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Lecture - 44 

Analogue filter to digital filter transformation 

 

Ok. So, now, what we have done? We have designed that analogue filter H s using the 

transfer function of H s using Butterworth or Chebyshev, whatever you want. So, you 

create that filter transfer function H(s). Then, what is required? I have to convert H(s) to 

H(z). So, how do I do that? Two methods, either bilinear transformation or impulse-1 

methods. 
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So, now, let us discuss about impulse inversion in the impulse-1 method. So, what is 

objective? Design an IIR filter with a unit response; let us say if the H(s) is my Laplace 

transform, then if the h(t) is my time domain transfer function of the filter. 

Now, if h(t) is the time domain transfer function, if I want to convert the same digital filter, 

then my transfer of the impulse response is h[n]. So, my objective is to design an IR filter 

with an impulse response h[n], which is the sampled version of the impulse response of 

the analogue filter. Is it clear?  

So, I am designing the analogue filter, so I know the analogue filter equation ha(t), and 

then what h[n] is nothing but a sample version that is the impulse response of the digital 

filter. So, H(z) is nothing but converting that analogue domain to the z domain, which 

defines my h[n]. 

So, my objective is not only to get H(z), so I H(z) is not there is a method, but my objective 

is that if I know h t, I can get h[n] by nothing but a sampling. If I have a signal S t, then I 

get S(nT), which is nothing, but the digital signal is nothing but a sampling. So, time is 

sampled and discretized. So, I can say this is nothing but a discrete time response of the 

filter ok. 

So, let us say the analogue filter is Ha(s) is equal to ck by s minus pk where k varies from 

1 to N. So, that means I am saying that I am to design an Nth-order analogue filter, which 



is H and s. Now, what is my objective? I have to find out what H(z) will be. So, ck is the 

coefficient. What is the ck?  

So, I can find out the ck value by an algebraic partial algebra, which is nothing but this 

one, ok? So, now, if this is my Ha(s), then what is the impulse response of the analogue 

filter? So, ha(t) so, ha(t) is nothing but an-1 Laplace transform of Ha(s). So, I can say ha(t) 

is nothing but a Laplace-1 transform of H(s). 

So, I take the-1 Laplace transform of H(s), which gives me k equal to 1 to N ck epkT, pk is 

the position of the pole. So, pk is the pole position s minus pk, so k is equal to 0 s minus 

p0 into s minus p1 into s minus summation, so ck is equal to 0; what is this? This is nothing 

but a c0 by s minus p0 into plus c1 by s minus p1 plus c2 by s minus p2 like that, so that 

is my H s. So, if the k varies from 1 to N, then the order of the filter is N ok. 

So, now, my responsibility is to find out h[n]. So, I know h(t) is nothing but the-1 Laplace 

transform of H(s). So, H(s), I take the-1 Laplace transform, and I get this one. Then, what 

is h[n]? h[n] is nothing but a sampled version of h(t). So, h[n] is equal to h of a sampled 

version, continuous time is sampled means n into T, T is called the 1 by sampling 

frequency or sample interval.  

So, T is, there is a continuous time I sampled it at every T interval. So, that is why, T this 

continuous time T is replaced by n into capital T ok, so, which is equal to this one ok. 
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Now, what is H(z)? So, suppose h[n] is my impulse response, then H(z) is equal to the Z 

transform of h[n]. What is the Z transform? . Now, I 

know h[n] is this one because this is the continuous impulse response, the continuous time 

I sampled the T into n into T, so this is my h[n], so I put this h[n] value is in here ok. 

Once I put the h[n] value, I get two summations. So, if you see ck are related to the k, I 

can say this k summation take out, and here all are related to the n, so I can say 

 

Now, this is my H(z). So, H(z), if you see I have a this is my H(z), which is nothing but a  

 

which is nothing but the c1 by 1 minus ep let us say p1 T plus c2 divided by 1 minus ep2T 

like that dot dot dot dot ok. So, I can say z-1. 

So, I can say this epkT is nothing but a value of z k because it is nothing but a z minus this 

one, z upper side z, so the pole position, the pole digital filter pole, is nothing but an epkT. 

What is p k? pk you have given s minus p k, the pole position in s plane. So, I know p k, 

if I know sampling frequency, z k is nothing but a epkT. So, suppose I have an F s is equal 

to 8 kilohertz, then I know T, T is equal to 1 by F s, then I if I know the pk value, I know 

the value of the z k. 

So, this is my impulse invariance filter transfer function. So, I know H s. So, if my H s is 

equal to this one, H s is equal to ck by s minus pk, then my H(z) is equal to ck divided by 

epkT into z-1. So, I converted the s domain to the z domain. 
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Then, what is the implication? What actually happens if I do that? Mathematically, I can 

do that very easily, but what is happening inside means there is an aliasing effect; why 

does this aliasing effect come? Because I have a signal and I have sampled it. So, if you 

see any signal sampling related to the aliasing, I have to avoid aliasing, which is why I 

required an anti-aliasing filter.  

So, I also only have h t, and I converted to h[n], but what is the anti-aliasing filter? What 

is that aliasing effect? Any analog-to-digital conversion requires an aliasing effect; why 

does this aliasing effect come? 



(Refer Slide Time: 10:36) 

 

(Refer Slide Time: 10:49) 

 

Now, let us say I drew it, and then it will be better than showing you the slide. Let us say 

I have a signal whose frequency response; I have a signal whose frequency response is less 

than I have a signal ha(t) whose frequency response H(ω) looks like this; let us say this 

one: this is my frequency response. 

Now, when I make it sampled, if I sample this ha(t) by a sampling frequency F s, then 

what is H(ω)? H(ω) is nothing but a Fourier transform of ha(t). Now, ha(t) is periodic, and 

Fourier transform is periodic now; in the case of the digital domain, the period is s defined 



by F s 2π sampling frequency is 2π, F s is equal to 2π. So, in mathematics, when I say this 

one, then what will happen? So, it is nothing but hn by F s. 

So, the Fourier transform of ha(t) is nothing but a Fourier transform of h of an nT if T is 

replaced by sampling, then F of T is equal to h of a T, which means n by F s, and T is equal 

to 1 by F s. So, I am doing the Fourier transform of n by F s. So, this is nothing but a 1 by 

T if this is the Fourier transform, which will come into j ω minus jk ωs, k equal to minus 

infinity to infinity. 

So, what is happening physically? So, once I say that, how do I do sampling? basically, I 

am passing this signal or multiplying this signal with an impulse whose frequency is F s. 

Once I say I have sampled the signal, that means the signal is periodic after every F s, so 

the highest frequency component is F s, so if this is 0 and if this is F s, then there will be 

another repetition of the same signal. If this is minus F s, there will be another repetition 

of the same signal. 

In communication, when you studied that let the ω m is my signal frequency so, if I say 

cos ω m multiplied by carrier frequency cos ω c, I get two components, ω c plus ω m ω c 

minus ω m so, at and all when I say ω m has a two-frequency component in plus ω m and 

minus ω m. 

So, in the case of a single frequency, I said ω m, so this will look like this if the ω 0 to ω 

m is my signal frequency. So, if this is my signal frequency response, then once I sample 

using sampling frequency F s, I get this kind of series, there will be another again repeat 

at twice F s, here also another repeat at minus twice f s, so this will be infinite in both side 

because it is analogue infinite filter, IIR response. 

Now, if you see if this length is 0 to F s, this distance unless this is my ω m so, if this ω m 

is twice ω F s is less than twice ω m, what will happen? This kind of thing we will get this 

is ω m, this is F s, this is 0, so there will be an aliasing effect on both sides another, again 

will be this side and again will be this side minus F s, so there will be the aliasing effect.  

So, what is the requirement when I design an ω p? Let us say this is my ω p; if the ωp and 

here also there will be a ωp so, ωp is my cut-off frequency. Let us say this is my passband 

edge frequency is ωs. 
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So, suppose I want to let us take another slide. Suppose I want to design this filter; let us 

say my filter frequency response looks like this. So, this is my ωs, let us say this is my ω 

p. Now if this is so, this side is also the same thing as the negative side: this is minus ω, 

this side is minus ω, this side is plus ω. Now, once I multiply with F s once I sample it, 

then this ω becomes sampling small ω. 

So, in that case, at F s, the same thing will occur. So, there may be an aliasing. So, if twice 

ωs is F s is the F s is so, F s is less than; if F s is less than twice the small cut-off pass band 

or stop band edge frequency, then I can say the both the filters stop band will be overlapped 

in natures so, there will be in overlapping. So, aliasing will happen. So, I cannot design a 

filter where there will be aliasing is there. So, to avoid aliasing, my F s should be such that 

so high that stop band attenuation is almost 0. 

So, I required a filter like this, and my Fs are like this. So, I can guarantee the stop band 

attenuation is close to 0, so there is no overlap.  

So, what is the limitation? The F s should be very high; that means T should be very low 

1 by F s is equal to T. So, if I want to design a low pass filter, I have to think that what 

suppose I want to say that let us say I said F s is equal to 8 kilohertz, then maximum 

allowable stop band frequency is equal to 4 kilohertz, but the problem is stop band 

attenuation is 40 db so, if that attenuation is not 0, then also there will be a aliasing. 



So, let us say if I want to allow it to sufficiently, I can only design up to 2-kilohertz loss 

of 2 to 3-kilohertz low pass filter if the sampling frequency is 8 kilohertz. So, for the 

impulse in variance methods, the main problem is designing a low pass filter, and I have 

to choose a sampling frequency well above or well high; that is the problem, okay? So, 

that is explained in mathematics like this. 

So, aliasing occurs when the sampling frequency is less than twice the highest frequency 

component of ha(t). Is it clear? So, this will look like this: this is the picture. So, this is my 

H f. So, this is repeated at F s, again repeated at twice F s. So, if you see if this is my 

decaying like this and this is decaying like this, there is an aliasing portion there. I 

understand. 

So, what is the mathematical representation? This is f, F s is equal to 0, one is it is a plus 

F s that means, f minus F s and it is this is minus F s so, it is a plus F s, this side negative 

side and this side positive side ok. So, the impulse in variance methods I can easily design 

the Z transform, but this T, T determines the aliasing effect because T is equal to 1 by F s.  

So, if T is not sufficiently small, then aliasing can happen. To avoid aliasing, T should be 

sufficiently smaller, which means the sampling frequency should be sufficiently high ok. 
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So, that is written here, and the same thing. But I see that I have an aliasing effect in the 

case of a low pass filter. However, in the case of a high-pass filter, what is the high-pass 



filter response? A high pass filter frequency response is this kind: This is your high pass 

filter. So, a high pass means all frequencies after a certain frequency.  

Now, if I multiply by f s, what will happen? I will get the same Fs at the high pass, so here 

I also get, here I get; it does not matter if aliasing happens. So, I can easily design high-

pass filters using impulse invariance methods. 
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Now, when mapping the z-plane to the s-plane, whether this means that the transform is 

stable or not, what is the mapping of the z-plane to the s-plane? I am not going into details 

on this side, but I have already explained. Is that okay? So, what is z? Z is equal to e in the 

power sT. If you see that z is equal to epkT, the position of the pole so, s is the pole position 

ok. 

So, if now my s is equal to so, let us see this is my s plane, this is my s plane, so this is a 

real axis, and this is the j ω axis, and this is my z plane. So, the z plane is defined by r so, 

unit circle; unit circle means r equal to 1, so what are the stability criteria? All my poles 

must be inside the unit circle, ok?  

So, the radius is r equal to 1. All poles must be inside the unit circle. How do I define a 

pole as nothing but rejω that is digit discrete, normalized discrete frequency, and when I 

define a pole in here so, this is nothing but a less, this is my pole. So, this is nothing but a 

plus j ω x, y coordinate. 



So, s is equal to a plus j ω, and z is equal to rejω. So, I can say since z is equal to esT so, r 

ejω is equal to eaT so, s is nothing but a into j ω so, eaT into ejω T. So, the real part, the 

magnitude part r is related to eaT and j ω is related to ejω.  

That is why if you see this ω is normalized discrete frequency, this ω is analogue 

frequency; so, that is why the analogue frequency the once I say that this is divided per 

sample F s T means 1 by F s, then I can say it is not radian per second, radian per sample 

which is nothing but a small ω. 

So, I know a small ω is nothing but a ω T, and r is equal to a to it, and r is equal to eaT. 

Now, why did I say when I designed the Laplace domain filter that all poles must be on 

the left-hand side, and all poles must be on the left-hand side? What is the meaning? This 

means that the value of a is less than 0 because this is the 0 point, so this is a negative. So, 

if the value is less than 0, the value of a is less than 0, then I can say r can be within 1, so 

r is less than 1. 

At an equal to 0, the r is equal to 1. So, an equal to 0 means at origin that r equal to 1, s 

plane origin is nothing but a z plane unit circle. So, if all my poles are on the left-hand side 

of the Laplace domain, I can easily say that all poles are guaranteed within the unit circle. 

Now, if any pole in the right-hand side of the Laplace domain is mapped to outside the 

unit circle because if a is positive, a is greater than 0, then eaT is always r is always greater 

than 1. Is it clear?  

So, that is the mapping of the z plane and s plane that you have already studied in z 

transform and s transform Laplace transform; I just repeat those things. 
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So, we see again that s z is mapping, so that is the mapping which I explain is written in 

here. So, the left-hand side s-plane plane poles are within the unit circle of the z-plane, and 

the right-hand side pole is outside the unit circle, and that pole is ok. Now, how the 

mapping of j ω axis, how do I map the j ω axis?  

So, what is the meaning of this? That suppose this is my ok if my all r is in the j ω axis; let 

us say my all poles are in the j ω axis, so that means s is equal to j ω; then how will this 

map to the z plane? So, let us say the real part is r equal to 1, then how is it mapped to the 

z plane or the z plane to the s plane? How is it mapped? 

I know in discrete frequency, the frequency range is minus π to π, which is the normalized 

discrete frequency range of the sampling. So, 2π is the maximum frequency, half 2π half 

is π so, maximum rate of oscillation is possible so, the value of ω is minus π to π ok or not. 

Now, if you see if it is π by T if the ω is equal to what is ω? What is small ω is equal to 

capital ω into T. So, I can say that capital ω is equal to analogue ω by T. So, if this ω is 

equal to minus π by T, then I can say small ω is equal to minus π. If it is equal to π by T, 

then I can some ω is equal to π. So, this minus π by 2π by t is all mapped with minus π to 

π. 



Now, let us say small ω is π by T and also ω 3 π by T. So, π by T, 3 π by T, which is more 

than π, let us say. So, if it is 3 π by T, then the so, what is the value of the small ω is equal 

to ω 3 π, but 3 π cannot be because ω is varied from minus π to π only.  

So, this is also mapped with these things. So, there is a many-to-one mapping. Is it clear? 

So, there is a many-to-one mapping; this is called aliasing because all are compressed, so 

they are overlapping in nature. Due to this, this aliasing is happening ok. 
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So, in conclusion, we can say the mapping from the analogue frequency domain to the 

digital frequency domain is many-to-one. It reflects simply the effect of aliasing because 

analogue frequency ω capital ω, discrete frequency small ω, this mapping is many-to-one. 

It follows the frequency response of the analogue filter and the equivalent digital filter 

obtained by impulse invariant transformation that the analogue filter must be band limited.  

So, that means, ha(t) when I say ha(t), I converted to h[n] or H s I converted to H(z) that 

ha(t) must be a band limited to avoid aliasing, which is nothing but a minus π by T to π by 

T that means, F s by 2, highest frequency component that is the property of analogue to 

digital conversion, highest frequency component must be F s by 2. 

So, what is required? If you see any ADC, the first step is an anti-aliasing filter. So, if I 

use the impulse invariance method, I have to guarantee that the design filter is band limited, 



which means it is guaranteed that, like an anti-aliasing filter that means, F s is sufficiently 

high so that there is no aliasing that happens ok. 
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Let us give an example and then, I stop, and then, I can. Ok, I can continue with the other 

methods also, and then I will stop. Let us say I have a transfer function in this one. I want 

to use impulse invariance methods to convert H(z). So, what is the root? The root is nothing 

but a s plus 0.1 whole square plus 9 equal to 0. If I solve it, I get this is the root, so this is 

the root. How many roots are there?  

The order of the filter N is equal to 2 ok. So, I can say summation, this summation k equal 

to 1 to 2, so I can say it is nothing but a c1, this will be c2 sorry c1 by p1 let us say the p1 

is equal to plus and p2 is equal to complex z minus so, c1 by this one plus c2 by this one. 

Now, how can I solve it by an algebraic expression? Is the expansion at ck equal to H(s) 

into s minus pk at s equal to p k? I explained this method earlier, and it is okay.  

From there, I can find the values of c1 and c2, 0.5 and 0.5, and this is my Laplace 

transform. Then, what is I known? I know z is equal to esT, or I can say H(z) is equal to k 

equal to 2 ck divided by 1 plus epkT z-1. 

So, I can say that from this equation, if you see that p k, the value of pk p1 is equal to 0.1 

plus 3j. So, I can say a is equal to 0.1 and ω is equal to 3 because s is equal to a plus j ω 

kind of thing, so I write down s equal to a plus j ω ok.  



So, I can say e to the power; eaT into e3jT, so it is nothing but an eaT. Why is minus because 

this is minus, so this is minus 0.1, a is equal to minus 1 minus 0.1 into T, and e3jT into z-1 

and another pole is this one, only this one is minus so, this one is minus now, I get the 

H(z). 

Now, if you see the value of a is less than; a is less than 0 because a is equal to 0 points; 

minus 0.1, so that is why I can say r is less than 1, so I can say H(z) is within that unit 

circle ok. So, I have designed H(z). So, once I know H s, I can get the H(z) using impulse 

in variance methods. 

Now, if I say my cut-off frequency is this design, This cut-off frequency will be defined 

by the position of the pole, so if I say my cut when I design this transfer function, I take 

the cut-off frequency ωp is equal to, let us say 2-kilo hertz and ωs is equal to 5-kilo hertz, 

then if I say if you to avoid aliasing so, around above 5-kilo hertz so, I can say the t will 

be 1 by F s, F s should be more than 10-kilo hertz ok. So, only the stop bands are aliasing, 

but at least the transition bandwidth is not aliasing ok. 
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Now, the bilinear transformation method. Mapping from the s-plane to the z-plane, I have 

already said that ok. So this is called you can say the this is called I said impulse invariance 

method. Then, there is another method, which you can say is called the bilinear transform 

method. 



So, what are the bilinear transform methods? Bilinear transform is a mapping of the j ω 

axis to the unit circle in the z-plane only once. So, what is the problem with impulse 

invariance methods? There is a many-to-one mapping of the j ω axis. In bilinear transform, 

this problem is solved, so the aliasing effect is not there if I use the conversion of H s to 

H(z) using bilinear transform. 

So, how do we do that? We apply the trapezoidal formula for numerical integration of the 

differential equation; let us see it, and then you can understand. 
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Let us say I have an H s a b by s plus a, so I have to convert H(z) using bilinear transform, 

a trapezoidal formula I will come to that. So, if I say that H of a s is equal to so, I can say 

H of a s into s plus a is equal to b. So, now, if you see, if I have a system which has an H, 

s is my transfer function, if I apply X(s), I get Y(s), so Y(s) divided by X(s) is equal to 

H(s). So, I can say ,  

So, if the Y(s) in the time domain is y(t), X(s) in the time domain is x(t) so H(s) is defined 

by b by s a. So, I can easily write down this y(t) into s plus a into y(t) is equal to b into x(t) 

because this is nothing, but I can say y(s) capital Y s is equal to b by s plus a into X(s). So, 

this will be here in X(s).  

So, Y(s) gives me the y(t), which is multiplied by s. What is the meaning of s? s is called 

Laplace transform, s is nothing but a differentiator. So, I can say this is nothing but a dy t 



by dt plus a y(t), which is equal to b into x t. So, I can say that the day t by dt takes this 

one this side minus a t into bx t so that I can see the differentiation of t is nothing but a 

minus a t plus bx t. 
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So, what is the meaning? Instead of subtracting a finite difference from the derivative, 

suppose that we integrated the derivative and approximated the integral using a trapezoidal 

format. So, the derivative is nothing but a here you can see; it is a difference differentiate. 

Instead of that, if I do the integrated so, I can say y(t) is equal to t 0 to t y prime t plus d t, 

so this is ok. Think about it.  

Trapezoidal, what is the trapezoidal formula that formula said that  

 

is called trapezoidal formula. Now, what I said is instead of differentiation of y by t is 

equal to minus ay t plus a t a b into x(t) I said let us I integrate this one to compute y(t); 

instead of taking the difference, I take integrate differentiation of t to compute y(t) directly.  

So, what do I do? y(t) is equal to compute your t 0 to t first derivative into dT d τ into y 

plus y 0 t so, this is the initial value y 0 is the initial t 0 is the initial value. Now, I said that 



t is nothing but a n of, so T is digitized, so I can say y of nT is nothing but a T by 2 y prime 

nT. Just put it this formula.  

So, instead of T, I put n into T, so it is t 0 to t. So, I can say this integration is nothing but 

a half of x2, x2 is nothing but a T, n of T minus x1 is nothing but a t 0, so t 0 is nothing 

but a n of T 0, so, there will be a T 0. So, it is T 0 is nothing but a 0th instant so, let us say 

T 0. 

So, these differences, so, x2 minus x1, give me the half of T and is nothing but a y prime 

nT plus f of x2 and in plus f of x1. So, f of x2 is y prime n 2; nT, this is f of x, f of x dT 

plus this is x2, so I can say y prime nT plus y prime nT minus T plus t 0 is nothing but a 

nT minus T, T minus T, t 0 is the initiation time ok. Is it clear? 

So, if it is so, in this case, my x2 is equal to nT, and my T 0 is equal to nT minus T ok. So, 

x2 minus x1 will give me the T, so that is why T by 2 is into x f of x2 plus f of x1, and this 

will be here. Now, if it is that, then instead of y prime nT, I can say that so, this is t 0 is nT 

minus T ok. 
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So, I can say the prime t is equal to this. I only know this one; we already know this one, 

and we have already derived it. So, I can say that I know this is ok. Then this I derived 

right now. Now, instead of this one, I replace it with this one so I can say y prime t, y prime 

nT is nothing but a minus a nT plus bx nT plus minus ay prime n; nT minus T plus bx nT 



minus T plus y nT minus T. Then, I can say y of nT, just simplify this one, this will come 

to simplify, just simplify this one. 

Now, if I take the Z-transform on both sides, why do I simplify this one? I get this one, so 

I take the Z-transform for all the y on one side and all the x on one side now. So, y n so, 

this is an a plus aT divided by 2 into Y z. Now, if you see one, this is ok; this is minus T, 

what is the minus T? nT minus T. What is T? T is nothing but a 1 by F s, one sample 

duration, this is T distance between the two samples. 

So, what does minus T mean? It is delayed by one sample. So, I can say it is delayed by 

one sample, so it is nothing but a z-1 into Y z. Y z is delayed by one sample. Similarly, 

here, this is also minus 1 X z. Now, I know H(z) is equal to Y z divided by X z. Do that, 

do that Y z by X z, so it will be bT by 2 into 1 plus z-1 divided by this one. 
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So, I get H(z), just then, the just simplification bT by 2 a 1 plus z-1 into aT by 2 so, all aT 

will be z-1 will be there and so, all if I make that simplify it, it will come in this form b by 

a plus 2 into 1 minus z-1 divided by 1 plus z-1. 
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So, what I have taken as an H s? So, H s is equal to b by s plus a. H(z) is equal to b by this 

plus a. So, I can say this is nothing but a s, if this is s, then I can from this equation, I can 

calculate what is z ok. 
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And then mapping, then else is what? The mapping between s-plane and z-plane. So, s is 

equal to a plus j ω, z is equal to rejω so, s is equal to this one I know. So, I can say z is 

equal to rejω. So, what is z? z is nothing but a 2 by T plus s divided by 2 by T minus s. So, 

r ejω, which is nothing but a T by 2 plus s T by 2 minus s. 



So, I know this one is nothing, but how much is it? So, 2 by T plus j ω divided by T by 2 

minus j ω. So, this is, let us say, a plus j b, this is a minus j b. So, a plus j b divided by a 

minus j b. If I want to return in polar form so, this will be amplitude is nothing but a square 

plus b square e to the power; e to the power j tan-1 b by a. 

So, this is a plus j b. How can I write? a plus j b I can write in term of r into j θ so, where 

θ is equal to tan-1 b by a and r is equal to magnitude root over of a square plus b square, 

this is a this is b so, this is the magnitude and this is the tan-1 j tan-1 ω T by 2 because b is 

ω so, b tan-1 b by a, b is ω and a is 2 by T so, ω T by 2. So, j arctan means tan-1, tan-1 ω T 

by 2, so, arctan ω T by 2. 

This is only the minus part there, so only the θ will be negative, and the amplitude will be 

the same; a plus j b and a minus j b both have the same amplitude; only the one is θ is 

positive, another one is θ is negative so, ejθ divided by e-jθ. So, when I do it, e2jθ is nothing 

but a.  

So, which is equal to so, r is equal to 1 because this one is cancelled. So, I can say that r is 

equal to 1 and ejω is equal to e to the power j 2 tan-1 ω T by 2 understand. So, I can say ω 

is equal to nothing but a 2-tan-1; ω is equal to 2 tan-1 or arctan ω T by 2, tan-1 2 tan-1 ω T 

by 2.  

So, what is if I say this capital ω so, it is nothing but a ω by 2 tan is equal to ω by T ω T 

by 2. So, I can say ω is equal to 2 by T into tan ω by 2. Now, if you see ω is equal to 0, 

then z is equal to how much? 1. If ω is equal to infinity, z is equal to minus 1. So, z can 

vary from 1 to minus 1. So, whatever the value, I can say so, z always z will be within that 

unit circle; infinite frequency can also map within that unit circle, so the problem of 

impulse in variance methods has gone away. 
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So, this is the conclusion. So, the j ω axis is within that unit circle, I have proved. So, the 

entire range of ω is mapped into minus ω to plus ω, so there is no error, and there is no 

aliasing is there. Now, if a is less than 0, left-half plane, then we can say the mod of z is 

equal to less than 1 inside the unit circle. If a is greater than 0, then the mod of j is equal 

to greater than 1, so it is outside that unit circle. So, this will not be inside; this is outside. 

So, this is a bilinear transformation. 

(Refer Slide Time: 51:19) 

 



Now, take an example to help you better understand. Let us say H s is equal to s plus 0.1, 

the same example as that impulse in the variance method and here, you take the same 

example, only you have to put s equal to this one where T is equal to 1 by F s. Now, let us 

say I say the sampling frequency F s is equal to 8 kilohertz, then you know the value of T, 

T is equal to 1 by 8 into 10 to the power 3.  

So, I get the value of the T; then I know 2 by T value I know so, that value is constant, 

then 1 plus z-1 divided by so, I can say this is nothing but a let us say 2 by T into 1 minus 

z-1 divided by 1 plus z-1 plus 0.1 divided by 2 by T; 2 by T 1 minus z-1 divided by 1 plus z-

1 plus 0.1 whole square plus 9. Now, just simplify, and you will get this one. Simplify it, 

and you will get this one. I think T is equal to the 8-kilo hertz I have taken; you can simplify 

it. 

If you see it, then you can also simplify that 0.00 z-1, so this is not a significant thing. So, 

I can write 1 plus this one, so that is the answer. So, that is called bilinear transformation. 

Simply, s is equal to 2 by T 1 minus z-1 1 plus z-1. 

So, in summary, what can I say? So, when I design an IIR filter using the analogue filter 

approach, I will first my job is to form the given specification of the filter and determine 

the Laplace transform of our Laplace transform function of the filter so, H s I have to 

derive using Butterworth methods, Chebyshev methods or elliptical methods, anyone 

methods I can use, I can design that H s. Once I get H s, either I use impulse in variance 

methods or bilinear transformation methods to find out the H(z). 
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Once you get the H(z), let us say you get the H(z) like this; this is another example: let's 

say H(z) is equal to get s plus a divided by s minus b; then how do I implement it? Very 

simply, y z is equal to H(z) into x z. So, let us say once s, this is H s now, let us say I after 

H s, I take the bilinear transformation I can compute H(z), H(z) is equal to, let us say 1 by; 

let us say 1 by z minus c. So, I know y z is equal to H(z) into x z, so y z multiplied by z 

minus c is equal to X z. 

So, y z multi, so this will be 1. This will be in the form of 1 minus z-1 unless I have to take 

it this way: H(z) is equal to take z common, so it is equal to 1 by 1 minus c z-1 and z-1. So, 

I multiply both sides by z-1 so, it will be 1 minus c into z-1 is equal to z-1 into X z. So, I 

know that it is nothing but a y of n minus c into y of n minus 1 is equal to x[n] minus 1. 

Implement in structure 1 or structure 2; this is x[n], delayed by one sample, added with 

this one so, this is not x n is not there, only n minus 1 and then, goes to this is y of n delayed 

by one sample multiply by c, added with this one, structure 2 or structure 1 whatever you 

can do that. 

Here is a real-life example. Design and single-pole low pass digital filter with a 3-dB 

bandwidth equal to 0.2π using bilinear transformation applied to the analogue filter H s 

are equal to this one. So, what is ω c cut-off frequency? 0.2π. So, what is this one? H(s) is 

equal to ω c. So, what is ω? Ω is nothing but a 2 by T tan ω by 2 so I can say ω. 



So, this cut-off frequency is normalized discrete frequency. So, this is small ω so I can 

capitalise ω as analogue frequency is nothing but a 2 by T tan ω by 2. So, ω is nothing but 

a 2; 0.2π so it is nothing but a 0.2π by 2, so it is 0.1 π. So, tan 0.1 π 2 by T. So, 2 into tan 

0.1 π or 0.1 π divide; 0.1 π divided by 0.1 π divided by T. So, this value is 0.65 and T. 

Once I get this ω value, then what can I do? What do I require? I said that to design a single 

pole low pass digital filter, I have to find out H(z), so what is H(z)? H(z) is nothing but a 

H(z) is nothing but a ω c divided by T by 2 into 1 minus so, s value of s you can put there 

and you can calculate that H(z), you do it in yourself ok. 

So, I will stop here because the length of the video is increasing because this is the concept, 

which is there; you have just to read it and go through this video, understand what bilinear 

transformation is, how you convert it, and you do it ok. 

Thank you very much. 


