times x plus alpha power 4 for the first person to compute. This will get five 

bonus marks in the class, let me see whose going to do that interesting easiest term is the 

x power fourth term. The next easiest term is the constant term what is the next easiest 

term x power 3 is also not too bad, x power 3 you have to simply add alpha, alpha 

square, alpha power 3. 

So, you get alpha power 5, x power 3 is that did I make a mistake, alpha power 3 what 

about x square x square is simply x square when x alpha. So, this is g of x, so let us say 

we transferred the code word c of x which equals the same thing. So, just to be consistent 

with the way we have being writing, so I will write c of x like this and to make our 

computation of syndrome easy what is the god r of x to assume. We want to make your 

computation of syndrome easy, so what should you get rid of last two terms, you can get 

rid. 

So, it is may be a good idea to assume that the r of x is alpha power 3 plus alpha x plus x 

square, you people are staring at it like I am doing some crazy stuff. So, I am just saying 

e of is something I know the e of x already no point in doing the decoding to find out, but 

let us say you assume you dint know what c of x was this is your r of x. So, this part is 

unknown to you its suppose just for just for the sake of showing how the decoder works. 

Of course, in real life you will have a much larger field and you cannot find out just by 

looking at the missing polynomial what the code word would have been its not possible, 

but just to make our job easy, we will do. So, there are two errors and I have clearly 

nowhere I have introduced them. So, I have to now go through my decoder and make 



sure that everything works out, so you have to compute the four syndromes, what are the 

four syndromes s 1 is alpha power 3 s 2 alpha power 4 s 3 s 3 is 0, s 4 is alpha power 5. 

These are my quick answers used to check if its fine its fine, one conformation, one more 

conformation good, so these are the four syndromes. So, next step is what you have to 

make that matrix and find out if it is singular or not, I know for t equals to its going to be 

singular already , but any way let us pretend that we do not know it and we start with m 

of t which is m of 2. That would be what do I put here s 2, s 1, s 1 is alpha power 3. I am 

sorry and then s 3 s 2 is that, so clearly determinant is non zero is that, so we guess that 

determinant is non zero determinant is what its actually alpha which is not 0, so w equals 

2.  
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So, we say two errors have occurred and then we go through and find lambda 1 and 

lambda 2 as inverse of m of 2 what is inverse of m of two what this entry is. You will 

also had to divide by alpha, so the overall determinant is alpha, so alpha power 3, alpha 

power 2, let me write the original matrix here. It looks like this is alpha power 4 and 

alpha power 3 alpha power 4, this was my matrix alpha square 0. 

It should be something else, 1 by alpha we have already done, but zero and alpha square 

have to be this. You are happy is this is easy to check that it is the inverse you just 

multiply and see if you get I you can check that you will get i. So, this is a valid inverse, 

then we have to multiply this with s 3 and s 4 s 3 is 0, s 4 is alpha power 5, s 4 is its not 



alpha power 5, two other people confirmed it to me one plus alpha power five is alpha 

power four. How many of you say s 4 is alpha power 5, nobody has actually checked, is 

it, so we do the whole thing you are telling me the final, alpha power 4 think I remember 

the two people who shook their heads 4. 

We will go back and change this, so what will change if I change this nothing here will 

change, s 4 does not play a role in this only in the next part. So, instead of 5 I will have 4 

here, so this is simply alpha power 6 and 1, so my lambda of x basically becomes 1 plus 

alpha power 6 x plus x square is that y. Are you wondering how I quickly multiplied the 

two matrices is easy multiplication it is 0 alpha power 4, simply scale the second column 

by alpha power 4 you get alpha power 6 and 1. So, your lambda of x becomes 1 plus 

alpha power 6 x plus x square is that yes or no, x square is the correct coefficient. 

That much I am sure about because we introduced errors in locations 3 and 4, so alpha 

power 3 and alpha power 4 are the error locations the inverses are also the same multiply 

together. You should get 1, so this you have to find roots so what are the roots you can 

check that the roots will be alpha power 3 and alpha power 4. So, if you want you can 

check this they have to be the roots computation, no roots are this, then the error 

locations will be inverse of this which will also be the same what is the trick. 

So, alpha power 3 and alpha power 4, so the error locations are x 1 equals if you want 

alpha power 4 and x 2 equals alpha power 3 is that. So, you have an error on the third 

location and the fourth location, so you know e of x was of the y 1 x power 3 no y 2 x 

power 3 plus y 1 x power 4. So, you can play around with this 1 and 2, it does not really 

matter it is just the way I am trying to be consistent here. 

So, s 1 which was alpha power 4 was actually equal to instead of x i should put alpha 

here alpha power 3 y 2 plus y 1 alpha power 4 and s 2, which was again alpha power 4 

equal to alpha power 6 y 2 plus alpha power 3, sorry about that is 2 and y 1 alpha. You 

solve these two, you are going to get y 1 equals 1 and y 2 equals alpha power 5 alpha 

power 3, you can check that. 

So, it works out, so it works out quite consistently it is not a problem I mean this you will 

get them, we will get the right answer. So, if you want you can go back home and take 

this example and play around with it a little bit more. If you do not believe any of the 

stuff that we did you can add one error for instance and check that m of 2. In fact, it 



works out to zero determinant, so that you can check, then you will see m of 1 is m of 

one is very easy to correct, we will correct it. So, this is how a Reed Solomon decoder 

will function nay questions comments insights. 

So, this is in a way significant stopping point in the course as in the we have come to a 

stage in the history of coding, so to speak where you have achieved something quite 

significant. So, Reed Solomon codes were considered crown jewel of algebraic codes for 

a long time and they were they are still use like I said it is the most popular code around 

any device you take is very likely to have a Reed Solomon code BCH code for that 

matter. 

We see that encoding is very easy you have a shift resistor circuit decoding is also 

equally easy you only do computations with the small look up table which is very 

trivially implementable today. So, today Reed Solomon codes I mean I can list the 

number of places that they are ever where any place you imagine, you have Reed 

Solomon codes. So, very popular and they deserve their place also, so what we are going 

to see beginning from this lecture onwards means beginning at this moment onwards is 

something very different from what we have been seeing so far. 
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So far we were looking at algebraic codes, basically what were there main 

characteristics, so to speak of algebraic codes, and you used finite fields for the 

construction. You get a certain design distance and you have good bounded distance 



decoders encoders are simple, but usually encoding is not so complicated. As you can 

imagine in the worst case, it is simply a multiplication by one big generator matrix and 

you can do it, it is not a problem. So, let us not worry about the encoder, they have good 

well not good very efficient bounded distance decoders. 

So, for a long time the view of coding was that it is not this, what is this, so the way 

people viewed codes for a long time was that you have a certain communication channel 

on which you have done a lot of work. So, you have bits going in and bits coming out, so 

for a long time people were trying to do codes on encoder and a decoder will sit outside 

here. So, this was considered as the place for the encoding and decoding, so coding was 

seen as primarily a mechanism for correcting errors. So, that is why they are called error 

correction codes and this was this was how codes were used for a long time. 

So, you have a channel in to which you are putting in some bits you are getting bits out, 

what happens inside the channel or how is that channel physically realized. What kind of 

electronics you do on the channel or syndrome processing you do on the channel is 

completely hidden from you. Some bits are going in, some bits are coming out, there is 

some probability that the bits might be in error. So, you either had a binary symmetric 

channel kind of model or in fact better model or a simpler model was the bounded 

distance model. 

You always knew that with very high probability you would have a maximum of let us 

say some eight errors, eight errors eight byte errors or eight bit errors or whatever you 

had a bound on that number. Once you had that what did you do for designing you used 

an algebraic code I made a lot of sense to use an algebraic code because it has a design 

distance, you know its MDS. So, for the given distance, it is probably a very efficient 

code, then you have good bounded distance decoders that can be implemented 

everything was fine. 

So, as electronics advanced people slowly started thinking of coding as part of the signal 

processing in the communication process itself instead of thinking of coding as coming 

in a separate outer box can we move coding inside closer to the modulation? Let us 

differentiate between coding and modulation, so far coding you are thinking of bits 

message bits that can be converted into code words what is modulation in a very loose 

way we might have defined it very rigorously in communications. I do not know digital 



communications, but the way to think of modulation is bits are getting converted into 

signals. 

So, electrical signals is there anything to gain from pushing by pushing coding from the 

outside closer towards modulation and thinking of the whole thing as one big operation. 

So, people started in the late seventies early eighties or even may be early seventies 

talking about what is called coded modulation. So, this is a this is a classic error 

correction picture it was called forward error correction for a long time error correction 

or FEC and then people started talking about coded modulation. 

So, here you think of codes as part of the signal processing need for communication, so 

instead of thinking of it as some box that sits outside of my entire digital communication 

device and fix this errors. 

I occasionally make can I move it inside the modulation part of my design so that to give 

a better performance of course, there has to be a benefit. Now, it is no benefit decoded 

modulation nobody would do it what bother you just wait with the same pictures before 

encoder decoder and proceed first of all we have to be sure that there is some benefit in 

doing coded modulation. If you do that this is you gain something, so does your design 

become better all those things are questions you have to ask and of course, the answer 

was yes that is why people did that. The next thing you have to worry about at least in 

those days the VLSI part of things were not so advanced. 

You still had to deal with almost hand optimization of circuit’s kind of thing, so if you 

are doing those kind of things then doing coding at the signal processing level is 

probably more difficult. So, you will have to deal with maybe I will explain in more 

detail why it is a little bit more difficult because it requires a lot of memory. Your block 

length is going to be 2000, previously you were simply dealing with one bit at a time 

independently inside in the single processing part. 

Now, if the block length is two thousand you cannot simply deal with it one bit at a time 

if you are doing coding inside right you have to wait for all the 1000 signals to come in 

which means you have to process a huge block of data. You have to do signal processing 

for that which might be difficult, so that was the significant road block for some time 

once that problem was solved, once VLSI became advanced enough, then it made 

obvious sense to do coded modulation. 



So, what I am going to describe next is a very simple picture of modulation in a way that 

will be useful for us way that will be useful for coding it is fairly rigorous. If you do 

additional communication course, you will see that that is how most modulation schemes 

are. If you see it first time you might think I am making some basic mistake or making a 

huge approximation it is not a big approximation, so how do we think of modulation? 
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So, we will use this we will use thins two dimensional vector kind of representation for 

modulation which is quite in fact we will only use one dimension, but just for the sake of 

it I will draw pictures. So, you can think like I said modulation is the process by which 

bits are converted to signals suitable for transmission. So, I mean I am going to re do 

digital communications here, but the way we will model this is instead of thinking of 

signals we will use the vector space representation for the signals which will give the 

simple alphabet for the signals. 

We will only deal with the alphabet and we know that you have, I mean you can think of 

the signals you can make a orthogonal basis ortho normal basis for them and then 

express your signal, in terms of those basis. So, you will get a point in the constellations 

of the speed for the signal instead of thinking of the old signal we will simply think of a 



point in a constellation. In fact we will mostly use only a one dimensional constellation, 

so we will assume these signals come from a one dimensional constellation pretty much 

for the entire course. 

We will only deal with the one dimensional constellation, in fact we will mostly, so this 

is in the vector space notation vector notation or representation, we will only look at one 

dimensional constellations. In fact, we would not even look at generic one dimensional 

constellation, we will simply look at what is known as BPSK, what is BPSK. It is just 

one dimension and you have just two points in the constellation, which I will normalize 

to plus 1 and minus 1 and i will say 0 maps to plus 1 and 1 maps to minus 1. So, this is 

how we represent the constellation, it is one dimension you have simply a line and two 

points in that line this is binary PSK, it is a very standard constellation. 

So, we will not go into any detail on the digital communication part of it, we will simply 

directly use this BPSK constellation for almost the entire course may be later on. If it is 

needed, I will mention how to do other constellations, it is not too difficult once you 

understand how BPSK constellation works, and so what does what does our encoder. 

Now, look like encoded modulation, so in fact we will not even look at really 

complicated ways of doing coded modulation there are ways of integrating the coding 

with the constellation etcetera. 

We will not look at all of that we will simply use a coded modulation which is a very 

simple form of things basically what we will do is we will take k bits with the message 

which we will call m go through a code. This is the code part of it encoder let us say it is 

an n k binary linear code. Even if your code is a Reed Solomon code, you can always 

ultimately come back to become binary linear code, so you are going to represent all you 

are alphas as some number of bits only. So, this is a good picture to cover that case also, 

you get n bits which make a code word which call c and then I will have a BPSK block 

which represents this will output n symbols. 

I will get a symbol vector which I will call s what is the BPSK block do if my bit is 0, it 

is going to make plus 1 if my bit is one its going to make a minus 1. So, I have n symbols 

there is a wonderful abuse of notation. You can do to write this s in terms of c, so it is 

very common in mat lab it will work very well. So, write it as 1 minus 2 c of course, it 

does not make any sense in binary field 2, 0 and then you would not get anything, so you 



have to imagine. Now, that this 1 and 0s are actually integers and then you do 1 minus 2 

c, you get minus 1 and plus 1 it is just a simple short hand notation to represent BPSK. 

It is not crucial, but this is good it simplifies some notation later on, now I am going to 

relay on your knowledge of digital communication to say what will happen if this signal 

goes through a additive white Gaussian noise channel. So, there is a very common model 

which is called the AWGN model which is additive white Gaussian model under which 

in the vector space notation something very simple happens to the signal. What happens 

to the signal a random variable gets added to each symbol either plus 1 or minus 1 and 

that random variable is independent from symbol to symbol. It has some variance which 

we will call as sigma square which might be some n not by 2 in your white noise 

assumption. 

So, we can simply say sigma square, so that is that will be that will be my noise vector, 

so I will call it z this I will say is distributed normally with mean zero variance sigma 

square. So, this is the assumption on the noise, so that is a very rigorous justification for 

it you can start from a set of signals, let us say 2 signals expressive in terms of a basis 

like this. Then, send that signal out and assume some n of t gets added to it and then you 

design an optimal front and it is just called the match filter, you design that that. Then, 

you look at a sufficient statistic, which will be just this which will be some noise vector 

being added to the representation of the signal in the in the that space notation. 

So, this is a very complete and accurate representation of what happens to a full fledged 

electrical signal and practice. So, this is good enough so you get a received vector r from 

this. So, now remember is a real vector it belongs to the n dimensional real space. So, it 

is a real number it can take any value the way a model z is simply a normal variable 

normally distributed variable zero mean and variance sigma square. So, it can take any 

value from minus infinity to infinity of course, the larger values are more and more 

unlikely, but still it might take those values. 

So, r can theoretically be distributed over the entire real line. So, now comes the crucial 

step so far you might say I have not done anything very different I mean what is coded 

modulation here the crucial idea here is that if the decoder will work directly with r. So, 

that is the big difference the decoder will directly work with r and produce an estimate of 

c hat maybe I should re write that a little bit more clearly no decoder. 



So, that why I am that is the way I have combined the coded and coding and modulation, 

so I am going to run a decoder directly on the received values without doing any bit by 

bit symbol by symbol de modulation will not do any. Of course, that is one choice I will 

talk more about that later is it so this is a big difference. So, hopefully you agree with me 

that this is very different from the decoders that we have been seeing so far, this decoders 

we been seeing so far work in some Galva field right for the Reed Solomon code. If you 

are using a Reed Solomon code here, they work in a Galva field not in the real field 

makes no sense to use them on the real field. 

There is no direct way that you cannot compute a syndrome, it would not make any sense 

no roots no polynomials nothing it becomes a problem in what is known as detection or 

inference or learning whatever you want to call so many different areas these days. So, 

all of them are pretty much the same they can call it decoding it is not too bad, so it is 

important to understand what is going on here in more detail we will see in more detail, 

but this is the picture. In general that we will be looking at for pretty much the rest of the 

course so we will look at different coders and encoders and decoders which work in this 

picture and like there is a way in which you can study. 

What is called capacity of the systems and show that a system like this if it works well 

will be about three d b better than a system like what we had before it is a rough number 

so maybe it will be more. So, basically there is lots of signal power that you can gain by 

doing coded modulation directly as opposed to only dealing with bits that is the idea. So, 

roughly we may not have time to see that also may be maybe we will see it, we will see 

depending on how much time we have any questions about this picture see c cap is 

supposed to be a code word. 

So, if you are doing systematic enquire for instance I will let me not say it is a it is a 

estimate of coder, but you have to think of it in that way from that you are going to 

compute the message as let us say systematic. Let us assume systematic encoder so for 

the first k bits of c cap, you will say is m cap that is all you will not do any further 

decoding after that and supposed to be directly. So, I am going to ask more questions, so 

if you have any questions it is a good time to ask because typically people misunderstand 

something when I write like this it seems very clear when I write it , but when I ask the 

next few questions, it seems a little bit more confusing usually people get confused by 

that so stare at it for a while hopefully you understand these things is it. 



So, one thing I have to clarify is the notation I will happily kind off do not know what to 

say walls let us say move here and there between random variables and values taken by 

them. So, I will not distinguish between those two too much in my notation, so for 

instance here the z vector. I have said is an random vector which is normally distributed 

in fact even the c or the s is the random vector message is supposed to be random 

everything is random, but we are not dealing with them in that fashion. 

So, we are thinking of them as values taken also you just think of that also as the same 

thing, but remember these things have distributions, so that how they look, so the first 

question that I am going to ask you is the following it is a very simple question. 
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Let us suppose we look at one particular symbol, so let us say, s i particular symbol its 

going through the channel, so one z i which is normally distributed with 0 mean and 

variance sigma square goes in what will be the distribution of s i. If you assume equally 

likely messages etcetera, it is going to be uniform, it will it will be discreet distribution. 

So, it will take only 2 possible values minus 1 and plus 1 with probability half, so let’s 

have some notation for it we will say uniform with curvy linear this curve brackets minus 

one and one. So, it is curve brackets, so I get an r sub i, my first question is what is is the 

distribution of r sub i, nobody knows this that is what I like most about. So, r i is going to 

be, I mean you are essentially, it is going to be a two Gaussian s added up, so you can 

think of it as half normal minus 1 sigma square plus half normal plus 1 sigma square. So, 



this is a very, I mean I am writing a bad notation here, so hopefully you see what it is if 

you draw the PDF of r i how will it look? 

This is the p d f, I will look like this depending on the value sigma which you will 

assume small enough compared to minus 1 and plus 1. It will look like this question what 

is this height minus 1 by sigma square all that would not come e power minus 1 by 

sigma, there will be no e power minus 1 by sigma square. Everybody agreed on that in 

that in that height good what will be what will that height be small factor e power minus 

2 by sigma square will be there why you saying there will be no e power minus 2 by 

sigma square. 

You cannot take it will be a small term, but if it will be there right it will also be a 1 by 

root 2 by sigma square before that, so you know what about this height. Hopefully, you 

know enough about normal distributions to compute these two points you have to write 

the expression. So, f of r i will basically be this expression half 1 by root 2 by sigma e 

power minus r i plus 1 by r i plus 1 square by 2 sigma square plus 1 by root 2 by sigma e 

power minus r i minus 1 by 2 sigma square. 

So, this will be the actual full expression for f of r i the question i asked about that height 

was basically plugging in r i equals plus 1 or minus 1. So, this will be an even function 

even function or not it will be an even function, so you either put plus 1 or minus 1. You 

will get the answer and the question about this height was putting r i equals 0, so you get 

some other answer is that, so that is the PDF. So, if you are looking at if you are sitting at 

the receiver and looking at r i will take values around plus one and values around minus 

1. 

So, this is how the the picture will look for BPSK, so there is no, I am not talking about 

coding m. Now, suppose I ask the question what is the best estimate of s i given r i, so 

given r i. Suppose, I want to find s i cap nothing and ignore everything else it is very 

easy to do that, you can do an m l estimate any r i greater than 0. Then, you decided s i 

was s i cap is plus one r is less than 0 you decide s i cap is minus 1. That is the best thing 

you can do for a particular i is that that is important you ignore everything else for the 

particular i that is the best you can do. 

So, let us do write that down also m l estimate or the maximum likely hood estimate you 

can also compute it correctly. I think most of you should have enough experience to 



know what I mean when I say this s i cap is plus 1 if r is greater than 0 and minus 1 other 

wise. So, basically you can do what is called slicing so you can slice r i it is a very crude 

term to use to express this basically you do a slicer and it will work like that, so let me 

write that down also. 
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If you have s i and z i normal 0 sigma square is getting added to it you get a r i you slice 

the picture for the slicer is this. So, normally the things are not marked, so basically its 

plus one and minus 1, so this is the slicer you would get a s i cap, so you can think of it 

as the best possible estimate. You can have for s i given that particular r i only, so you 

have not given anything else only given r i is the best possible estimate for s i what you 

can do so. So, the slicer is also called a hard decision hard decision device or the hard 

decider, so it say slicer make hard decisions. 

So, this is called the hard decision and this r i is called soft, so the reason why you would 

say r i is soft and s i hat is hard is when you can see you can see why that makes sense. 

So, suppose I am given a value of r i suppose in this scale this is plus 1 suppose I am 

given a value of r i which is let us say something like point eight r i point eight. When i 

say r i is 0.8. So, it is close to plus 1 or another possible value for r i could be let us say 

0.1. So, if I say r i 0.1 and in at one time. When I say r i is 0.8, the two mean something 

different, on the other hand if i say slice and look at what came out of the slicer for both. 



I would get the same plus, so the slicer loses information in some way right it loses that 

softness of information. So, it loses the belief or how confident you are that s i capo is 

plus 1 so that is something that it loses, but remember given r i alone the slicer is the best 

you can do there is nothing else you can do it is the best you can do, but having r i itself 

might be more useful because it has more information in it value can mean something. 

So, one choice for the decoder so remember those decoder I drew working on r one 

choice for you decoder is the hard decision decoder. So, let us say I make, I do a hard 

decision decoder, so what is a hard decision decoder, so when you get r from before this 

r is coming from before it so in the hard decision decoder the first thing you would do is 

slice symbol by symbol. 

So, you would get something let me call that y the vector y what is this vector y basically 

it is what you get after slicing r i. So, y is y 1 y 2 y n y i is minus 1 plus 1 and y i is the 

sliced version of r i. So, y i is then what you can do is you can go from y to some other 

may be y was not a good choice because I have used z for something else well. Let us 

say from y you go to w how do you do that you do inverse BPSK, you can write an 

expression if you like for inverse BPSK which will be one minus y by 2. So, that is 

inverse BPSK, let us say u get a w now remember w now is n bits so at this point. 

You can run your syndrome decode, so this is the hard decision decoder which will 

produce definitely a estimated code word would be output. So, remember when I do 

slicing symbol by symbol given r i alone y i that is the best possible thing I can get for y i 

because nothing seem to be anything suboptimal given that symbol , but this but overall 

there is some sub optimality here. So, I will come back and comment on this later on 

once I have come to this hard decision versions I can do inverse BPSK and then 

syndrome decoder is optimal right it is an m l decoder. 

So, you do an m l decoding you get you get the c cap in fact from the code word c to w 

you can draw binary symmetric channel. So, you can do that its equivalently a binary 

symmetric channel remember how did i get r came from ultimately some code word c. 

You can do an equivalent channel from c to w and that will be a binary symmetric 

channel what will be the transition probability of the binary symmetric channel 

probability that the noise is strong enough. So, that your slicer makes a error, so what 

will be the probability q of 1 by q of 1 by sigma. 



So, you remember hopefully you remember enough of digital communications to know 

this, so it is the probability that the slicer makes an error its q of 1 by sigma, so from the 

code word to w i have a binary symmetric channel. So, clearly the syndrome decoder is 

an optimal m l decoder you get it. So, this is the hard decision decoder and this is the 

same picture like we had before you are really not doing coded modulation here. It 

sounds like I am doing coded modulation, but the slicing symbol by symbol is basically a 

independent de modulation. 

I am not taking the coding into account when I do slicing symbol by symbol, there is 

some information lost here the reason is r the bits the elements of r are not independent r 

1 r 2 r 3. If you look at all of them together they are not independent really they are not 

independent, the code words form only the smaller subset of the all possible 2 power n 

vectors. Clearly, the vectors the elements of r are not independent, so you can treat them 

independently and slice happily symbol by symbol. You have to view it as one big block 

and decode to the possible code word that is the optimal thing to do. 

On the other hand if you decide my complexity is too high, I cannot do all of that one 

choice is hard decision decoder, then you are back in the same old picture as before the 

syndrome decoding would very simply do come back to bits and you are happy. So, what 

we will see next is what to do if you do not want to do hard decision decoding, so 

anything that is not hard decision decoding is called soft decision decoding. 
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All of you know enough of coding already no need to read, this I should remind you it is 

kind of a modern idea its being around for all the time all over the place, but in a 

implementation sense it is definitely a modern idea. So, I will come later what I mean by 

this later on, so as we go along we will see what I mean, but soft decision decoders have 

been around since ages you know they have been around since seventies definitely what 

knows as a the b decoder is really a soft decision decoder. 

They have been around for a long time, but they have been kind of resurrected recently 

and so much studied and so much more detail and several sub optimal soft decision 

decoders are out there today, which work really well in practice. These are the 

engineering solution soft decision decoding is pretty much taken over today, so many of 

the new devices new implementations. 

You would have will be soft decision decoders and on the other hand I should also 

comment that soft decoding of algebraic codes is really hard its interesting not so easy to 

do soft decoding of algebraic codes there are algorithms. There are definitely very good 

algorithms that give you good soft decoders, but it is still kind of non trivial to come up 

with a very nice algorithm which works well in practice you remember in practice. We 

are going to look at field which are as large as 2048 and rates that are large usually 8.9. 

In those cases, most of the soft decision decoders known available out there for algebraic 

codes do not work that way. So, one of the greatest openings open problems in coding is 

still to my best of my knowledge remains fairly open is coming up with good soft 

decision decoders. For large algebraic codes of high rate large feel algebraic codes with 

high rate that is kind of open problem. I see people are writing down the problem it is 

unlikely that it will be solved in future or may be people. Actually I should say today in 

coding people are not interested in their problem the reason is there are other codes 

which are not so in a way to speak algebraically structured as Reed Solomon codes and 

all that. 

They have good soft decision decoders and they have taken over pretty much in an 

engineering sense. So, that is why today only the modern idea of is popular if you say 

you are working on a soft decision decoding of Reed Solomon codes you give an talk on 

a conference there might be two people sitting and listening to you. So, it is not a very 

popular area and people do not work on it , but I think it is an interesting problem any 



way so, let us see what to do if you cannot do hard decision decoding and that is soft 

decision decoding. So, let me write that down little bit once again so that you see what i 

mean by this. 

So, remember I am going to stick to binary codes and we will start by example we will 

see very simple examples of how to do soft decision decoding we will get the idea and 

then we will see more generic structure for it. So, what is the overall picture again 

remember i have a code word. So, I am going to start with code words the mapping to 

bits message bits its king of trivial. In a way suppose you have NK code all codes are 

going to be binary from now on unless some huge exception all codes will be binary 

from now on. 

So, let us just say n k code this is going to go through BPSK, BPSK will always be 0 

going to plus 1, 1 going to minus 1 and then a WGM. So, the symbol vector s AWGZ 

which is always going to be normal which means 0 variance sigma square i i d. This 

gives you r, I want to have a decoder here which will produce c hat. So, this is kind of 

similar to the problem for binary symmetric channel, we also started like this for the 

binary symmetric channel and the we looked at some situations this is a very generic 

situation which comes under detection etcetera. So, people know what the best thing to 

do is it is not very surprising that people know. 

It except that it may not be implementable in most cases , but set thing always known 

and the best thing is usually what is called maximum likely hood decoding. So, that is 

always the best possible decoder, so the optimal decoder is usually the maximum likely 

hood decoder. So, what does the maximum likely hood decoder do hopefully, if you 

remember this I derived it in sparely generally form early on in the class. I do not know, 

if you remember, so let me write down the c hat is you are going to maximize the 

probability of r given c equal to 2 over all you in the code. 

So, this is what we are going to do I am writing probability, but clearly r is a continuous 

distribution so basically it will be some p d f i am simply writing probability to just to 

avoid all those clumsy notations. So, whenever you have a continuous distribution 

interpret p r as a p d f, so that is the that is the idea actually I should be care full here this 

is optimal only when all the code words are equally likely that will be something that we 



assume so all code words equally likely something we will assume a priori equally 

likely, but computing this expression is a daunting task. 

So, let us try and compute it for simple cases, so I think the time is coming to an end, so I 

am going to stop in a little while, but we will try and compute this maximum likely hood 

decoder for some simple cases and then we will see it is a little bit non trivial to do it. So, 

clearly for large cases you can imagine why it is very difficult, how many computations 

do you have to do 2 power k 2 power k huge. 

You have 2 power k code words and if k becomes like 5000 then you cannot do this. So, 

it is very difficult to do this computation you might think there is a way to simplify this. 

There are ways to simplify it for BPSK, I will show you some simplifications, but even 

then the number of computations you have to do is really large. 

So, you cannot simplify it much beyond the difficult part, so there is also another way in 

which you can define optimality. So, this is optimal for what this minimizes what 

probability of what which error minimizes probability. That is very important minimizes 

the probability that c hat is not equal to c the entire code word. So, this optimal according 

to what is called as block error rate, this is called block error rate or frame error rate, so it 

is also possible to define optimality with respect to bit error rate. That turns out to be 

much more interesting in the modern sense, so to speak sop that s also this we will stop 

here for this lecture after a break we will pick up from here.  


