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Lecture - 42 

Traditional Analog Filter Design 

 

So, in the last class, we talked about pole-zero placement methods for designing that IIR 

filter, but we have seen there are a lot of limitations to using pole-zero placement methods. 

So, the best possible way to design an IIR filter is called the analogue filter design method. 

(Refer Slide Time: 00:42) 

 

What are analog filter design methods? 
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If you look at the analogue filter, this method is the simplest method because analogue 

filter design methods were available long before the digital filter came out. So, design 

methods for the analogue filters are always established. So, there are a lot of prototypes 

for designing analogue filters: Chebyshev, Butterworth, and elliptical. So, all kinds of 

prototype filter design methods are available and have already proven to be very good 

methods.  

So, analogue filter design methods of IIR filter design, what do you do? First, we designed 

that analogue filter to meet the given specifications. So, whatever the filter specification is 

given, I design that analogue filter for that specification. What are the design methods? An 

analog filter means H(s); an H(s) means a Laplace representation of the transfer function 

of the analogue filter.  

So, we design H(s) using analogue filter design methods, and then we will convert H(s) to 

H(z) using any one of these two methods, either bilinear transformation or impulse 

invariants methods.  

So, the analogue filter design method can be summarized like that. First, you design the 

desired analogue filter transfer function. Or I can say from the given specification, derive 

the analogue filter transfer function H(s). Once I get the H(s), I can convert H(s) to H(z) 

using any one of the methods either bilinear transformation or impulse invariants methods. 



Once we get that H z, I can implement it using discrete structure one and discrete structure 

two methods. I can use any one of those and implement them on the computer. So, 

analogue filter design methods of IIR filter design summarise basic 3 points; one is to 

design the desired analogue filter and derive the transfer function H(s). Once you get the 

steps to convert H(s) to H(z), step 3, once you get the H(z), implement H(z) using a 

computer using structure 1 or structure 2 methods. 

So, let us first talk about how to design analogue filters. In this lecture, I will not cover 

details on that, but I will summarize what is there and how this can be used for design and 

given analogue filters for a given specification and an analogue filter. 
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So, there are 3 methods are there Butterworth, Chebyshev, and elliptical filter design. I 

will cover these two methods. You can see this method in the book because analogue filter 

design methods are taught in many classes. I do not want to shorten it because unless this 

is done again, it will require another week of lectures. So, here also, I will not cover the 

details of the Butterworth filter design method; I will cover only the point that is required 

to derive the transfer function of the filter from a given specification.  

Then, we tested how to design the IIR filter. So, let us talk about the Butterworth filter 

design method. 
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So, what is that now? Let us thus use the magnitude2 frequency response for the 

Butterworth low pass filter. So, we design either the low pass filter and then shift it for the 

desired kind of high pass filter or band pass filter. So, let us design a low pass filter using 

Butterworth design methods, where Ωp is the pass band edge frequency, and Ωp is the 

pass band edge frequency. The magnitude response using the Butterworth design will be 

given like this: H(Ω)2; this is a magnitude response. 

So, magnitude response means the frequency I have taken that inverse transform H N is 

converted to the frequency domain, and I have taken that magnitude of that frequency 

domain. So, there is a phase and magnitude. So, I plot the magnitude part. So, if I take the 

magnitude response, it will come to 1 by 1 plus ε2 into Ω by Ωp; this Ω is the analogue 

frequency. So, this is radian per second, and this is not radian per sample; that is why I 

write this Ω, not write this Ω.  

 

This Ω is radian per sample. So, this is the difference. This is digital, and this is analogue. 

So, this is discrete frequency normalized discrete frequency, and this is analogue 

frequency. So, if the Ωp is my pass band age frequency in analogue pass band edge 

frequency, then that magnitude response is 1 by 1 plus ε2 Ω by Ωp2N ok. Where ε is the 



ripple factor, Ωp is the 3dB cut-off frequency or passband edge frequency, and N is the 

order of the filter.  

So, if the order of the filter is N, the pass band ripple is ε, and Ωp is the pass band edge 

frequency, then the magnitude response2 magnitude response is this one ok. Now, at Ω 

equal to Ωp. So, if you see the filter looks like this, let us say this is my 3 dB down, so this 

is my Ωp. So, at this axis, it is Ω. So, at Ω equal to Ωp then, I can say this 1 Ω by Ωp is 

equal to 1, and that is nothing but a 1 minus δp whole2, or I can say minus Ap decibel ok; 

δp is the ripple in the pass band. 

So, if I convert into the dB 20, log this one. So, Ω by Ωp becomes 1. So, this is nothing 

but a 1 by ε2. . Now, I know 1 by ε2 is equal to 10 to the power 

0.1 A p. Now, if the Ap is 3 dB down. So, Ap is 3 dB minus 3 dB. So, if Ap is 3 dB down, 

then ε2 is equal to 1. So, ε is equal to 1. 

So, the transfer function becomes this one. So, is Ωp is defined at 3 dB down. Now, let us 

say Ωp is not defined 3 dB down 4 dB down, then I can get an ε the passband ripple is it 

ok. So, I know that the Butterworth transfer function (Refer Time: 08:23) filter design is 

the magnitude response of the Butterworth filter. 
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 So, now, I know. Let us say that Ω is replaced by jΩ. So, it is 1 by 1 plus the ε is equal to 

1; I said my filter specification is designed at 3 dB down Ωp is designed at 3 dB down. So, 



ε is equal to 1. So, I put that ε is equal to 1, so this is my Ω H omega2. So, what is H(jΩ)2? 

It is nothing but a, so it is a complex function. So, the2 is nothing but the product of 

complex conjugate. 

A magnitude2 is nothing but a product of complex conjugate. So, if I do the complex 

conjugate product, then I can write down H(jΩ) into H complex conjugate of jΩ. Now, 

you know the complex conjugate of the jΩ from the frequency transform property is 

nothing but an  H(-jΩ). So, it is nothing but a -jΩ.  

Now, what is Laplace domain? What is a Laplace transform? Laplace transform is nothing 

but a complex plane called a plane. So, s plane this is jΩ, and this is some real part, so s if 

I replace s by jΩ. 

So, jΩ is replaced by s; that means the real part of the Laplace domain is 0. So, in that 

case, I can say it is nothing but a H s into H of minus s is equal to 1 by s by -jΩp2N. Now 

if I see that this is my transfer function of 2 H s. So, the order of the is 2 N, then I know 

the order of H s is N, H s into H s is order of 2 N; that means order of the filter transfer 

function H s is nothing but a N ok. 

Now, how do I get the pole of this H s? So, the pole is nothing but a solution to this 

equation. So, I have to solve this equation, so 1 plus s plus -jΩp2N is equal to 0. So, if I 

want to solve it, jΩs by -jΩp2N-1. So, s is equal to minus 1 to the power 1 by 2 N into -jΩp.  

So, those are the pole position, the solution, and the pole position. Now, H(s) is an N 

number of the poles because the order of the filter is N. So, 1 minus 1 to the power 1 by 2 

N this small N varies from 0 to N minus 1.  

So, the order of the pole is N, ok. Now, if I want to write down the generalized form of 

this part, what is the generalized form of this part? I am not writing this one because this 

one I will take a slide here, and then I will show you how you can draw the generalized 

form. 
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So, I said this is the generalized form. How do I derive it? Unless you know that you may 

not be, you may not understand how this kind of expression will come about. So, what I 

said minus 1, so minus 1, can I implement using e to power something? So, if I say ejπ. 

What is ejπ? ejπ is nothing but a cos π + jsin π, so which is nothing but a minus 1. 

So, minus 1, can we say ejπ? So, I can say ejπ/2N, that is this one; this portion can be 

synthesized like this one. Now, since I have to for N is varying, N is the order of the pole, 

so it is if the Nth pole is there. So, N varies, so where are my other poles? So, for that 

purpose, I said let us s k, k equal to 0 1 2. So, if I say that, then I can say it is nothing but 

a jπ by 2 N into 2 k minus 1. 

If you see k equal to, see all the time it will be minus 1 to the power 1 by 2 N, k equal to 

0, same thing k equal to 1, k equal to 2 ok. Now, what is -jΩp? So, Ωp is constant ok the 

cut-off frequency; what is j? How can I synthesize j? So, ejπ/2, what is the value? Cos π by 

2 plus j sin π by 2. So, if I say this is 0, and this is 1, it is nothing but a j. So, I can say 

ejπ/2Ωp ok. 

So, now, if I add this one, so e(j2π/2N(2k+1))+jπ/2Ωp. Now, if I said 2 N would be there if I say 

that ejπ/2N, I have taken out. So, it is nothing but a 2k minus 1, and this plus is nothing but 

an N. So, it is nothing but an in the form of Ωp into ejπ/2N(2k+N-1). So, those are the pole 

positions I can determine if I know N if I know N, the order of the filter I know known, 



and Ωp I know. Then I can calculate s 0 k equal to 0, s 1, s 2, s 3, and I can calculate all 

the poles, if any. 

So, when I design the Butterworth filter from the given specification, if the Ωp is defined 

at minus 3 dB, then I know ε is equal to 1; that means the passband ripple is equal to 1, 

and once the passband ripple is equal to 1, I know how to define the pole position from 

this equation. This is the equation to define the pole position. 
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Then what is the relationship? How do I design the transfer functions? So, for a given order 

of the filter, I know the pole position. Now, pole position sk I know. So, what I know, I 

know s0, I know s1, I know s2. Now, if the filter wants to be a stable filter and causal filter, 

then all the poles must be located in the left-hand plane of the s plane, which is the s plane.  

So, all the poles must be located on this side and be stable. So, I can say this side means I 

can say it is nothing but an H(s), which is nothing but a 1 by-product of s minus sk into s 

minus sk star. 

Why did I give it a star? If the filter is real, in the poles, the filter transfer function is a real 

transfer function, real transfer functions, then this pole will occur in the complex 

conjugate. That means, let us say, a by s minus b. So, is it real, s? In that case, that pole 

will occur in complex conjugate form; that is why I said it is a product of a complex 

conjugate pole. 



So, when I say a real filter with order N equal to 4, order equal to 4, that means there will 

be two complex conjugate pairs will be there. So, if the first one is a + jb and the second 

one is c plus j d, then the third one will be a minus j b, and the other one will be c minus j 

d. All will occur in a complex conjugate manner. So, a product of this will be the transfer 

function of H s. So, once I know sk, I can derive the transfer function H s, and it will 

always be minus because the poles are located on the left-hand side of the s plane. 
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Now, I come. The order of the filter is required. So, how do I define the order of the filter? 

How do I define the order of the filter from the given specification? So, what is given in 

the specification? It gives passband edge frequency Ωp, given stopband edge frequency 

Ωs, given stop band ripple. 

So, the stopband ripple is δ2, passband ripple is δ1. So, stopband ripple is given, and 

stopband edge frequency is given. So, what is the square magnitude at the stop band edge 

frequency? Because H(Ω) I know H(Ω)2, H(Ω)2 H(Ω)2 is nothing but a 1 by 1 plus ε Ω 

divided by Ωp 2N. 

So, at Ω equal to Ωs. So, at Ω is equal to Ωs; that means, at this point, stopband edge 

frequency. So, the amplitude is δ2. So, I can say 

 



Now, if I say that Ωp is defined at 3 dB down, then I can say ε is equal to 1. So, I take ε to 

be equal to 1 unless I have to calculate the ε value. 

From there, I can calculate the N. So, if I know δ2, I can calculate the N. So, I can summary 

I can say that N δ1 ε and qs and qp characterize the Butterworth filter design requirement. 

So, if I will be able to determine the Butterworth filter transfer function, if I know Ωs, if I 

know Ωp if I know δ and if I know ε. N I can derived, or if the N is given, then I can say 

what should be the passband ripple and vice versa. 
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So, let us get it. I think there is an example. Let us take an example. I said to determine the 

order and pole of a low-pass Butterworth filter that has a minus 3 dB bandwidth at 500 

hertz and an attenuation of 40 dB at 1 kilohertz. So, what is it? First, you draw the picture. 

So, I can say there is a pass band at 3 dB; Butterworth, let us say this kind of thing, at 3 

dB down, let us say this is 3 dB down.  

So, this is Ωp is equal to 2π into f p. So, f p is equal to 500 hertz. So, I can say Ωp is equal 

to 2π into f p is equal to 1000 π so, if this axis is Ω. 

Now this is, let us say, stopband edge frequency, this attenuation so this is the attenuation 

that attenuation is 40 dB, this axis is mod of H(Ω) whole2 in dB ok. So, this is 40 dB down; 

this is nothing but a Ωs. So, what is Ωs? Ωs again, it is nothing but a 1 π f s. What is f s? 

At 1 kilohertz, it is nothing but a 2π into 1 kilohertz, it is 2000 π. How much attenuation? 



40 dB. So, what is δ2? So, 40 is equal to minus 20 log 2 δ2. So, I can say δ2 is equal to 

0.01 because of this. So, I can say 40 is equal to 40 by 20 minus is equal to log 10 δ2. 

So, I can say this is nothing but a 2. So, it is nothing but a δ2 equal to 10-2, which is nothing 

but a 0.01. So, once I know the δ2, I can put δ2 in this equation. So, it is nothing but a log 

1 by δ2 whole2. So, 1 by δ2 means 10 to the power 2, and the whole2 means 104. So, 104, 

minus 1, I can neglect. So, 104 means 4 divided by 2 into log Ωs 2000 divided by 1000 log 

10 2, 2 into log 10 2. So, 4 by 2 into log 10, how much will come? You can determine and 

let us say this is equivalent to 4. 

So, m is equal to 4. So, once I said 3, whatever it is coming, N is equal to 4. So, the order 

of the filter is 4. So, I know sk is equal to Ω. So, I can say s 0 is equal to Ωp ejπ/2, jπ by 4 

4 into 2 means π by 8 into k equal to 0. So, it is nothing but a 4 minus 1. So, it is nothing 

but a Ωp ejπ/8*3. So, it is nothing but a Ωp ejπ/3π/8, which is nothing but a Ωp into cos 3 π by 

8 plus j sin 3 π by 8. 

So, Ωp, you know you can get that complex pole, let us say a + jb. So, I will get a + jb, 

then put k equal to 1, k equal to 2 and k equal to 3; you calculate s 0 s 1 s 2 s 3. Once you 

calculate it, what is the transfer function? What is the transfer function H s? H s is nothing 

but a; I can write down here that H s is nothing but a 1 by s minus s 0 into s minus s 1 into 

s minus s 2 into s minus s 3.  

You can find out that s 0 s 1 you calculate, and again s 2 and s 3 are the complex conjugate 

of s 1 and s 0 you can find out also. So, I have designed ok. So, this is the Butterworth 

filter design. Let us take another example. 
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Example: first give, then I come to the step. 
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So, what is the example? Design a low pass Butterworth filter with a maximum gain of 5 

dB and a cut-off frequency of 1000 radion at which the gain is 2 dB. So, let us first draw 

the frequency response of the filter. This axis is the Ω, and this axis is the mod of H(Ω) 

whole2 in dB ok. So, I what I said? I said this is 5 dB, gain of 5 dB, then it is decreased to 

2 dB. So, it is here it is 2 dB, so this is 5 dB. So, how much is decreased? This decreases 

by 3 dB.  



So, here it is Ωp, and then again it is decreased to minus 25 dB, minus 25 dB. Here, it is 

minus this axis minus 25 dB, which is Ωs. I have to design this filter using Butterworth. 

So, what do I have to find out? I have to find out H(s). So, what is Ωp? Ωp is equal to 2π 

into fp. So, what is the fp? fp is 1 kilohertz. So, it is into 1 kilohertz. So, it is nothing but 

a 2000 π. What is Ωs? Ωs 2π into f s; f s is equal to 5 5000 radians, 5000 so it is given in 

radians per second. So I am not required to multiply. 

So, it is already given Ωp is equal to 1000, and Ωs is equal to 5000; this is given in radians 

per second; if it is given in hertz, then I have to multiply 2π ok. So, Ωp is given, Ωs is 

given. Now, if you see, since it is minus 3 dB down, I can say ε is equal to 1, ok? Now, 

how much is the total dB down? Minus; so here it is, therein 5 dB, and it comes to minus 

25 dB. So, total attenuation is minus 25, and this is also 5. So, minus 5 is equal to minus 

30 dB in the total attenuation. 

So, I can say minus 30 is equal to 20 log δ2. So, δ2 is equal to 10-3/2. So, you can calculate 

δ2. Once I know the δ2, I can calculate N; N is equal to, you know, the formula for 

calculating N; 

 

So, I can calculate N; let us say N comes around 5, and then what is the transfer function? 

So, the transfer function is nothing but a s k; I have to find out s k. 

So, s 0 is equal to Ωp into ejπ/2N. So, if it is N equal to 5, it is 10 into 2 k, 2 k equal to 0, 2 

into 0 plus N into 5 minus 1. So, it is nothing but a Ωp ejπ/(10*4). So, it is nothing but a Ωp 

e; 2π by 5. So, which is nothing but a s 0 is equal to Ωp into cos 2π by 5 plus j sin 2π by 

5. So, I get a + jb format. Similarly, I will calculate s 1, I will calculate s 2, and then I said 

this H s; transfer function is H s is equal to 1 by s minus s 0 into s minus s 1 into s minus 

s 2 dot dot dot how many poles are there as per the order of the filter. 

So, I get that H s ok. So, once I get H s using the Butterworth filter design, I can convert 

it to H z, and I can design the IIR filter ok. Now, the designed step for the Butterworth 

filter is summarized. So, convert the filter specification to their equivalent in the low pass 



prototype. So, what I said I have, suppose I have to design a band pass filter. Bandpass 

filters also can be designed using a low-pass filter.  

So, this is the band pass filter; I can say this is a low pass filter here, so I see. So, if I design 

this one as a low pass filter and then shift it to a certain frequency, I get the bandpass filter, 

and I will detail it. I will discuss at the end of this week's lectures how this can be done,? 

So, first, design the prototype and determine the equivalent prototype of the low pass filter. 

So now, from Ap attenuation in the pass band from there, if this is the find out ε most of 

the cases ε will be 1, if I if the Ωp is defined at minus 3 dB down, then you determine the 

δ from δ to determine the filter order. So, if the stop band attenuation is given, you calculate 

the filter order. So, determine the left-hand poles using the equation and construct the low 

pass filter prototype and transfer function ok. 

So, the Laplace domain poles are always on the left-hand side, not the right-hand side. If 

it is right-hand side, filters become unstable. So, all the poles are positioned on the left-

hand sides, which is why it is s minus s k, s s minus sk, and if it is the transfer function is 

real, I can say the poles will occur in a complex conjugate manner, ok? So, this is the 

summary of the design of Butterworth filters and analogue filters. Then, in the next class, 

I will talk about the Chebyshev filter design analogue filter design. 

Thank you. 


