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Hello and welcome to lecture 24 of analog integrated circuit design. In this lecture, we 

deal with one of the very important non-ideal features of any real circuit that is random 

noise. It turns out that dissipative components like resister or a mosfet have random 

voice, and components which do not have any power loss like capacitor and inductors do 

not have. 
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So, in this lecture, we will look at random voice in a resistor says if you pass current five 

through a resister R voltage across, that should be I times R and if you apply a voltage 

source V across resistance R, the current through that well of course V divided by R in 

reality because of random motion of carriers. Through the register, the current is exactly 

V by R. That is why you take the circuit and measure the value of I very precisely versus 

time. 

You will see that the current has the mean value of E by R, but they are variation around 

this mean value, and that happens because if you take any cross section of resistor, let us 

say the current I is flowing, that way I equals V by R. That means that on average, this 



much charge is flowing every second through the resistor, but if you do take a cross 

section and see the charge flowing across the cross section in addition to this average 

value, there will be charges randomly moving back across the cross section. This is 

because random formal of charges as long as the temperature is above absolute 0, this is 

going to happen. 

Now, we need a way to quantify this and also, to estimate it at any given circuit. Clearly 

because of this, that current, any circuit is not exactly what we calculate based on the 

devise relationship. So, how can you specify something that is random as such? First of 

all, the resister noise, it turns out if you do this experiment with two different resistors, 

the noise wave form that you see here will not be the same. 

They will be uncorrelated from one resistor to another. It is a random phenomenon, and 

what is having in the resisters does not have anything to do with this. What happens in 

another resistor, it also turns out that in particular case over resistor, it is uncorrelated 

from one time instant to another. So, if you take the value at the particular time and 

another time in the same resistor, they will also be uncorrelated from each other. 
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How can we quantify such random quantity? There are many ways. From your study of 

probably random process you will know that. You can specify the power spectrum 

density or in general, the spectral density which relates to how the energy in the random 

is distributed over frequency. 



(Refer Slide Time: 09:31) 

 

You can also specify the mean square or the root mean square value. One of these things 

and for zero mean, the random processor is these are the same as the variance, and the 

standard deviation. Now, in this case, we assume that the average current is V by R and 

rest of it is by definition, it will have zero mean. So, we can either call it root mean 

square value of standard deviation or the mean square value or variance. 

We have to specify one of these things to specify the size of the noise because noise is 

random. We cannot specify amplitude. In fact, theoretically the amplitude of such turns 

out to be infinity, but we can specify the size by specifying the mean square value of 

noise. We need to learn how to do this for a resistor. First of all, let me go back to two 

pictures I drew earlier. 

If I have a voltage source across resistance, the current i equals V by R plus sum noise 

current, and this can be modeled by assuming that there is noise less resistor and a noise 

current source across it of the average just to symbolize that it is a current source. It does 

not mean the current is always in this direction. As I said the mean value of i n is 0 and 

the current in both direction clearly, in this case also i will be equal to V by R due to the 

noise resister plus i n. 
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So, we model the noise in the resistor as a current source. If I look at the alternative 

description, if I pass a current i, throw the resistance R, the voltage across will be i times 

R plus A noise voltage and this again can be part of the current flowing to a noise less 

resistor and series voltage source which is equal to the noise voltage. In this case also, 

the voltage cross i times R plus V n. 

So, in the pictures on the right side, what is that means? The noise itself is factor out as a 

source and this is very common thing. You assume that there is a noise component which 

follows the V i relation that you know it is home flow of resister or a square loss of a 

mosfet and so on, and the noisy part of is modeled out as either the voltage source or a 

current source whichever is convenient.  

Finally, if we are going to use this model or that model for the resistor, the two have to 

describe the same thing and that will happen if i n times are equals V n. This we can see 

very easily by assuming that let us say we have applied the zero voltage across the 

resistor and by the way this is noise less. So, the current following here is i n. This entire 

thing, the combination is what modules the resistor. 
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Now, I should get the same result if I use the other model for the resistor noise which is a 

resistor noiseless resister series voltage source V n and i short circuited just like clearly 

the connect will be V n divided by R, and the currents here and here have to be the same. 

So, that means the equivalent voltage source of a resistor and equivalent current source 

or a resistor are related by ratio which is equal to the resistance R. As I mentioned 

before, we cannot specify the instance value of either i n or V n. So, what we will specify 

instead is the spectrum density. That is how the energy in e V n or i n is distributed over 

frequency i n and V n are noise in a resister R. 

Now, first of all, what is the spectrum density? Spectrum density is some function of 

frequency and as common in circuit design, we take the one sided spectrum density. That 

means, that specify the spectrum density for positive frequencies and what does the 

spectral density tells you is some function. 

The spectral density of i n will be some s i of f. What is this? This is related to the auto-

correlation function of this process i n to the courier transform of the out correlated 

function and in particular, the interior of s i overall frequency zero to infinity will be 

equal to the outer correlated function at A times shift of zero or the variance sigma 

square. 

So, this is how the spectrum density is useful in specifying the magnitude of the noise. 

Now, for a description of auto-correlated function spectral density, you can refer to any 



basic book on random processes. It turns out that in the particular case of a resistor, if I 

plot the spectral density of the current, it is constant for all frequency and such a function 

is known as white noise. 

If the spectrum density of certain noise process is constant for all frequencies, it is 

known as white noise analogues to white color which has all frequencies in it and the 

magnitude of the spectral density is 4 k t divided by R, where K S Boltzmann’s constant 

1.38 times to minus 23 joule per Kelvin and p is the absolute temperature and room 

temperature corresponds to 300 Kelvin. Now, this is the spectral density of the noise 

current of a resistor. It is constant over frequencies and it has magnitude equal to 4 k t 

divided by R. 
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Now, you also know that the noise voltage relate to the noise current by multiplier factor 

R. So, the noise spectral density to the voltage is related to the noise spectral density of 

the current by the square of multiplying the factor. This is because basically the spectral 

density relates to the square of these quantities. So, that means that the noise voltage 

resistor as the spectral density which is k T divided by R square equals 4 k T R.  

Naturally that is also constant with frequency and it is 4 k T R. My good numbers 

remember that k T equal 4 times 10 to minus 21 joules at 300 Kelvin and if you 

calculate, let R equal 1 kilo times. What we will get is 4 times 10 to the power 21 joules 

times 10 to 3 ohms, and this gives you 16 times 10 to the minus 18 volts square per hertz. 



The voltage noise is specified in volt square of hertz. The old region, it is related to the 

square of the voltages and the spectral density obviously relates to a density over 

frequency. So, it is given as old squares divided by hertz or old squares per hertz. 
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Similarly, the current noise spectral density is given by units of ampere square per hertz, 

and as I mentioned for 1 kilo ohm resistor, the straight answer to be 16 times into 18 old 

square per hertz and clearly from that we can also calculate S i which is 16 times 10 to 

the power minus 24 ampere square per hertz. Now, we did not derive any of these 

results. We just took them for granted. 

These results were derived long ago and they have been used widely and confirmed 

experimentally and so on. What does that mean? I mean we have this obstruct 

description of noise in terms of the spectral density and so on, and we said something 

about it being related to distribution of this quantity over frequencies, but when we deal 

with the voltages current, I have 1 volt signal here and I have 10 mili volt signals there.  

So, now the noise is something that is random and I should like to specify also in terms 

of voltages or currents. Then, I can compare my signal to the noise and see if the signal 

is sufficiently above noise of common experience. You know that if you are trying to (()) 

some signal or let us say you are trying to listen something and there is lot of noise, you 

will not be able to if little noise is there. So, you have to be able to quantify the amount 



of signal to the amount of noise and further, we need to be able to describe the signal and 

the noise in the same units, and we describe the signal in terms of voltages and currents.  

Similarly, we have to do the same for the noise as well. So, what is the meaning of this 

spectral density? What it means is that let us take the voltage noise spectral density of a 

resistor and a resister modeled by a noise class resistor and series with a noise voltage 

source. So, across this, there is some voltage, although you will expect there to be no 

voltage because no current is flowing. Because of noise, there will be some voltage and 

let us say you apply these two and ideal band pass to filter off some band width and at 

the output, there will be some other voltage. Let me call that B. Now, how to use the 

spectral density is that spectrum density as a certain volume 4 k T R.  

In this case, it happens to be with frequency and let us say we have the band pass filter b 

at the centre frequency of f naught. So, that means that at f naught, I have ideal band pass 

filter and band width is b hertz. So, that means that in the range of frequencies, it will 

pass the input voltage as it is to the output and outside it does not, ok. So, then it passes 

the noise energy in the pass band of the filter and blocks all of it in the stop band of the 

filter, ok. Then, the spectral density times the band width because inside the band, the 

transmission is constant. It simply passes the noise. This will be equal to the variance of 

V naught. That is what it means. 
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So, for instance, let us again take 1 kilo ohm. Resistor has a noise spectra density voltage 

of 16 times 10 to the minus 18 volts square per hertz and if I pass it through a band pass 

filter, ideal band pass filter of 1 mega band width, this means that B is 10 to the power 6 

hertz. So, this spectral density times B will be 16 times 10 to the minus 12 whole square 

and this is the variant of the output voltage. Now, we would like to specify RMS value 

and that is nothing, but standard deviation and sigma V naught will be square root of V 

times B which will be equal to 4 times 10 to the minus 6 volts or 4 micro volts. So, this is 

how the voltage noise spectral density or current noise spectral density can be used for 

calculating the amount of noise. 

When you say that amount of noise, we have to able to quantify and here we have said 

that the standard deviation of noise or the root means square value of the noise is 4 micro 

volts. Now, it turns out that like many other random phenomena commonly seen in 

nature, distribution of this noise is also Gaussian. So, what we would say is, let us say we 

have the current I flowing a resistor R. It will have the mean value of I R and if I plot the 

density function, probably density function vertices, the voltage will have the mean I R 

and it will have some distribution around it. Now, what it means by having a 

distribution? Let us say you make thousand of this example circuit where you pass a 

current. I throw a resistor R and you measure the voltage across all of them at the same 

time. Then, you will find that all of them will not be equal to I times R. They will have 

mean value of I R, but they will have the distribution around it and the standard deviation 

of that distribution will be 4 micro volts. 

Now, it also turns out that you take one of these circuits, you have passed a current. I 

throw a resister R and you measure the noise at different time instants. Let us say you do 

it some 10000 time instants. Then, they will also have an average value of I times R, but 

they will have the distribution around I times R, and the standard deviation that 

distribution will also be 4 micro volts. That is what it means. You can specify the noise 

at any instead of time, but you can specify the root mean square value and draw whatever 

conclusion from that. Now, given that the distribution is we can say that 99 percent of 

the time, the values will lie with the minus 3 sigma of the mean. This is something that 

we know from the knowledge of the distribution. So, we can expect that most of the time 

the voltage that you measure across the resister will be within plus minus micro. 



Volts of the means value I times R, whether this is sufficient closed or not, that depends 

on the application. We will later say the example of how to calculate that, but we will 

know that if you pass a current I resister R, where resistance is 1 kilo ohm and the band 

width of the interest is 1 mega hertz, you will have standard deviation of 4 micro volts or 

99 percent of time. You will measure the voltage within the plus minus 12 micro volts of 

I times R. 
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Now, because we deal with voltage and currents, sometimes the spectral density like A is 

4 k T R volt square per hertz and this is equality specified as square root of 4 k T R volts 

per square root hertz. The reason to do this is we preferred to have units of volts square, 

that is all and we have the square root of band width under it. So, what does it mean? 

Again for kilo ohm resistor, we have 16 times to the 18 old squares per hertz and this 

equivalently represented as the square root of this value which is 4 times 10 to the minus 

9 old square root hertz which is the same as 4 nana volts square root hertz. Now, this 

kind of specification is given, so that you can quickly relate to the voltages. 

Now, again when you were talking about 1 mega hertz band width, an ideal band 1 mega 

hertz through which this noise is passed, all you have to do is multiply the spectral 

density in volts per square root hertz times the square root of band width square root of 

10 to 6 is 10 to 3. So, we will get 4 micro volts. By the way, sometimes it is easier to 

specify in terms of volts instead of volts square. Similarly, the current noise spectral 



density which is 4 k T by R ampler square per hertz can be equally represented as square 

root 4 k T by R ampere for square root. Again for 1 kilo ohm resistor, this will turn to be 

4 times into the minus. Well, ampler or square root hertz or 4 per square hertz because 

we are so used to dealing with the voltages and currents and not squares of currents 

square root hertz, but other description is equally valid and also, use equally often. 
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Now, just to give you a little more feel for this resistor noise, let us say I take the 1 kilo 

ohm resistor and connect it. What will I see according to ohms law, there is no voltage 

cross because there is no current flowing through it, but we do know that the random 

functions carries inside this will cause some voltage. How much will that voltage be? As 

usual we cannot specify the exact value at a given instant, but we can specify sort of the 

size. 

So, what we will actually see on the oscilloscope, it will itself have some band width. Let 

me call it BW osc and the resistor has the voltage noise spectral density 4 k T R will 

assume that as usual the voltage across the resistor has sense without disturbing it by the 

noisily scope. So, the variance is that much and the root means square value that much. I 

will use that some times to denote the root mean square value of the signal, and this 

denotes the means square value of the signal and that is 4 k T R times the band width of 

the oscilloscope. 



So, given that this is the 1 kilo ohm 4 k T R 16 times 10 to the minus 18 volts square per 

hertz and let us have the noisily scope which has the 100 mega hertz band width. So, this 

times 10 to the 8 hertz equals 16 times 10 to the minus 10 volts square. That is the mean 

square value and if you take the square root of this, we get 40 micro volts. It is quite a 

small value to be measured with an oscilloscope, but let us do. We have the noisily scope 

with such a fine resolution. 

What you will see is, you will see band of some thickness and because this is a 

distribution, the amplitude is actually infinite. It can take values plus infinity or minus 

infinity, but 99 percent of time, it will be within plus minus 3 sigma band and that I will 

draw as the band that you will see on the oscilloscope which is displaying noise and that 

transferred to be a within band of plus minus 120 micro volts.  

So, if you have a sufficient oscilloscope and you connect up to a resistor, this is what you 

will see. Alternatively, if you want to see larger noise, you know that the voltage noise 

spectrum density is directly proportional to the resistance value. So, what you can do is 

to use the larger and larger resistor, so that you will see larger noise from the 

oscilloscope. 
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What we did so far was to define the spectral density, that is the distribution noise over 

frequency and if you take a certain band of width, let us say you are selecting using ideal 

band pass filter which passes the certain frequency and completely blocks others, what 



you will see is the spectral density times that band width because the spectrum density is 

the constant. Now, when the noise voltage of a resistor passes through some circuit, it 

may not experience the transfer function which is constant over all frequencies. 

So, in general, let us say we have some transfer function which varies with the 

frequencies and to its input; we connect the voice source, some noise source which is 

spectral densities. Let us say S vi. Just to denote the input, what we will see at the output 

is again this is known from basic random process theory that at the output we will see 

another noise process whose spectral density is the input spectral density times the 

magnitude square root of the transfer function H. Now, if you want to calculate output 

variance, you have to integrate the output. The spectral density from 0 to infinity, we will 

quickly see an example of this one.  

So, from the input density, you can calculate the output spectral density. Now, let us 

have some H and to its input, you connect resistor. We know that now the noise spectral 

density of the noise source here equals 4 k T times R. The output noise spectral density 

will be 4 k T R times mod H of f square and the mean square value of the output will be 

4 k T R integral mod H of f square d f from 0 to infinity. Now, just like any other voltage 

or current in the circuit, the noise voltage or the noise current experiences some transfer 

function when it goes to the output. 
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Now, when the noise goes to some transfer function, the output also have some noise and 

the spectral density of that noise equals the density of the input noise times the 

magnitude square of the transfer function. Now, if you have the multiple noise sources in 

a circuit, what you have to do is you calculate the transfer function from every noise 

source to the output. 

Now, this is very common scenario that you have the circuit with a number of resistors. 

Let me call it V1, V2 and some time you may choose to model the noise with the current 

source instead of the voltage source, and let us say the input is 0 as usual. Because of the 

noise, the output will not be 0 in a liner time. In variant network, the input is 0, the 

output will be 0, but because of the noise source, it will not be 0. So, how do we 

calculate the output? We calculate the transfer function from each source to the output. 

So, let us say V 0 SV 1 times H1 which is the function of frequency plus V2 times H2 of 

f plus I3 times H3 of f dimensional, it does not matter times and so on. We could have all 

these things. 

Now, the spectral density of the output will be of the spectral density of V1 times the 

magnitude square of H1 plus spectral density of V2 times magnitude square of H2 and 

spectral density of I3 magnitude square of H3 and so on. Now, the first one comes from 

just super position activate each noise at a time. Find out transfer functions and add them 

up. Now, the noise is affected to it in a very small quantity. So, any calculation that you 

do with noise will be linear. Now, even if you have circuit, you are familiar with the 

concept of small signal linearity around the operating point. If you have small 

disturbances, they can be represented by equivalent linear circuit. 

Now, the noise will be small and it can be handled by the small signal linear equivalent 

circuit. So, the super position always applies. Now, to go from first one to the second one 

to calculate the spectral density, they make some assumption that this VN 1 and VN 2 

and IN 3 are uncorrelated from each other. That is why we can add up the spectral 

densities of individual contribution. If they are correlated, you have to take the spectral 

density of the whole thing and if they are not correlated, it turns that the out spectral 

density will simply be some of individual spectral densities, and this is a correct 

assumption because it turns out that if you have physically different components, the 

noise from those things will be uncorrelated, right. If you have physically two different 

resistors, the noise from each resistor is correlated-uncorrelated from each other. The 



noise from the two resistors will be uncorrelated from each other. In fact, we simply do a 

quick calculation to verify that is indeed the case.  
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So, let me use the current source model. If I have the resistance R1, it will have a current 

source whose spectral density is 4 k T divided by R1. This is not the value of current. 

This is the value of the spectral density. If I have a resistor R2, I will have 4 k T divided 

by R2. Let me call this I 1 and I 2. Now, if I have these two parallel, what do I get? I get 

the parallel combination of the resistors which is the reciprocal of 1 over R 1 plus 1 over 

R 2 and I will have I 1 plus IN 2, and because these are correlated, respected density will 

be simply the sum of two spectrum density. The current source adds up in parallel. 

So, we will have 4 k T, the density 1 over R 1 plus 1 over R 2 and you can see that this is 

consistent because the effective resistance here is such that it is 1 over R 1 plus 1 over R 

2. The parallel combination of these two is the single resistor equal to R effective and 

you expect that there will be current source corresponding to each noise that will be 4 k 

T divided by R. 

Now, if you assume that the noise from this and that is uncorrelated, we do get the 

consistent result. This is quick verification. It is very well known that the noise from 

different component will be uncorrelated from each other. Now, what we will do next is 

to take the simple circuit which has the transfer function that is not uniform with 



frequency. So far we have delta with the ideal band pass filter which had a uniform 

transfer function that is either 1 in the pass band or 0 in this pass band. 
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Now, we will look at another circuit and the circuit is also important for other reasons 

because its basic results are used in a lot of other contacts of this. Circuit will look at is 

first order RC low pass filter and if we apply input P1, we get an output V0 and we know 

that the transfer function of this circuit in terms of S will be 1 by 1 plus SCR. This is the 

transfer function from this input to the output. Now, in this circuit as usual there will be 

noise because of the resistor. 

The capacitor does not add any noise. What we would like to do is find out the output 

noise. Now, as I mentioned earlier, noise is calculated from the near equivalent circuit 

and we can do that without the signal because the linear circuit follows super position 

and if you want to find out the effect of noise and signal together, what I will do is, I will 

calculate the effect of signal separately and noise separately and add up two. Of course, 

there are circuits. This is not valued behavior of noise is influenced by the presents of the 

large signals, but most of the common amplifier circuit operate in the linear mode, 

whether you have the signal plot, the noise will behave in the same way.  

So, we will set the signal to 0 and calculate the noise. If I set the signal to 0, and I 

represent the noise by the equivalent source VN and I want to calculate V0. Now, you 

very easily see that this VN is in the place of this input. So, quite obviously, the transfer 



function VN to the output is the same as from VI to the output. So, V naught of S by VN 

of S is 1 by 1 plus SCR. Now, when you are doing the calculation with noise, usually we 

represent everything as function of the frequency f and not omega that is f n naught in 

radium per second. So, we will calculate this as the function of f and that will be 1 by 1 

plus j 2 pi f CR.  
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So, from the earlier discussion, we know that SV naught is SVN times magnitude H of f 

square which is 4 k T R respective density resistor noise times the magnitude square of 1 

by 1 plus j 2 phi f CR. It is very easy to calculate this. It has 1 over 4-5 square f square C 

square R square. Now, what is the shape that this will have added low frequencies? It has 

the magnitude of 4 k T R and at high frequencies because of f in the denominator, it will 

drop down to 0 and we also see that the band width of the filter when f is 1 over 2 phi 

CR. This denominator is 2 and we will have spectral density of 2 KTR and this is at the 

frequency of on over 2 pi CR and after it drops down to 0 like that and this is SV0 and 

this is very much the expected behavior. When this is after all low pass filter, the noise 

voltage is low pass filter when it appears from output at low frequency. 

What happens is you simply have (()) a resistor and all of the noise, the resister appears 

at the output and very frequency the capacitor assess the short circuit and no voltage 

appear across it. That is simply what is described by the spectral density plot I drew just 

now. I would also like to calculate the mean square value or the variance of the output 



noise. I note this is SB0 integrated over all frequencies and this is very simple integral 

from 0 to infinity and there are so many ways of doing it.  
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This gives you a tan inverse function. So, that is what the result turns out to be and that is 

nothing, but 4 k T R 1 over 2 phi CR times Y by 2 and it turns out to be k T by C. So, the 

means square value of the output noise is k T by C in this particular circuit. Now, what 

does that means? First of all, when you have the signal, also the output signal will be 

dependent on the filter transfer function. So, that is why you have at the band width of 

the filter, the output will have the sinusoidal which has an amplitude reduced by factor of 

square root of Q and phase shifted by 45 degree. In addition to that, you will have the 

random noise which is not white because the spectral density is not constant with 

frequency, but which will have the variance of k D by C. 

So, the first thing, this is an example circuit for calculating the noise and if you have 

more complicated circuits, this is what you do. You calculate the transfer function from 

the resistor noise to the output and if you have from each resistor noise to the output and 

now there is another interesting thing about this that the noise is independence of R. So, 

the noise happens to be just k T by C and in fact, after you become little familiar with 

circuit design and interacting with circuit designers, you keep hearing k D by noise. First 

of all, why does it come out to be independent of R? This is because if you increase the 

value of R in the circuit, the spectral density in the noise in the register increases. It is 4 k 



T R. The voltage noise density will increase, but the band width which is 1 over 2 pi CR 

will decrease in the same proportion. 

Now, the integrated noise is nothing, but the spectral density times the band width. Of 

course, the filter is not abrupt filter which allows everything within a band width and 

stops everything outside the band width, but still the principle is the same. You have 

spectral density which is increasing in proportion to the resistance and the band width 

which is decreasing in direct proportion to the resistance. So, the product happens to be 

constant and that is equal to k T by C. 
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So, let us take some values. Let me take C2 10RH and let me take R to be let us say 100 

kilo ohms. So, 1 over 2 pi CR equals 1 over 2 pi 10 to the minus 11 into the pi equals 10 

to the 6 pi 2 pi hertz and 150 kilo hertz also, and for this 100 kilo ohm, the noise spectral 

density 4 k T R will be 16 times 10 to the minus 16 whole square per hertz. Let us say 

somewhere here and then, it drops down to 8 and then, it drops out like that. Let us make 

my R equals 200 kilo ohms. What happens is the band width drops to 10 to the 6 y 4 pi 

hertz. So, it goes here and the spectral density increases at low frequencies, but then it 

drops out more quickly. When it does that, what are the variants? After all it is the area 

under the spectral density curve from 0 to infinity. 

The spectral density here is that 0 times 10 to 16 and this is of course, this is in volts 

square hertz. Now, just turns out that area under this red curve is exactly the same as the 



area under this black curve. So, regard less value of the resister in a low pass filter, you 

will have integrated k T by C. Now, this also tells you which will see the examples later 

that if you have the circuit with the resister capacitor and so on will lower the noise. You 

will end up with having to increase the value of the capacitors which typically increases 

the area, and we will also see later the increase power distribution that what we learnt 

from this particular analysis. 
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Now, also this analysis closes up other interesting questions like I have resister across the 

capacitor. This is simply the same circuit re-drawn. What has calculated is the noise of 

this circuit, right and we see the variance of the capacitor voltage k D by C independent 

the value of the resistor. So, the question is what happens when R goes to infinity? So, 

we have only the capacitor, but we seem to say that the noise across that is k D by C 

independent of the resistor. So, mathematically the result is valued even when R goes to 

infinity. So, it is an interesting problem. You can think about it. You can think about 

what interpretation it leads to. What it means to have R equal to infinity in the circuit and 

still have a variance of the k D by C for the capacitor voltage. Now, there is another way 

of arriving at result which I will not deal with in detail. 
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From the Equipartition theorem which you may remember from statistical mechanics, 

each degree of freedom has the energy of k T by 2. Now, if you have the circuit with one 

capacitor like this, there is one degree of freedom, the capacitor voltage and the energy 

of that is nothing, but half c v c square and that will be equal to k T by 2 and from this, 

you can see that the mean square value of the capacitor voltage become k T by C. Now, 

the result of this Equipartition part theorem is the fundamental result and that is how 

noise of the resistor is derived in the original paper, but this is other abstract and very 

hard to make circuit calculation from this very easily. So, we will use the spectral density 

of the resistor and from that we will calculate the transfer functions, and from that we 

will calculate the variance, but this is of something that you should know and you can 

follow the literature for more details from this one and finally, the noise spectral density 

of a resistor is 4 k TR for all frequencies, ok. 

Now, what does this mean? The variance of this will be infinite because the band width 

is infinite, right. 4 k TR integrated from 0 to infinity will be infinite. So, if I take the 

resistor and measure the voltage across, will I measure the infinity? What do you think? 

Well, clearly not because if you do have the infinite voltage across the resistor, none of 

the small signal assumption would be true and no circuit will ever work. So, many things 

happen. First of all, you are measuring instrument will have finite band width. So, that 

will limit the amount of voltage that it measures. 



So, that is one thing and the resistor itself will have something parasitic capacitance 

across something because between any two terminals, there will be some capacitance and 

across every resistor will have some capacitor. However, if you make the resistor 

physically smaller, the capacitance will be smaller and so on. So, there is another thing 

that limits the noise, but even more fundamentally, the noise itself turns out to be note 

white. This again I will not elaborate on, but from your first year physic course, you may 

remember what is known as ultra violet that lets to the introduction of quantization and 

quantum mechanics. 

So, initially let us assume that the distribution of energy across frequency uniform and 

then, it led to this prediction that the black body will have the infinite power and that was 

resold by who postulated the energies only in discreet packets, and that is proportional to 

the frequency of the signal proportional to the frequency of the radiation. That gives you 

result that make since that it has the finite energy and the result of all that is, basically 

this k T will be replaced by H mu divided by exponential of H mu by k T minus 1.  

So, this k T is something which is independent of frequency, but this function is very 

much dependent on the frequencies and HS constant and mu is the frequency, and you 

can very easily see that when the frequencies are very small, H mu is much smaller than 

k T. This reduces to k T. So, essentially what we have is the low frequencies 

appropriation to the reality k T minus 1 appropriation k T low frequencies and the low 

frequencies includes frequencies up to (()) hertz and so on. So, we can safely use this 

white assumption for all our circuits. In the next lecture, we will deal with noise and 

other components like the mosfet. 


