
Signal Processing Techniques and Its Applications

Dr. Shyamal Kumar Das Mandal

Advanced Technology Development Centre

Indian Institute of Technology, Kharagpur

Lecture - 48

Lattice Formulations of Linear Prediction

So, now we go for that lattice formulation of linear lead prediction. So, what is there?

(Refer Slide Time: 00:26)

So, as I discussed, the computation of the matrix of correlation value or autocorrelation,

whatever the covariance or correlation, does not matter. So, that requires a complex and

efficient solution set of linear equations; that means an iterative method is the requirement.

So, can I combine these two steps into one step? So, can I combine this step into one step?

So, that method is called the lattice formulation method. Let us go for that. What is that?

(Refer Slide Time: 01:07)

Let us say. So, when I say the prediction, let us say I have a sample. So, let us say I can

say this is a signal which is the many samples are there, many samples are there. So, this

is my most number of samples. So, if I say I want to, I will use the sample to predict s[m]

sample. So, I want to predict this sample from the previous ith sample. What is the

meaning? Let us give an example; suppose I have a signal x[n] 1 2 3. Let us say I want to

predict 3 based on our previous 2 samples.

So, here also I am predicting s[m] based on the previous ith sample. So, what is the I s[m-

1] s[m-2] s[m-3]? Ultimately, s[m-i] was the previous ith sample. So, when I predict that

way, it is called forward prediction. So I can, I can say that I am predicting 3 from the

previous 2 samples. Also, I can say I can predict one from the past, I can say that from this

2 and 3.

So, prediction can go this way, once it goes from 1 2 3, that is called forward prediction.

This way, I can predict the next sample. So, this is a forward prediction. I can predict the

backwards. also, I can predict 1 from 2 and 3 because x[n] is known. So, once the x[n] is

known, I can predict both ways. So, when I predict this way, suppose I want to predict

s[m] I minus 1 sample from the previous, or I can say this side with the sample. Understand

or not?

So, I am predicting this sample from this previous sample, or I can predict this sample

from this previous sample. So, when I predict s[m] from a previous ith sample, that is

forward prediction; when I predict this side, this is called backward prediction. So,

prediction can be forward, and prediction can be backward. I can predict 3 from 1 and 2, I

can predict 1 from 2 and 3. When I predict 3 from 1 and 2, it is a forward prediction; when

I predict 1 from 2 and 3, it is a backward prediction.

(Refer Slide Time: 04:16)

So, there is a forward prediction and a backward prediction. Ok, do you understand that

part? Now I come to that: what is the equation of the forward prediction, and what is the

equation for backward prediction? So, what is my prediction filter? This one. So, if I say

ith order prediction error filter. So, this is nothing but a prediction error filter s n minus the

previous sample. This is the previous sample sum. So, let us say ith order prediction error

filter.

So, Ai(z) is equal to 1 minus k, equal to 1. So, I can say ith iterative. So, this I represent the

iteration, and this I represent the order. As I said, suppose there is a sample. So, the

prediction error is maximum when I am predicting this sample from the previous 14th 0

sample. So, in the first iteration, I am predicting this sample: the second iteration, this one;

the third iteration, this one; and the fourth iteration, this one.

So, once I go to the iteration, that error will be minimized. Ok or not? So, let us say ith

iterative iteration process is this one. So, what are the prediction errors? Ei(z) is equal to

s[m] signal minus predicted signal. So, s[m] is my predicted sample. So, in the z transform,

I can say Ei(z) is nothing but an Ai(z) multiplied by S(z), and S(z) is the input signal. Now,

what is backward prediction? I am predicting m. So, what am I predicting forward? In

forward prediction, I am predicting s[m]; in backward prediction, I am predicting s of m

minus I, if the ith order prediction is used.

So, I am predicting this sample forward prediction, I am predicting this sample. So, this is

minus the estimated sample. So, backward prediction similarly this is my signal minus

estimated signal s[m] I minus so that one plus 1 plus 2 plus 3. So, that is why plus k if you

see. This is s[m-i]. This is s[m-i+1]. Suppose I represent by s of. So, suppose this is the

third, so I am predicting 1. So, this is nothing but a first sample. So, I can say the 2 minus.

So, this one is the next part of this.

So, 1 will be added to this. So, that is why this is added k is added. Now, if I take the z

transform, so, this will be B(z) this will be z-1 multiplied by S(z) m minus i minus k equal

to 1 to k equal to 1 to i α k i z i, so z minus i z plus k into S(z). Now, if you look at this, k

is equal to 1 to i. So, I can say that z-i is independent of this sum. So, z-i is taken out, and

S(z) is taken out. So, this is 1 minus this one.

Now, if you see this one and this one are almost the same; the only difference is that here

z is z-k, here it is zk. So, I can say that instead of A(z), this can be A(z)-1. So, I can say B(z)

is nothing but A(z)-i multiplied by S(z) into A(z)-1. So, E(z) is equal to Ai(z) S(z) . So, it

is Ai(z) z-1 S(z).

So, this portion, this portion, except this error filter, z1, this z-1 and multiplied by z-i.

(Refer Slide Time: 08:54)

(Refer Slide Time: 08:56)

So, now, if I say that I want to write down this one, how can I write down Ai(z) in terms

of the previous error? So, what Levinson said is that recursion is possible. What recursion

is possible? I can say that Ai(z) can be predicted from A i minus 1 z. So, I want to write

down that part. How can I include recursion Levinson recursion so that I can calculate

Ai(z) from the previous value? So, I know Ai(z) is this one. Now I know α k I; this is the

Levinson recursion equation. Α j i is equal to the previous iteration result minus k i with

the Parcor coefficient and α previous iteration.

So, I just put this one instead of j; I said k and I minus 1 would be there. So, I can say α k

I with order; that means ith iteration can be written as I minus 1 iteration k instead of j I

am k k writing k. Now, if you see this is k equal to 1 to i. Let us say I said this summation

will be i minus 1. So, k equal to one to i minus 1 α k i minus 1 z-k minus k i minus.

So, this is nothing but an α that will be k I. So, k i into α i minus k z-k multiply and what I

have written one term I have not written. So, this is my last term. So, this is nothing but a

k i. So, in the second stage, I writing this one as a k i, and this one if you see minus. So, I

can say 1 minus this one and minus plus k I into k equal to 1 to I minus 1 this one minus

k I into zi z-i.

Now, I can say this is one term, and if I say k i, it is because summation is not independent

of i. So, k i is this side k equal to i minus 1 to i. I can put this one, okay? So, I put k dash

equal to i minus k i minus k is equal to k dash ok. So, when k is equal to 1, it is nothing

but I minus 1. When k is equal to I minus 1, it is nothing but i. So I can write down this

one. Now I can see this one is nothing but an A i minus 1 z.

Because Ai(z) is equal to this one, A i minus 1 z is nothing but a α k i minus 1. So, A i

minus z, and if I say k i and z-1 is outside, then it becomes 1 minus this one. If you see this,

it is zk. So, if I make z minus k. So, it is nothing but an A i minus 1 z-1.

(Refer Slide Time: 12:34)

So, I can say that Ai(z) is nothing but a A i minus 1 z minus k i into z-i A i minus 1 z-1.

Now, if this is my error prediction, error filter, the prediction error is nothing but multiplied

by the signal I put this S(z). So, if you see A i minus 1 z S(z), I can say it is nothing but an

E I minus 1 z and A i minus 1 z to the power z minus 1 S(z), which is nothing but a B(z),

B(z) is this one only in this form.

So, I can say I write down the B z, but one thing, this is z i minus 1. So, I required z-1

because I required z i minus 1 previous one. So, 1 minus z to the minus 1 will be written.

So, it can be i minus 1 plus 1, or I can say if i is common j i minus 1. So, that is why 1 z-1

will remain, and k I will remain, and this B I will be minus z. Now, from this equation, I

can say that Ei(z) is in the time domain.

So, this is in z domain i minus 1 E i minus 1 m minus k i into B i minus 1 m minus 1.

Understand or not? Similarly, if I put Bi(z), so z-1 S(z) A(z) to the power this one. Again,

I can say that this is nothing but this one. So, which is nothing, but a b i m is equal to b i

minus 1 m minus 1 k i into e i minus 1. So, now say that this is my equation forward

prediction error. This is my backward prediction error.

(Refer Slide Time: 14:52)

Now what? So, I can say that ith iteration is nothing but I minus 1 iteration, so if I say 0th

iteration. So, I equal to 0 e0[m] is nothing but a s[m]. There is no iteration. So, the error is

nothing but a signal itself; the signal itself is the error. So, it is nothing but a s[m]; similarly,

b0[m] is nothing but s[m]. So, I can say that when I do the signal flow diagram, I can say

let us know if this is my speech signal s or a signal s[m].

So, I can say this is nothing but an e0[m], this is nothing but a sorry, this is nothing but a

b0[m], this is nothing but an e0[m]. So, this is the 0th-order prediction and 0th iteration.

So, this is nothing but a signal itself. Then what is e one m? So, I know this equation e one

m is nothing, but an e0[m] will be there minus k. So, i equal to 1 minus k1 equal to b 0.

So, e0[m-k] 1 into; k1 into b0[m-1].

So, this is b0[m]. So, how do I synthesise b0[m-1]? I put A(z)-1 delay. So, this is nothing

but a b0[m-1]. So, this will be added up with this one with a minus k1 coefficient. What is

k? k is nothing but a partial reflection coefficient or Parcor, a partial correlation coefficient.

If it is on the go for tube model, it is called a partial reflection coefficient.

So, it acts as a partial reflection coefficient. Parcor partial correlation coefficient is. Now,

what is b1[m]? b1[m] is equal to b0[m-1] minus k1 e0[m]. So, I can know that b 0. So,

this is my b1[m]. So, b1[m] will be this one will be multiplied minus k1 and added up with

this one, I get b1[m]. Now, when I say e 2 m is nothing but a e 1 m minus k2 into b 2

b1[m] minus 1. So, b1[m], I know.

So, that will be delayed by 1 sample, b1[m] minus 1 I get. And this is my e 2 m, e 2 m is

this signal multiplied by this signal with a minus k1 k2 and b2[m] is nothing but a this will

be a multiplied by minus k2. So, that way, I can say this is nothing but a, let us say, pth

order. So, ep[m] I will get, and I will get bp[m]. So, on this side, I will get bp[m], and on

this side, I will get ep[m]. So, what is bp[m] and ep[m]? bp[m] is nothing but a final error.

So, the final error is nothing but a bp[m] or ap[m]. Whatever I can say, that is nothing but

a final error. So I can get the final error. So, what I said? I have a filter. If I apply s[m],

and this is what I implemented here, I will get e m. So, what do I have to know? I have to

know k1 k2 kp. So, let us say all k values. Once I know all k values, I can implement that

signal flow diagram on a computer, and if I apply s[m], I can calculate e m.

So that is called lattice implementation because if you see one block. This block, there is

another block, there will be another block. So, each block is simple, only k1. So, I can say

the one for loop only if you say the for loop is repeated for k1 k2 k 3 k 4 k p. So, the p

stage will be there for pth order prediction. So, I can implement A(z) immediately if I

know k1 k2 k p. So when I say synthesis, let us say I want to implement a synthesizer; that

means which is nothing but a one by A z.

So, here I am, applying for s[m] and getting m. Now, if I see the signal flow is reversed.

So, I apply e m. I should get back my s[m], but the signal flow will be in the reverse

direction. So, how do we do that how do I do the reverse direction signal flow? This is the

diagram that I did.

(Refer Slide Time: 20:44)

So, I want to draw the reverse direction signal flow. Let us say I just deleted this one, and

again, I want to draw it. So, what I said is if I apply s[m] input, I get e m.

(Refer Slide Time: 21:09)

Now, my target is to know e m, ep[m], and bp[m]. I have to get back the signal s[m]. So;

that means, I know ep[m], I know bp[m]. So, all are ep[m] is equal to bp[m] at the final

stage. So, let us say I know e m. So, which is nothing but an ep[m], here is nothing but a

bp[m]. Now, what do I want to know? So, what is known? I know ep[m]. What do I want

to calculate? ep minus 1 m. So, I can say that ep[m] is equal to ep minus 1 m minus k p

into bp minus 1 m minus 1.

Now, what do I want? I want ep[m]. So, I said the ep[m] ep minus 1 m is nothing but an

ep[m] plus k p into bp minus 1 m minus 1. So, let us say this one is my point minus 1 m at

this point. So, how do I know? ep minus 1 is nothing but the ep[m]. So, this signal directly

goes here, and I required k p multiplied by bp minus1. So, let us say this one is b, this one

is bp minus1 m minus 1, let us say this one.

So, this one will be multiplied by plus k p, and I will get up minus 1 m. So, how do I get

bp minus1 m? So, from this equation, I know bp[m] is equal to bp minus 1 m m minus 1

minus k p into ep minus 1 into m. Now, I say bp[m] p minus 1 m is equal to m minus 1 is

equal to bp[m] plus k p into ep minus 1 m.

So, if I know ep minus 1 m, if I know b p. So, this one bp[m], I know bp[m]. So, if I want

to know if the BP is minus 1, I have to delay the signal. So, what is required? So, what can

I say? I am okay. Let us say the bp[m] I want to generate.

(Refer Slide Time: 24:24)

Let us say I want to generate bp[m] instead of bp[m], and I am generating bp[m], okay?

(Refer Slide Time: 24:36)

So, what will I do? I will draw it fresh; what I know I know let us say I know e p e m is

known ep[m] is known ep[m] is known. And this one is, let us say, bp[m]. So, if this one

is delayed by z-1, then this one is bp[m]. This one is nothing but a. So, this is delayed by z-

1. So, this one is nothing but a one-sample delay, ok? So, this is bp minus 1 m delayed by

one sample. So, at this point, I get bp minus1 m. This point lets us know this is bp[m].

So, let us say this is bp minus 1 m. So, I know ep[m]. Let us say this one is my ep minus

1 m. So, ep minus 1 m is nothing, but this sample multiplied by this will be multiplied by

k p. Understand or not? So, this point is my ep[m], and this point is my ep minus 1 m. So,

this point is bp minus 1 m minus 1 multiplied by. So, I know that ep minus 1 m is equal to

ep[m] plus k p into bp minus 1 m minus 1.

So, I know this is bp minus 1 m minus 1. This will be multiplied by k p, and I get up [m].

Now, what is bp[m]? It is nothing but a bp minus 1. So, this is bp minus1, and this will go

here minus. So, this is nothing but an ep minus 1. So, I can say this will go here: multiply

minus k p. This is nothing but a bp[m]. Understand? So, the ultimate signal flow diagram

will be what? This is ep[m]. So, this is my plus k p.

So, I get ep minus 1 m. After this point, it is ep minus 1 m. So, from that, the only thing is

the signal diagram. So, from here, if I take up minus 1, I am taking multiplied minus k p.

I get bp[m] in here. Understand? So, if I apply e m here, I get output s[m]. Because I know

e 0 and b 0 is the same.

So, s[m], so this is backward, and this is forward signal flow. So, why am I implementing

it? I am implementing one by A(z). first, I am implementing A z; now, I am implementing

one by a z. Understand? Again, it is also a lattice, 1 lattice. Understand?

So, now, if I apply the error signal if I know k1 k2 k p when I say the voice is transmitted.

So, I analyzed, and I said k1 to k p. I extracted and transmitted in the receiver side from a

k1 to k p. I can generate this filter, and I can pass the e m. What is e m? e m is nothing but

a glottal excitation in the case of voice.

So, that is nothing but an impulse. So, if I pass an impulse, I can get the speech signal back

again. Is it clear? So, that is called lattice formulation. Now, how do I get the k1 value?

Can I calculate the k1 value using auto correlation? Yes, you can do that. But again, I have

to do autocorrelation, and also I have to implement the filter.

So, on the synthesizer side, I know that I have to implement the filter only with these

methods, but on the analyzer side, this is how I use it for the analyzer. So, how can I

directly calculate the k value from bp[m] and ap[m] and how can I directly implement it?

So, how can I directly calculate this k1 to k p-value? One solution is that if I know the k1

and k p values, I can synthesize the signal s[m] from the error signal. In ideal cases, the

error signal is 0, and the error is minimized. Understand? So, I can synthesize the signal

from the error signal. So, I have to know k1 k2 k 3 k p.

Now, when I am analyzing this diagram, I am inputting the s[m] signal I can calculate the

error signal if I know k1 k p. So, how do I extract the value of k1 and k p? I can extract

those values using auto correlation ok no problem, I can extract those things. But can I

directly compute that k1 and k p value? So, in the next class, I will describe how I directly

calculate the k1 and k p values, and I give an example. Let us give a signal, and I can give

you an example of how it can be implemented in computer programming,. You should

know, ok.

Thank you.

