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So, what I said is that I can calculate that spectrum. Let us say I have a sequence x[n], 

which is the sampling version of xa(t) ok, where the sampling rate is Fs. Now, what is the 

voltage spectrum? How do I calculate it? I calculate x[n], and I can calculate X(k). So, this 

is nothing but a voltage spectrum. So, this f is nothing but a twice π by you can say the N 

or Fs by N into k, f is called normalised discrete frequency. 

Normalized discrete frequency ok. So, X(F) is nothing, but this is the; this is the, or I can 

say that like say this is X(k) instead of X(k) I say X(k).  

 

Now, what is small f? So, I have already given you the notation in lecture week number 1 

that capital F represents analogue frequency. 



Small f represents this normalized discrete frequency, which is nothing but an F by Fs. So, 

X(F) by Fs is nothing but an Fs into this one. So, the spectrum s F by Fs is equal to X(F) 

by Fs whole square. So, it is nothing but an Fs into Xa(F) whole square, understand or not. 

So, since it is restricted that X of a is restricted by Fs by 2, then in that case, it is nothing 

but an X of s into X(F) whole square. So, that is the spectrum of the signal voltage spectra. 

(Refer Slide Time: 02:34) 

 

Now, what is autocorrelation? Let us say r k is the autocorrelation factor. So, I know if the 

x[n] is in finite duration, then it is minus n by infinity. If it is finite duration, then n is equal 

to 0 to N minus 1, which is nothing but an x star n multiplied by x[n+k]. This is 

autocorrelation. So, using the Wiener-Khinchin theorem, they said the same spectrum can 

be calculated from the Fourier transform of the autocorrelation sequence. 

So, it is said that I can calculate the spectrum of a signal using 2 methods. One method is 

called the direct method, computing the Fourier transform of x[n]. So, the direct method 

is that I know x[n] I using discrete Fourier transform I compute X(k), and then I can draw 

the k versus mod of X(k) curve. So, if it is the energy power spectrum, it is a square. I 

know that this square, which I discussed. 

The second one is called the indirect method, which uses the Wiener-Khinchin theorem, 

which states that the power spectrum will be the same as the Fourier transform of the 

autocorrelation sequence. So, I have to calculate the autocorrelation sequence r k of a given 



signal x[n]. Step 1 and then step 2 is the Fourier transform of the autocorrelation 

coefficient, called the indirect method. 

During LPC analysis, I also said that. So, if I calculate the spectrum, I will get this kind of 

value for every k, but there will be an overall variation that is called an envelope. So, who 

represents the envelope? The envelope is represented by the spectral or I can, the system 

parameters, which are nothing but the formant frequency. So, who is represented by the 

formant frequency, nothing but an LPC coefficient from LPC analysis? 

So, the autocorrelation coefficient basically represents that envelope. So, I can also 

calculate the spectrum of a signal using the autocorrelation coefficient. So, for a 

deterministic signal, I can say I can use direct method x[n], I can take the discrete Fourier 

transform, I get that, but from a non-deterministic signal, random process signal. 

So, what is the basic assumption when I say length Fourier length is N? We said the signal 

is periodic with length N, but a random signal is not periodic with length N deterministic 

signal may be. So, that is why we go for autocorrelation of the signal, and from that 

autocorrelation, we try to find an estimate of the signal's power spectral density. 
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So, in that case. So, the duration of the sequence is limited to N point. So, I already 

explained that once I said that limiting that x[n] by a window function, the spectrum is 

nothing but a convolution of window frequency response multiplied by the signal 



frequency response. Let us, for example, suppose I have an x[n], and I take an N point 

DFT. So, x[n] is restricted by the N point. How do I restrict it by multiplying a rectangular 

window? So, the rectangular window is 1 for 0 to N minus 1; elsewhere, it is 0. 

So, it is nothing but a gate function. So, if I take that w n, this is w n, and what should be 

the frequency response of the W k, which is nothing but a sink function? So, you know the 

main lobe width depends on the window's length; if the window's length is very wide, then 

either the mainland or the main lobe will be very sharp. If the length of the window is very 

narrow, then the width of the main lobe will be very wide. 

So, I can say. So, when it is convoluted, this response will be convoluted with the original 

signal. So, if I say the original signal has a frequency response like this one for k equal to 

1, that is there; for k equal to 2, it is there; k equal to 3, it is 0; k equal to 4, it is 0 for every 

ki get a frequency response frequency value, let us I know it, but basically when I do the 

Fourier transform I will not get this one. 

I will get every k, and for every k, I will get a Gaussian. I can. I will get this kind of 

Windows frequency Windows convolution if the main lobe width is less. So, the power of 

the particular frequency will be distributed with the nearby component because of the side 

lobe, and also, if the main lobe is very wide, then there will be an overlap in nature. So, 

that is called DFT leakage. 

So, due to the DFT leakage, even the signal is deterministic, but once I make it a finite 

length signal, then the spectral estimation is nothing but the spectrum is nothing but the 

convolution of the window function and frequency response of the window function and 

the signal. So, I want that window response to be very neglected. So, it will be neglected 

when it is a narrow main lobe and a very small side lobe. 

So, if the side lobe's power is very high, it also leaks into the other component. So, I want 

a window function whose frequency response main lobe is very, very narrow and also side 

lobe attenuation is very high; that means the side lobe does not disturb the next component 

of the signal, but getting that kind of window is very difficult. So, how do I get the narrow 

main lobe by increasing N? Once I increase the N, I know if the signal is non-stationary, 

and then my time resolution is lost. 



So, I cannot increase the length of the signal many times. So basically, I am estimating the 

power spectrum; what the power spectrum sees is not an original spectrum of the signal; 

it is in the window and is also in there. So, how do I eliminate that window error due to 

the finite length or due to the window function that is introduced? That is why it is called 

estimation of the power spectrum. So, now, this is a case of a deterministic signal. 
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Now, let us discuss the general problem of spectral estimation wide sense stationary 

random process. So, wide stationary random processes do not have that finite energy. So, 

E is not finite. As I said, there are 2 kinds of signals: one is a power signal, and one is an 

energy signal. If the energy is finite, then we call the energy signal; if the power is finite, 

then we call the power signal. So, here, energy is not finite, but power is finite. 

That is why I call it power density spectrum or power spectrum density. The energy 

spectrum is when the energy is infinite, and the power spectrum is when the power is finite. 
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So, what is the mathematics of that? So, let us say x[n] is a random stationary random 

process signal digital signal. So, the autocorrelation x of r k of x[n] is a function of the 

ensemble average of x[n] k plus n and x[n]. So, I have been non-deterministic infinite 

energy. I said the power is finite, but I cannot take the infinite length of the signal; I have 

to take the finite length of the signal.  

So, once I take the finite length, it automatically becomes finite energy, but a random 

process is infinite energy. So, what I require is an ensemble average. So, let us say 

autocorrelation represents the ensemble average of the random process signal. Then, using 

the Wiener-Khinchin theorem, I can say that the power spectrum is nothing but a Fourier 

transform of the autocorrelation function. 

Now, if I want to do that then what I require. I require the estimation of the power 

spectrum, which needs a finite autocorrelation sequence. If my rk is infinite length, then 

how do I get the power spectrum because I cannot get that infinite length rk? Estimation 

of the autocorrelation sequence required one to estimate the ensemble average function. 

So, if this rk is the finite autocorrelation sequence, r represents the ensemble version of the 

signal, then only I can say the power spectrum is nothing but a Fourier transform of that 

autocorrelation sequence. 
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So, that is used for the power spectral estimation. So, what would we use? Estimate the 

autocorrelation of a random process based on a single observation of the random process. 

So, I have a single observation from there, and I have to estimate the autocorrelation. So, 

to achieve that, we use the ergodicity of the random process, which says that the time 

average can replace the ensemble average. 

So, this is the time average x[n], which is a random signal process signal. From the x[n], I 

can calculate r k using the time average of the signal. So, the time average is along the 

length of the signal. So, x[n] is the length. So, I have evidence of random process 

observation of N number of samples. So, the ensemble average is replaced by the time 

average. Once I get r k, I can take the Fourier transform of this r k to get the power spectral 

density of the signal ok. 
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So, that process. So, many common random signals are not stationary. The main problem 

is not stationary. So, suppose I have a very long signal length. I take only this observation 

if this signal is non-stationary. So, this observation is not true for all the signal problems. 

The next problem is if the observation length is very high. So, what is the assumption of 

the Fourier transform? 

So, I assume the signal is stationary, but if the time length, the length of the signal, is very 

high during that time, the signal also changes, and the colour of the properties or properties 

of the signal will be changed. So, in that case, that change of property will not reflect my 

spectral analysis. So, I have to consider that the signal is stationary during this timeline. 

So, I cannot take a large amount of signal. 

That is why the finite length of the observation is very important. So, random signals that 

are available in practice usually segment a single observation in a noisy environment. So, 

from there, my goal is to estimate the spectral content of the random process based on 

noisy measurements of the process that has a finite set of data. 

So, noise is a finite data set; I have to find the spectral estimation. There are 2 methods; 

one is called a non-parametric method, and one is called a parametric method. Non-

parametric methods mean not designing any model; parametric methods mean I am 

designing a model, and then I want to estimate the power spectra. 
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So, what are the non-parametric methods are there? So, I am using non-parametric 

methods, no model parameter, no model. So, what is the limitation estimation of the power 

spectrum based on the windowed autocorrelation sequence? So, what is the meaning? 

Meaning is that I have an x[n]. So, non-parametric, I am not modelling that x[n]. So, x[n] 

is there. I directly take evidence of x[n] using a window function. So, I was taking that 

measurement of x of finite length of x[n]. 

So, x cap n represents that finite version of finite length, or you can use a window function 

to use the sampled version of x[n]. So, windowed autocorrelation I am using means either 

I can take and then take the autocorrelation, or I can say, let us say I take the autocorrelation 

using ensemble time average, then I said r k has a k has an infinite value r 0, r 1 to r k equal 

to infinite. 

From there, I am selecting only one portion of the rk value, the finite rk value, which is 

the windowed rk value. So, windowed autocorrelation means r[n] is nothing but a window 

version of N equal to 0 to N minus 1. It is there elsewhere. It is 0, and to estimate the power 

spectrum, we use a function called periodogram, which is defined this way. 

 

So, what is X(ω) is nothing but a Fourier transform of x[n] ok. 
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So that way, I can calculate the estimation estimate that periodogram methods for non-

parametric estimation of the spectrum, and it is natural to assume that if the N length of 

the signal is increased, then what you said. The resolution frequency resolution is 

increased. So, it gives me the ability to become a better estimator of the power spectral 

density. 

So, instead of, let us say, 200 hertz instead of 16-hertz resolution, if I have a 1-hertz 

resolution, then you can say I get every 1 hertz. So, the estimation is better, but it is not 

true. Actually, the mean of the periodogram averages to the true spectral density, but the 

variance remains large. So, I can say if I increase N, the mean converges, but the variance 

remains very large. 

So, if N increases, the periodogram tends to oscillate more rapidly. So, what is the 

solution? They said they should forget about that increase of N if you have a large number 

of data to make it average. So, how do I make it average? Let us say x[n] has an observation 

data sequence M. M is equal to L into N; that means I have data which can be divided by 

L number of the windows of length N. So, the L number of window length is the N point 

data sequence. 

Then, for every N point data sequence, I estimate the power spectra I N k, and then I take 

the average for all the windows. So, taking all the data at a time means that N is very large, 

which means the frequency resolution is very high, but that does not solve my problem. It 



will give me the truth, but there will be some variance. So, to avoid that, if you have large 

data, then you can divide it into N number of windows and L number of windows. 

So, suppose I have measured a long 2-second signal. I said within the 2-second signal, I 

divided two 200 windows, and for every window, I analysed, estimated the spectrum and 

then took the average, which gave me a better estimation of the signal's power spectrum 

using a non-parametric approach. 
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There is a parametric approach to the modified covariance method. So, the modified 

covariance method blocks the estimation of an input's power spectra density PSD using 

the modified covariance method. What is this method? This method fits an auto-regressive 

model to the signal by minimising the forward and backward prediction error in the least 

square sense. What is the meaning? I have already discussed it during the AR mode linear 

prediction. 

AR model means only poles are there. A(z) all-pole model is an autoregressive model. So, 

that has a backward prediction and a forward prediction. So, I am saying that whatever the 

signal you get from the signal, you are estimating an AR model, which means you are 

estimating A(z). So, you are calculating that k value, ki value, and partial reflection 

coefficient value. So, it is an all-pole model. The value specifies the estimate. So, all ki 

basically specify the pole position of the model. 



Now, from that k i, you estimate the power spectrum once I get the A R model parameter. 

So, basically, what k. So, if I say, suppose I have an; I have a signal x[n], ok, I will take a 

slide here, then I will explain it. 
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Let us know if I have a signal x[n]. So, I have a signal. So, what do I do is make an AR 

model, which is an all-pole model using linear prediction, autoregressive analysis, and 

millionaire prediction. So I can calculate the forward prediction and backward protection. 

So, ei(m), you know that ei(m) is equal to ei-1(m),  m minus ki into b I minus 1 m minus 1 

forward prediction error backward prediction error; from there, I can calculate the ki value 

so, if I take the Fourier transform of all the k.  

So, ki is basically the model parameter ki represents the signal, and if I take the Fourier 

transform of the ki parameters, then I get the spectrum of the signal. So, that is called the 

parametric approach. So, I converted the signal. So, as if I am saying, I am estimating the 

system which produces that signal, and then I estimating the pole from the pole position 

of the system by estimating the spectrum of the signal system. So, that spectrum basically 

represents the signal. So, I get the signal spectral estimation. 
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There is another method called the Burg method. So, I have already discussed the Burg 

method of calculating ki during the linear prediction calculation of the ki value using the 

Burg method. So, what is that estimate of the power spectral density of an input frame 

using a Burg method? This method fits an auto-regressive model to the signal by 

minimising the least square forward and backward prediction error. So, instead of k 

forward k backward geometric mean, they use the least square where AR parameters 

satisfy the Levinson Durbin recursion, which I discussed during your linear prediction 

analysis. 

So, I will stop here with spectral estimation because if I continue, that will be a very long 

topic. So, again, it can take another 2 to 3 weeks time to complete the entire spectral 

estimation. So, I do not want to load that course so high. So, maybe I will offer another 

signal processing course. So, I can explain the details of this kind of spectral estimation, 

and they are using all kinds of things, ok. Thank you. 

Thank you very much. 


