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Alright; so far we have been discussing some portion of Queuing Theory. Now we have 

come to the critical juncture of discussing the actual queuing process. So, we have 

already talked about two things, one discrete-time Markov chain and a continuous-time 

Markov chain. So, today we will start discussing about Discrete-Time Markov Chain. 
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So, that was the discussion of the last one. So, we will start our discussion of this DTMC.  
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Let us try to understand some of the properties of these things. So, for that let me give 

one example, let us say just a system I am trying to create. Let us say there is a random 

traveler who actually goes from city to city ok? So, I am just taking one example, you 

can find this example also in the book of Kleinrock. 

So, basically let us call that city 1, 2, or 3 we can we can take any city name. So, it might 

be Delhi, Calcutta, Bombay something like that ok? So, he is moving around from this 

city to these other cities ok. Now, how he does do that? So, there are some assumptions 

about this, of course, it is a hypothetical thing. 

So, we will be taking some examples or some assumptions from that example. So, that is 

what we are saying that it is a hypothetical example and he might be in a particular sub 

every day, if I see the time the time is slotted because it is a DTMC. So, time is slotted. 

So, let us say every day at, let us say 8 AM or 8 PM; let us say 8 PM he catches a bus to 

move to another city, but which bus he will be getting is random. So, beforehand he also 

does not know and beforehand even the observer also does not know.  

So, he can catch any bus, but with some associated randomness ok. So, basically from 

there immediately he will be, and this transition from one city to another city, so that bus 

is almost like teleportation ok? 

So, it transits him immediately ok? So, immediately he goes to another city according to 

whatever probability he takes some bus he catches, he might be in city 2 on a particular 



day t. So, he might be in city 2 and then at 8 PM he might catch any bus for city 1 with 

some probability any bus for city 3 with some other probability or he might remain over 

there ok. 

So, that might happen. So, of course, something will be happening. So, therefore, his 

probability of transiting to City 1 City 3, or City 2 overall will always be 1 ok. So, that is 

something you have to keep in mind. So, whichever city he is there.  

So, his probability to transit to other cities, that probability if you sum over all 

possibilities must be 1. Because that should be he must be doing something, he must be 

either going to some other city or he will remain in that same city ok he cannot do 

anything else. 

So, therefore, overall some of those probabilities should be 1. Now, these probabilities 

what are those things? So, every time every 8 PM of every day, he actually inserts those 

probabilities. So, these are called actually the transition probability from one city to 

another city. 

So, therefore, on day t we might have some probability, we might have some probability 

for suppose I have observed him in city 2 on day t, and then on that day, he is transiting. 

So basically, he might have some probability to transit to some other city and watch that 

associated probability. 

So, those probabilities will be characterized by the transition probability given by the 

description. So, there might be some transition probability p 21, there might be some 

transition probability p 23 and there might be some transition probability to himself p 22, 

but whatever happens this p 21 plus p 22 plus p 23 must be equal to 1 this must be 

happening. 

And this is true for every city, in this city also the same thing will be happening. So, 

there is a transition probability p 12, there is a transition probability p 13 and there is a 

transition probability to himself p 11. Again, the same thing will be happening so p 11, p 

12, and p 13 must be equal to 1. 



Similarly, for 3 also the same thing. So, he might transit over here, he might transit over 

here or he might remain over here. So, this will be p 31 p 32 and this is p 33. So, again p 

31 plus p 32 plus p 33 must be equal to 1 ok. 

And if you see I can represent this. So, basically, what you can see over here, these cities 

where he is that makes the state ok, that is actually making the state. So, the cities are the 

states where he will be where I observe him. So, any day I try to see I will be describing 

where that particular traveler is located.  

He might be in a city because that is a random thing, he might be in City 1, City 2, or 

City 3. If I can describe that where he is that should be the description of, means 

description I wish to means make I wish to infer. 

So, because of that, I describe that as to be state. So, he might be there in states 1, 2, or 3. 

So, that is the overall state space ok, because we have considered 3 cities. If we consider 

5 cities then the state space will be 5 and he has a possibility of being in every city. Now, 

this is probably random because which city he will be that completely depends on where 

he has started and how he is transiting with all probabilities it is happening. 

, therefore, which city he will be that is also probabilistic because it is a random process 

right, there are states, and associated between states there are transition probabilities, and 

if you see if there are 3 states I can have an associated transition probability matrix ok? 

So, which is this one, p 11, p 12, p 13, p 21, p 22, p 23, p 31, p 32, p 33 of course, their 

summation, the rows summation should be all one. This typical matrix where the values 

are all probability therefore, they lie all these p ij’s are always between 0 to 1. Their row 

sum is always 1 this typical matrix is actually a transition matrix for capturing the 

transition probabilities from one state to another state or all possible states to all possible 

states. 

So, this is termed as Markov matrix ok. So, Markov matrix has this nice property, that 

they are generally probability value and their row sum is always 1 ok. So, that that 

property is there. There are additional properties that probably we will not be requiring 

ok, if we do a full-fledged queuing theory course probably that thing will be exploding. 



But right now, probably this is good enough for us. Now, let us talk about this state and 

transition these two probability things we have got from this description ok? We have 

now understood what is a discrete-time process Of course, it is it is only happening at 

some time means boundary, it is not happening anytime it cannot happen anywhere ok? 

So, the way we have described the system it can only happen at some particular 

boundary. So, ok; so it can only happen in some particular time boundary. So, therefore, 

it is a discrete-time process, I know the state transition is happening only on that 

boundary, on that means specialized boundaries only, it cannot take place at any time. 

So, that is why it is a discrete-time process and it has an associated probability of 

transition from one state to another state. So, basically, it has a state description of which 

state it can take over here, and as we have told you we will be concerned about discrete 

states only. So, over here the example also we have taken as a discrete state. 

In our queuing, it will be just the number of customers ok. So, it might be 1, 2, 3 

something like that, or even 0. So, it will be just transiting from that. So, from 0, it will 

go to 1 like in our bookkeeping we have already seen. In queuing what might happen? It 

can go the queue length might increase from 0 it can go to 1, then 1 to 2, again it can 

come down 2 to 1 something like that. 

So, all those transitions associated with probability we are now talking about over here. 

And of course, remember it is a discrete time process earlier whatever bookkeeping we 

were doing was all for continuous time, but right now we are concerned about the 

discrete time process ok. 

So, that is that is our whole description of the system. Now, let us try to see what can we 

say about these two things, state, and transition; first, we will start with the transition. 

Now, in the transition of what might happen, there is no restriction. So, every day there 

might be different probabilities that he takes. 

So that means, this transition probability itself evolves over time, this might happen that 

on day 1 probably he had some other probability it depends on his interest, it depends on 

the associated bus availability their arrival randomness, and all those things. If that 

randomness changes over time then probably on different days there will be different 



probability of him going to another city from that city to another city; that means, the 

transition probability will vary over time. 

If that happens then it is called a heterogeneous Markov chain. Of course, I should put 

heterogeneous Markov chain ok if the transition probability will be more of our interest, 

that generally the transition probabilities do not the system description does not really 

change over time, the kind of system will be taking ok. 

If that is the case then that particular kind of Markov-associated Markov chain or 

associated Markov process is called homogeneous Markov process or associated 

homogeneous Markov chain. We still have not talked about what is Markov chain, but 

we will come to that in due course ok. 

So, we will be mostly interested in this homogeneous Markov process. So, therefore, this 

transition probability will not be really varying over time, if the transition probability is 

not varying over time can you now say the associated state probabilities? Will that vary 

over time? Let us try to enquire if that is ok. So, that is exactly what will be now next 

doing, let us try to this part ok? 
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So, what we have been told? That lets us have that particular random traveler example. 

So, we have state 1 2 3, let us say associated probabilities we put with pi. So, pi 1 pi 2 pi 

3 initially we will think that they vary with time. 



So, basically, we can say pi 1 time is now discrete. So, I will give pi 1 n pi 2 n pi 3 n. So, 

in the nth time instance because it is a discrete time. So, time instance 1 2 like this it goes 

3 up to n. So, in some arbitrary nth time instance these are the state probability ok. 

Let us try to see how I characterize this state. So, right now what we have taken is a 

homogeneous Markov chain; that means, my transition probability matrix which is the P 

matrix which is consists of P 11, P 12, and so on. So, all, these things do not vary over 

time if it was heterogeneous then I just had to write P n; that means, in time instance n 

what is the associated transition probability? 

If it is homogeneous then P n’s are all for all n they are equal. So, P n is equal to p n 

minus 1 is equal to, so everybody is equal because the transition probability matrix is not 

varying. Now, how do I get a relationship between the transition probability and this 

one? Can we now try to characterize that? 

So, let us try to understand these things from the probability perspective, the basic 

probability perspective. So, let us say on day n minus 1 he has an associated probability 

pi n minus 1 that he is in city 1, pi 2 n minus 1 that he is in city 2, and pi 3 n minus 1 that 

he is in city 3 this is the associated probability. 

Now, what is the probability of finding him the next day in City 2? Let us say I want to 

calculate pi n sorry pi 2 n, let us try to see how do I evaluate this. So, the evaluation is 

very easy in the previous day where he was and the associated transition you multiply 

because it is where he was that is independent of what transition probability he will be 

taking. 

So, these 2 events are independent so I can multiply them ok. So, therefore, suppose he 

was in city 2, pi 2 n minus 1, and then if on the next day, he has to be in city 2 it has to 

take a transition p 22 from the same city 2 to himself he has to take a transition. 

So, therefore, this is the probability that if he was in city 2, if I multiply with p 22 then he 

will remain in the next day city 2 that is the said probability. But is that all? No, he might 

also be in City 2 where on the previous day he was in other cities and those events are 

mutually exclusive ok. 



So, therefore, that probability will be added. So, pi 1 n minus 1. So, he was in city 1 and 

then he did a transition 1 to 2 plus pi 3 n minus 1 and then he did a transition sorry 3 to 2 

ok that is the associated thing, if you carefully see I can like that I can also calculate pi 1 

n and I can also calculate pi 3 n. 

If you carefully see this is just a matrix multiplication of associated vector, if I just 

construct associated vector which is actually pi 1 pi 2 pi 3 with time index let us say n 

minus 1 if I put, then it is an overall pi n minus 1 ok. So, that vector if I put pi n then this 

will be index will be n. So, if you carefully see it is just associated with this vector 

multiplied by this transition probability matrix. So, pi n minus 1 vector multiplied by this 

P vector must give me my pi n this relationship in a very simple way is always true. 

Now, of course, if the state variable has more value then definitely the transition matrix 

also will have means matching values, and this multiplication of this vector to vector and 

matrix multiplication will always match the dimension. And I will accordingly get, how 

many equations I get? As many number of variables are there that many equations I will 

be getting. 

So, this gives me the number of equations if I know the transition matrix, if I know the 

previous time values then I can always calculate from there the next time will be the 

value. So, the state probability evolution I will be able to capture from the previous one. 

So, if I know at 0 where is that? This means, that if I say ok I drop him in city 1, then the 

associated pi matrix pi 0 will be. So, I have dropped him in city 1, the others will be 0 

and from there with the transition probability matrix I will be able to capture what will 

be the associated probability on the second day. And then from the second day again I 

can capture what will be the associated probability the next day and so on, this I will be 

able to capture. 

Now, even if the transition probability matrix is P ok which is homogeneous, I have no 

guarantee that over time this probability will not keep on varying ok. If I have an 

additional condition that P means such a matrix that this to this transition they get a 

stationary value; what does that mean?  

That means if I go up to time infinity then I will see that actually wherever in the initial 

condition or whatever initial condition I put or wherever I drop that random traveler at 



0th day enough time if I go, then the probability associated state probabilities will 

become convergent. 

That means, it will take a similar kind of value, if this happens then that particular 

random associated process or the Markov chain is termed a stationary Markov chain. Not 

only stationary in time also if it is getting similar things over time then we also call that it 

is probably an ergodic Markov chain. Will not go into the details of that description 

because that requires a full again full-fledged queuing theory course. 

But right now, we can just understand this property that if this happens; that means, not 

only the transition probability but the state probabilities also are not varying, they are 

being constant over time. 

So, what does that mean? If I put limit n tends to infinity then this pi n minus 1 or even 

pi n these are all going towards a stationary value of pi ok. So, immediately what I can 

do? In this equation, I can take that limit. So, if I take limit n tends to infinity on the left-

hand side and if I take limit n tends to infinity on the right-hand side. 

So, basically, both of them will go to pi and P does not depend on n. So, therefore, I will 

get an equation which is called pi equal to pi P, which is a famous stationary discrete-

time Markov chain queuing equation. You know what has happened? Now, I have got 

see the state probability.  
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If you are you do not know about them, so if I just; so if I just write this equation that 

newly derived equation pi equals to pi P, what is this equation actually? So, if you see it 

is actually a set of linear equations of pi, pi is my unknown state probabilities I do not 

know I want to solve them. So basically, I get a state probability-associated equation. 

How many equations do we get? 

We actually get if there are in the state, suppose in our random travelers experiment we 

had three things. So, I will be getting 3 equations involving 3 variables, pi 1 pi 2, and pi 

3. So, I will get 3 equations from here now from these 3 equations there are 3 variables, 

will not be able to completely solve. 

Because we do not have any constant things. So, we will get a nontrivial of these things 

at max what we can get we can get an interrelationship pi 1 to pi 2 pi 1 2 pi 3. So, in this 

relationship, we need another equation to solve the whole thing. So, that extra equation 

will be we also know that the P must be found somewhere. So, this summation pi i is 

equal to 1 overall i.  

So, this last equation will get interrelationships from this particular matrix equation will 

be getting interrelationships between each of pi 1 to pi 2 and pi 3, and then this 

normalization because all these pi summations should be 1 because of its probability. So, 

their summation should be 1, I must be able to find that particular random traveler 

somewhere. 

So, that summation will be 1. So, just by doing this, we will be able to solve the whole 

Markov process. So, basically, a discrete-time Markov chain which now we understand 

is it is means as long as we take two assumptions one is the homogeneous assumption 

and the second one is the stationarity assumption. 

So, basically, the transition probability matrix does not change over time, and then the 

last thing that we have discussed is the stationarity or the stabilizability. So, that also is 

taken to be true; that means, if I go observe the system for time tends to infinity then the 

state probability also does not change over time, it has some probability and it stabilizes 

to that ok. 

So, it is stationary. So, if we take the homogeneity and stationarity assumption that will 

be taking, there are some conditions we will right now probably we would discuss later 



on we can discuss them. So, with what condition they happen, we will discuss that later 

on. But if these two things happen and in our system, it's guaranteed that these two things 

will be happening.  

So, then we can describe the whole system we are interested in solving the state 

probability for a queuing. How many times do I find the queue or what is the probability 

associated probability that I found the system without any customers? So; that means, in 

0 state with 1 customer that is in one state, it 2 customer that is in two states. So, all these 

associated probabilities I need to find out ok. 

So, these probabilities if I wish to find out I get a setup from this particular equation set, 

I get a set of linear equations. So, all I have to do is along with that I will have this 

normalization equation. So, I solve this linear set of equations and I solve the state 

probabilities. So, it is as simple as that. 

So, therefore, means I can guarantee that these two conditions are satisfied homogeneity 

and stationarity or ergodicity also for the time being. If these 2 are satisfied we will be 

able to characterize the system by a set of linear equations as many states are there many 

sets of linear equations will be formed. We just solve the solution of linear equations is 

very easy and we can we can just solve that. 

So, therefore, the only thing you will have to do is over here the thing that has to be 

supplied is the transition probability matrix. So, understanding the system how do you 

construct this transition probability matrix that will be your task ok. So, that is the only 

thing that you will have to do. Once you have done that you are almost there you can 

solve the associated things, but remember over here we still have not described anything 

that is Markovian ok? 

So, this without going into the description means Markovian was taken in the underlying 

process we have not actually discussed that, we have very carefully avoided that 

description, but actually that must be taken into account, this cannot happen if the system 

is not Markovian. 

Because then the whole system the whole history has to be taken over here what we are 

doing the next state where it will go. So, where the Markovian assumption was taken? 



We have written that particular matrix equation that pi n will be only dependent on the 

previous state and the transition probability, this is the Markovian assumption. 

That means it only depends on the previous state and it does not depend on anything 

beyond that. So, that was the associated Markovian assumption that we have already 

inherently taken over here ok? So, what we will try to do? We will try to see the 

implication of that one more time and then from there we will try to build up the 

continuous-time Markov chain in the next class. 

Thank you. 


