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Lecture - 24 

Linear Filtering 

 

So, we have completed the properties of discrete Fourier transform. So, we have seen time 

reversal things, time shifting, frequency shifting, circular convolution, and all those things. 
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Today, we discuss the linear filtering view: What is linear filtering? Now, as you know, 

when I say linear filtering, that filter is nothing but a system. I said a filter is nothing but a 

system; if I pass a signal based on the response of the filter, the output will be created. 

So, I know if x[n] is my input and the impulse response of the filter is h[n], then the output 

y[n] is nothing but a linear convolution of x[n], x[n] linear convolution of x[n] with 

impulse response of the filter, that I know ok. 
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Now, let us say I have an x[n] signal whose length is L, and I have a filter impulse response 

whose length is M or whose order is M. On the other hand, I can say that I have a system 

h[n] and I have a signal x[n], let us say x[n] is equal to 1, 2, 3, 4 and h[n] is equal to let us 

say 1 and 2. Then the length of the signal is L, and the length of the filter is M. So, I have 

a signal whose length is L, and I have a filter response whose length is M; let us say M is 

less than L.  

Now I know the y[n] is nothing but a linear convolution of h[k] and x[n-k] or whatever 

x[n] h[n-k]. Now x[n] and h[n] both are the finite duration of the length of L and length of 

M. So, what is the length of this y[n]? If we calculate y[n], the length of the y[n] will be 

forgotten about their convolution. y[n] is also a finite duration whose length will be L plus 

M minus 1. So, suppose I have a signal length equal to 4, and I have a system M equal to 

2. So, the length of y[n] will be 4 plus 2 minus 1. So, 6 minus 1’s means 5 or not. 

So, the length of y[n] you calculate, you calculate x[n] equal to 1, 2, 3, 4 and h[n] equal to 

this 1. You calculate the y[n] value of y[n], and you can get that it will be M plus n L plus 

M minus 1 order; just calculate the linear convolution. Take the example and calculate the 

linear combination convolution, and you get the order of y[n]. 

Now, let us say I want to do it instead of you knowing the time domain convolution is 

equal to the frequency domain multiplication. So, instead of having a filter, I have an 

application of x[n], and I get h[n] as the impulse response, so I get y[n]. Now, instead of 



doing that, let us say I calculate X(k), I calculate H[k]. So, X(k) is the DFT of x[n], and 

H[k] is the DFT of h[n] frequency response. 

Then, in the frequency domain, I multiply both them X(k) and H[k]. Then, I take the 

inverse discrete Fourier transform, and I get y[n]. So, this is the Y(k) frequency response 

of y[n]. Now, if I apply I DFT, I get y[n]. So, let us know if the order is N, then what 

should be the value of N? I know the length of y[n] is equal to M minus L minus M minus 

1. So, my N must be greater than equal to L plus M minus 1. So, my length of the DFT 

must always be greater than equal to L plus M minus 1. 

So, when I say that, let us say this example, my N should be 5 in this case if the L is equal 

to 4 and M is equal to 2, then I know the length of the y[n] is equal to 4 plus 2 minus 1 

which is nothing but a 5. So, my length of DFT is 5. 
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So, I have a signal x[n] whose length is equal to 4 L is equal to 4 x[n] is equal to I said 1, 

2, 3, 4 and I said h[n] is equal to 1 and 2 let us say. So, M is equal to 2, and L is equal to 

4. So, I know my N is equal to L plus M minus 1, let us say 5. Let us say I take N as equal 

to 8, and I can take this as more significant than equal to. So, if I take N equal to 8, my 

length is 4.  



So, I know that I have to create an x[n] whose length is equal to 8. So, what I have to do 

is 0 padding 1, 2, 3, 4. Let us first explain that n is equal to 5. Then, I explain that n is 

equal to 8. If it is n equal to 5, then I have to add 1 0 here. 

So, if I say how many 0 have to be added with x[n], if N is equal to L and if N is equal to 

L, then I know that 0 paddings are not required. Since it is nothing but an L plus M minus 

1, then I have to M minus 1 number of 0 I have to add. Do you understand or not? Forget 

about N equal to 8. I said I have a signal whose length is L, I have to take DFT whose N 

is equal to L plus M minus 1, which is the length of the DFT, but I have a signal whose 

length is L. 

So, I have to add M minus 1 number of 0 here. So, if L is equal to 4 and M is equal to 2, 

how many 0s do I have to add? M minus 1 2 minus 1 is equal to 1 0 I have to add. How 

many 0s do I have to add to h[n]? It is nothing but a L minus 1. So, it is nothing, but a 4 

minus 1 is equal to 3. So, I have to do 1, 2, and 3. So, now, I have a sequence x[n] that is 

equal to 1, 2, 3, 4, 0, and I have an h[n] that is equal to 1, 2, 1, 0, 0, 0. 

Now, I get this: N is equal to 5 here, and N is equal to 5. Now, I can calculate N point 

DFT. I get X(k), and I get H[k], then I take the N point inverse DFT, and I get y[n] whose 

length is equal to 5. But you get all the values if you computed y[n]. The last element will 

be 0; you can verify it. So, I said take x[n] is equal to 1, 2, 3, 4, take y of h[n] equal to 1 

and 2, calculate the linear convolution, calculate y[n], which is the linear convolution.  

Now you do 5 point DFT of x[n], calculate 5 point DFT of h[n], multiply their the out 

result and compute 5 point inverse DFT of that result; you get y[n]. You see, both y[n] are 

similar, except that the length of this y[n] is also 5, and this y[n] is also 5. If you take just 

N equal to L plus M minus 1. Now if you take N equal to 8 more than L plus M minus 1, 

that means this length will be 8, but you can get after 5 you can get 3 0 value you can 

calculate it. 
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So, in summary, again, I am saying if I have a signal x[n] whose length is L, I have a 

system h[n] whose length is M. Now, if I want to compute convolution if x[n] passes 

through h[n]. So, I get y[n], which is nothing but a convolution of x[n] convolved with 

h[n]; the length of y[n] will be L plus M minus 1.  

Instead of convolution, I want to calculate in the frequency domain. So, I calculate X(k), 

and then what should be N? The value of N should be greater than equal to L plus M minus 

1. So, when I calculate H[k], the value of N should be greater than or equal to L plus M 

minus 1.  

Since the M number of samples is only there, so I have to pad up L minus 1 0 here only L 

number of samples is there, I have to pad up M minus 1 is the minimum. But if it is N, it 

is more than that; also, I have to pad up. So, for example, suppose x[n] L is equal to 4, L 

is equal to 4, and M is equal to 2, then I know the minimum length of the DFT will be L 

plus M minus 1. So, 4 plus 2 minus 1 is nothing but a 5; it can be greater than that.  

So, if N is equal to 5, then I have to add M minus 1, the number of 0 in x[n] and L minus 

1, the number of 0 in h[n]. So, since M is equal to 2; that means, 2 minus 1 1 number of 0 

I have to padded in x[n]. Now, if my N is equal to 8, then I know I have to pad up; how 

many? So, N minus L plus M minus 1 that plus M minus 1. So, I can say 1 plus 3 4 number 

of 0 I have to padded up. 



Now, if you compute y[n] by linear convolution, the length of the y[n] will be 5. Now, let 

us say I have taken N equal to 8, and then if I compute in frequency domain method, So, 

after inverse DFT I get y[n] whose length is equal to N equal to 8. You can see that you 

get 5 values, and the last 3 will be 0; you can verify it, you can do it very verify it. So, this 

is a linear filtering view.  
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Another problem is the long data sequence. So, what is a long data sequence? Suppose I 

have a filter here. So, for the long data sequence, I have a filter here, h[n], whose order is, 

let us say, 68, and I have a signal x[n], which is a huge signal is there. So, if I took the 

whole signal at a time and convolved with this huge process. 

So, instead of doing that, let us say I divided this long signal into a small block L. First, I 

am not initially discussing what will happen in the frequency response; I am doing how do 

I do it first? How do I recover that? I will discuss the problem first, and then I will discuss 

what will happen in a long data sequence frequency problem. So, I have divided the input 

signal into a small frame, and the L number of data points is ok. So, this is the L number 

of data. There is an L number of again data, and there is an L number of again data. So, I 

apply an L number of x[n] here, and I get y[n]. 

So, if this is my M and this is my L, then I know that if I produce that N point DFT. So, N 

is equal to the minimum L plus M minus 1, so the length of y[n] is L plus M minus 1. But 

for 1 frame, the length of data is L. I should get the L number of data because if I want to 



reproduce the signal after the signal passes through the filter, the signal length should not 

be very high.  

Suppose I said I had designed this filter to cut off that 1-kilohertz signal 1 kilohertz to 1.5-

kilohertz signal. So, the output data length and input data length must be equal because I 

have applied a signal. How do I know if the data length has changed? 

So, in that case, I want to get back to this: Do you understand the physical problem? I have 

a lot of data. I take an L length of data at a time and pass it through a filter. Now, what is 

happening is that L length of data I pass through a filter, but the output I get is data whose 

length is L plus M minus 1, where M is the length of the filter. 

Now, if I frame by frame, I analyze this as a frame. Now, the length of the frame is changed 

to L plus M minus 1. So, if I add them, then my signal length is different, and the output 

signal will be different length. So, how do I recover? Although I frame length by length, I 

want the L number of data in y[n], and the length of the y[n] should be L. So, how do I do 

that? That method is called the overlap save or overlap add method. 
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So, what is overlap save? Let us say I have a signal x1[n]. So, in the first frame, I have a 

signal x[n]. So, the first frame is x1[n] of length L. Now, if I want to do it, I have to do a 

frequency transform N point DFT, and the length should be L plus M minus 1. So, I am 



making it L plus M minus 1; that means the M minus 1 number of 0 has to be added to the 

signal.  

So, I have a x(0), x(1),  x(L – 1), and initially, I added M minus 1 number of 0. Why? 

Because why this y[n] is the length of L plus M minus 1; that means, suppose this is your 

painting station, and you apply a bamboo here if a pipe is here to paint. So, at the end, the 

pipe will come out, and then the length will be. So, initially, what will happen? How do 

we paint it? The convolution means flap it here. So, if the pipe is here, I flap the painting 

station in here first, and then I convolve the then I shift the pipe inside this thing. 

So, initially, when you shift it then, you get this portion, but the rest of the portion is 0; the 

rest of the portion is 0. So, that is why, to avoid that initial aliasing part, what we will do 

is we put n number of 0 M minus 1 number of 0 at the initiation of the frame. Then, in the 

second frame, I put again M minus 1 number of 0 here initiation of the frame; then I took 

the L number of the data point. 

So, each frame's first M number of 1 data point will be 0, understand or not? So, I have a 

x of. So, each frame's length is L plus M minus 1, L number of data points will be there, 

and M minus 1 number of 0 will be added up at the initiation of the frame. 
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Then I compute y[n], and then what if I see that this portion is M minus 1 number of 0 

x1[n] and this portion is 0. So, if I say that, then I calculate y[n], which is the length of L 



plus M minus 1, and then I add them. So, M minus of 1 point will be added together. So, 

overlap, so M minus 1 point overlap. So, the initial M minus 1 point will be discarded, 

then I add y 1. So, y1[n] and y2[n] will overlap by M, M minus 1 number of points. So, 

basically, y1[n] is the length of L. This is M minus 1, and this is L. 

So, M minus 1 plus L and y 2 n is also the length is M minus 1 plus L. Now I said y1[n] 

plus y 2 n when I do it, so instead of saying that M minus 1 plus L plus M minus 1 plus L. 

So, M minus of 1 point will overlap with this length. So, basically, I will get M minus 1 

plus L length. So, this first M minus 1, if I discarded, then I get the signal y[n] whose 

length is L. This is called the overlap save method. 
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Similarly, I can go for the overlap add method. So, instead of putting the 0 at the initial 

point, I put the 0 at the final point. So, I have a x[n] whose length is L, I have to make N 

is equal to L plus M minus 1. So, M minus of 1 number of 0 I added in here. So, in the 

next frame, I took an L data point and M minus 1 number of 0. Again L data point next 

frame and M minus 1 number of 0. 
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So, when I analyze x1[n] I get y1[n]. So, x1[n] M minus 1 number of 0 is there. I get y1[n], 

whose length is also L plus M minus 1, where M is minus. So, M minus 1 point, I will 

overlap with the y 2, which also has a length L plus M minus 1. So, I just overlap this M 

minus 1 point with L y 1 to y 2. So, this overlaps M minus 1 will be cancelled. So, I just 

overlap and add them overlap and add them; I get y whose length is L; is it clear; is it clear 

to everybody? So this is called the overlap-add method and overlap save method; overlap 

adds method and overlap-save method.  

But there is another point. So, I have a long sequence of data when I say I cut the data with 

L number of points, what is the meaning? This means that I have an x[m] whose M varies 

from 0 to infinite. Now I take data which is, let us say, first frame x 1 M whose length 

varies from 0 to L minus 1. So, how do we do that? So, by default, I am saying that up to 

this, the signal exists. After this, the outside window signal is 0. 
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So, what I am saying is that I have a long signal. There is a long signal. I M M varies from 

signal x. Let us say the signal is x[m], m varies from 0 to infinity, let us say. Now I said I 

take L number of samples of this long number of samples. So, let us say I have a 2000 

sample signal. Now I said 160 samples I have taken. So, how do I take 160 samples? That 

means, fast frame number 1 x[m] I have taken is equal to x[m], if m is less than L or equal 

to up to m is greater than m is 0; m is 0 to m equal to 0 to L minus 1 else where it is 0. So, 

if m is greater than L minus 1, then it is 0. 

So, that means I have only one signal in this portion, and the rest of the side signal is 0. 

Now, when I say that, what is happening? The problem is that x 1 m has a length L. If I 

analyze the frequency domain, I get X(k); if I take less than L point DFT, I have taken. 

But X(k) when I take X(k) is not only X(k) but also I transform the frequency domain 

response of this cutting point. What do you mean by cutting point? Cutting point means a 

rectangle that has a 1 up to L 0 elsewhere. 

So, the frequency response after DFT that I will get I will get not only X k, but also X k is 

convolved with, let us say, that is called W k; that is the window function. Because in the 

time domain, it is x[m] multiplied by w of m, in the frequency domain, it will be 

convolution. So, I am not getting the exact signal representation in the frequency domain 

that is called STFT short-term Fourier transform, short-time Fourier transform or short-



term Fourier transform, whatever short-time Fourier transform. So, time is short, and that 

is why I said short-time Fourier transform.  

So, next week we discuss short-time Fourier transform details we discuss short-time 

Fourier transform ok. 

Thank you. 


