
Analog Circuits and Systems through SPICE Simulation
Prof. Mrigank Sharad

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture – 52

Let us continue with the discussion from where we left here.

(Refer Slide Time: 00:22)

Any question regarding these 3 definitions? So, in our case of course, the important

criteria is the delay 3 c 2 Q delay because we are looking at the ripple counters c 3 2 Q

delay can be important. And if you look at the setup time; however, if we look at the

counter operation are we concerned about the setup time in our ripple counter. So, if I see

where are we applying this.

(Refer Slide Time: 00:45)

So, you have the toggle flip flop being constructed D Q and Q bar. And we know that Q

bar is connected to the D and then you have the clock. So, each of the element in my

design is having the Q bar connected to the D and therefore, before the positive edge of

in our case we have used a negative edge triggered just for the up counting operation we

have used the negative edge trigger.

So, before the negative edge comes the Q bar is anyways stable right. So, Q bar is always

stable because much before the negative way of the clock Q bar was equal to the

negative of Q. Therefore, Q bar was always stable. I do not need to worry about the

sudden change in Q bar just before the down going edge of the flip flop in our case

because Q bar sensitive D. So, the D is automatically only the negative or inversion of

the Q which was stable all throughout the period last period. Therefore, the setup time

will not be an important concern in our case; however, clock to Q delay will be and

concerned will be a concern because we a concerned with the total delay of the ripple

propagation from the input to output. What about the whole time is it concern? If you

have bad transition time for the clock and clock bar, which are going into this flip flop of

course, I have shown one clock, but ultimately you have to produce both the clocks lock

and lock bar which are going to control the pgs in this flip flop and you are connecting

the Q bar to the D.

So, basically what you have done is this Q bar in this circuit is connected to the D. And if

you have the clocks which are having clocks which are having say transition my Q is

supposed to change at the positive edge of the clock. So, whenever there is a positive

edge of the clock Q is definitely going to toggle that is the operation the toggle flip flop.

So, at every positive edge Q is going to toggle. And therefore, at the positive edge of the

clock we expect the transition in Q it is going from high to low or low to high. And

therefore, there can be when you have a overlap between the rising edge of the clock and

there is a significant overlap between the 2 phases. You can have a transparent path and

rather than Q bar getting reliably lashed to the D you can have intermediate undefined

state. Because you are connecting Q bar over here in D and all these latches are on for a

given duration. So, it is not necessary that the Q bar will be reliably copied back to here

because the polarity from this Q bar to this point may not fall to 180 degree at that same

instant because all these latch are getting on together. And as a result I can have the

wrong transition over here and it can lead to aarons phase in the counter output.

So, the whole time will become important and the rising falling edge rise time for time

edge and the overlap in the clock and clock bar will become important in our application,

we would like to make sure that the rise fall time is not that bad that when you are

connecting this Q bar directly to the D, and for a short duration these are remaining on

together you are having a intermediate state and the Q bar is not copied properly to the

final Q.

So, that is the only concern that we take care of So, you should make sure that the rising

falling edge of the clock going to this transmission give there not to very bad, because

otherwise it can lead to strong latching. Because if you are trying to say Q bar over here

you have in this path you do not have any inversion inverter therefore, logically if this

rhythm is connected over here to the D. And both of them are having overlap both of

them are getting on at the same time. Then basically what you are trying to do is Q bar

and Q you are trying to connect together the moment you have overlap. And you are

putting the Q bar over here from here to here one inversion here to here another

inversion. So, you are trying to basically set Q bar equal to Q in that transition duration

which is not wanted we can have a undesired output you can have wrong transition over

here.

So, that is something to be careful about and that can be ensured if you are having

sufficient rising falling sufficiently sharp edges of the clock. And sufficiently small rise

time and fall time. How does the rise time fall time can is controlled? So, just a brief

discussion on that So that you know we can end the discussion quickly.

(Refer Slide Time: 05:31)

So Rise time and fall time of the clock are going to be controlled by the buffers or

inverters which are driving the clock ultimately, as I said the clock will be coming from

some source which is having the signal 0 to V DD going in and you may have a single

inverter driving multiple transmission gates.

So, a single inverter may be responsible for driving the clocks of multiple flip flops or

multiple gates. You can have a single clock input going to multiple blocks. In our case

the first clock anyway come with the first flip flop and output of the first flip flop goes to

the next flip flop and so on, but in case the output of a single source of the clock is

driving many different blocks. Then the load capacitance faced by this inverter or the

driving circuitry can be pretty large, and as a result the rise time for time can degrade.

The moment you have more load connected to a particular driving gate are digital gate

the rise time fall time can degrade. So, this is larger and larger number of blocks

connected to the single driver or single inverter you can have degrading rise time and fall

time. Therefore, this condition should be avoided in case a single gate is supposed to

drive large number of other digital blocks, you can try to make the size of the NMOS and

PMOS larger

So, that correspondingly the current pumped in by this PMOS and NMOS also becomes

larger and as a result the rise time whole time is maintained. So, this is something to be

careful about whenever you are using inverters logic gates to drive the next pages

especially in case of clock is the rise time for time is too degraded you would like to

make the driving source maybe the inverters with larger dimension. Or you would like to

use to inverter rather than using only one inverter this is the main clock I can use to

inverter this is the ck I can produce say, I can use 2 buffers and produce ck over here this

is the buffer right 2 inverters together means buffer you have no inversion in this path.

So, in that case rather than the one single clock driving to many blocks, I can have

effectively 2 clock sources. So, have divided the single source into 2 sources and

therefore, the effective load capacitance will be half. So, digital signal or digital clock

can always be buffered you can have bifurcation and then you can have 2 sources driving

the half the loads each another result their fan out their total load capacitances will

reduce and there is the important definition of fan out that is that comes in digital

circuitry, which deals with how many similar gates are drawn by a single proceeding

gate.

So, in terms of analog circuit we talked about parasitic capacitances and load etcetera in

terms of digital circuitry because we are dealing with individual gates we talk about fan

out. So, in this case if you have more number of gates being driven by a single gate the

fan out of that gate is large. So, here if you have 3 such gates 3 logic gates will be and

gate or gate or not gate being driven by the previous gate; that means, the fan out of this

gate is 3. If you have n different gates given driven by a single gate that fan out of this

gate is n times. So, larger is the fan out you need to keep the dimension of these

transistors also larger. So, that it can supply appropriate charging and discharging current

and the transition can be faster.

So, this is another important point whenever you are looking at digital circuitry the their

transistor level implementation you should take care of this fan outs. That a single gate

driving many different gate it will lead to degradation of rise time fall time one option is

you increase the size of the driving it other option is you split the signal you use buffers

like this. So, that the load or the fan out of the individual buffers and the output is lower

here for example, I have split it into 2 halves each of them tethering to half the load.

So, this can help you in retaining the overall shape of the overall sharpness of the rise

and fall time of the data in the clock. Any question? We proceed? So, these are important

considerations by looking at transistor of implementation. So, just like for the analog

circuit and the switches we have seen some consideration of regarding the (Refer Time:

09:53) switches when we are talking about flip flop it is important to be aware of the

nonideality of the flip flop. And be aware of the transistor level implementation on those

flip flops.

Another small topic related to the digital logic implementation is the logic we discussed

for generating the phi 1. If you remember we have the some small logic being used to

implement phi 1.

(Refer Slide Time: 10:28)

So, we looked at the counting operation and whenever all the Levels are turning high.

So, you have say c 1 to c 7 all of them at some instants they are turning high and then

finally, going low. And we used the low phase of the clock and we said that it is negative

edge trigger and we said that, we are going to and this clock bar and c 1 bar c 2 bar c 7

bar to generate the phi 1 pulse. So, this was the phi 1 pulse was given by ck bar dot c 1

bar dot c 2 bar dot c 7 bar that is how we generated the 5 pulse. And the other the

question was if you want to have wider pi one pulse and only thing is you would have to

use more such logic.

So, for example, you want to have phi 1 pulses being little wider we consider that these

reason why you would like to have 7 pulse little wider in the last discussion the feedback

of the OPAM etcetera, can take more time. So, in case you are not able to speed up the

feedback of the unity gain offset cancellation loop or the sampling circuitry you may

have to apply a longer phi 1. That is what we discussed and for that only thing you need

to do is apply more logic that it the for more counts like here I am talking about 1 1 1 1

all ones before that you will have 0 1 1 1 1 before that you may have you know one 0 1 1

1 1 and so on.

So, I will apply the logic responding to this combination this combination and set them

all to 0. So, whenever this particular phases are coming for the counter I would like to

keep for this entire duration, I would like to keep the phi 1 high, I will just use that

additional logic. So, basically it will have another or gate another or gate. So, you get the

first combination over here I may not even use ck in that case I will just use the count c 1

c 2 c 7 bar. Then I will use say you know c 1 bar or basically c 1 or for example, if I have

to you know keep the phi 1 on for a longer duration and I am looking at this phase. So,

just before this you have the phase all 1.

So, I can keep this c 1 c 2 up to cn c 7. So, this will be the phase just preceding this one

before that you will have the phase c 1 bar you know c to up to c 7 proceeding just this 1.

So, suppose for this 3 phases I would like to keep the phi 1 high I will just take the or of

this. And this therefore, you calculate or you compute this particular logic using and

function another and function to calculate or to compute this particular combination

another. And function to compute the third one and you or them together and therefore,

the phi 1 will be remaining on for that entire duration.

So, you have basically the and gates taking care of this min terms are called min terms

combination of this and functions, and then they are all together. So, basically bunch of

and gates forward by or gates.

Now, there is a question regarding implementation of these and gates and or gates at

transistor level or do we implement this the So, basic structure we know for the for

example, if you are trying to implement and nand gate from which we can implement an

and gate we know what is the what is a nand gate look like. So, it is something like you

are having 2 input nand gate where you have the input A and B coming here and A and B

coming here. And we know that when both A and B are high then the output will be low

and then you want to get a and gate out of this. So, put an inverter. So, this is a and gate.

Now, if you want to if you want to implement this function over here can we go on

adding. So, if I go for 3 input nand gate or 3 input and gate I just need to add another c

over here third transistor coming over here and another third transistor in the parallel.

How does that parallel combination come? So, basically by the de morgans law if you

are having the a dot B this output is supposed to go down when A and B is high. So, this

is implementing basically a dot B bar. So, this NMOS combination is implementing A

dot B bar because when A and B both are high the output will be driven low and we

know de morgans law, that this can be represented as A bar plus B bar a dot B bar can be

representing as A bar plus B bar.

So, this PMOS circuitry over here should also support the same logic condition. So,

when a dot B is high. Then the PMOS should be driving it height. Then we can see that

when a here if you have a low and B low in both conditions output will be driven high

and that is basically nothing is, but this function right. So, this we can implement this A

bar plus B bar by connecting A and B transistor in parallel using PMOS because here

when a goes low then this pulls the output high B goes low then this pulls output high.

So, we take the de morgans we apply the de morgans law on the pull down logic and

arrive at the transistor combination needed for the PMOS.

So, here we are seeing A bar plus B bar that is obtained by connecting these 2 in parallel.

And they implement the same function (Refer Time: 15:58) when this is trying to pull it

down in the opposite phase this will be trying to pull it up. So, both of them are

satisfying the condition.

Now, if we just go on adding these gates to implement larger logic functions you will

have the stack of n number of transistor you will have you know 7 transistor 8 transistors

coming in, and you will have a huge chain of transistors over here. So, if I want to

implement the and of these all these functions together I will have to use such as pack c 1

c 2 c 3 c 4 c 7 coming till this point and also the corresponding c 1 c 2 c 3 c 4 coming

here. And then ideally of course, I can do this and in digital circuit we know that we do

not need to worry about the voltage headroom just like we do in analog circuitry. So,

these are just try out reason switches and ultimately the voltage drop across them can

reach to zero.

So, I do not worry. So, much about the triode the voltage head room across the switches

in digital operation. But what I do need to worry about is the transition delay. So, if you

are stacking too many transistors in this fashion, each of them are going to add to the

overall transition building of the discharge path. And that increases at n square if you

have n such transistor that overall transition delay of this logic increases as n square.

Because effectively you are having parasitic capacitances that each point which is

increasing with n total capacitance charged, the worst case and also we have the total r in

the series connection which is also increasing with n. Therefore, the total delay can be

shown to be proportional to n square.

So, if you stack more and more transistor to implement such logic it can increase the

delay steeply. Therefore, generally people do not go beyond 4 input. So, maximum

number of input that we can see libraries standard cell for input better is maybe 3 inputs

and so on. So, you know beyond for input it can become it can degrade delay pretty

significantly. So, in our cases we are having say 7 or 8 input in our original case we

started with this particular combination ck bar c 1 c 2 c 3 c 7. So, we can split it into 2

halves 4 4 and then implement the ck bar c 1 bar c 2 bar up to c 3 bar and then another

one and then and them together that can be one solution.

So, I can rather than implementing the entire function using a single gate I would split

them into 2 halves and then combine the result. So, basically I am going to look at ck bar

(Refer Slide Time: 18:34).

 c 1 bar c 2 bar c 3 bar. And another one c 4 bar c 5 bar c 6 bar c 7 bar implement them

individually using gates and then take their and. And if I look at this is if I look at A bar

B bar you know that this is nothing is what a plus B bar. So, I can also represent I can

extend it to the larger number of inputs also therefore, this can also be implemented as

nor gate. So, I can just have ck plus c 1 plus c 2 plus c 3 nor given as this combination.

And then it is anded with c 4 plus c 5 plus c 6 plus c 7 and then again you have the nor of

these two. So, basically you need to implement for input nor gate. And then and the

result together. And as a result means nor gate can be implemented using once again

similar scheme only thing is the combination will just oppose it you have the NMOS in

parallel the for NMOS coming in parallel c 1 c 2 c 3 ck and then you have the PMOS

coming in series because if I take the this is going to be low when the any one of these is

high. And then the negation of this the de morgans we know the negation of this is going

to be this ck bar c 1 bar c 2 bar c 3 bar.

So, that comes in series, c 1 c 2 c 3 c 4. So, this is a 4 input nor gate I can take 2 such

gates and apply I were these 2 and then combine them using and gate. That can be

possible implementation and one important point to be noted is in general, you can have

the PMOS mobility the mobility of the PMOS invention meter can be half the mobility

of NMOS. And as a result the speed of the PMOS transistor can be half the speed of the

NMOS transistor for the same dimension. So, therefore, if you stack PMOS transistors it

leads to slower speed rather than if you track NMOS transistor, if you stacking NMOS

transistor the speed for 4 stack NMOS transistor can be better. Significantly better than

the speed of 4 stack PMOS transistor because mobility of the PMOS is slightly lower or

rather 2 times lower in manatee nanometer. That difference has vanished for lower

technology for lower technology note that difference is very minimal, but for older

technologies one tonometer is still at least 2 to 2.5 ratio you will get.

So, generally for high speed logic we may prefer nand gate implementation, but in our

case that is not an important concern because we are not that where logic speed is not

very high. As a result we can go for nor 8 implementation also. So, on we just should just

become aware of the logic design if you are supposed to implement any logic gate using

transistors you should know how to split it and how to implement it using smaller gates.

So, that the delay is within limit and you are having right kind of transitions, if your

along with the delay of course, another point is rise and fall times you stack more

transistors because of the large rc time constant the rise time fall time will also be

degraded. So, this issues should be kept in mind while implementing transistor level

logic any question before we end this discussion.

So, we have basically covered the building blocks of our adc in sufficient detail starting

from the ramping circuitry comparators there are non idealities sampling circuitry along

with the comparator design it is specifications it is non idealities including offset

cancellation. And finally, we also came into the digital controller part where although the

control is simple, but we dealt with the if the constituent blocks constituent elements at

block level overall functionality of the control operation how the 5 and 5 2 pulses are

getting generated. And finally, we get went into the transistor level implementation of all

those digital blocks look into the important definitions and issues at transistor level

implementation of those digital components.

So, this basically completes the overall controller module that we have for the a to D

converter. Any question before we end this discussion?

Student: Sir if a speed of the mos is lower then we other output synchronize?

Synchronize means clock with respect to clock as you will have we know little bit more

delays, if you are applying the equal to a PMOS or applying input to a gate where we

have more PMOS stack then delay will be slightly longer. So, as compared to the clock

edge the delay may be you know slightly more that is the only thing.

Student: (Refer Time: 23:17) sir PMOS output keeps some output and PMOS output.

When the NMOS is off, then the if the lower branch is off then only the upper branch

will be turning on and will be charging the capacitor. So, they are not on at the same

time. So, there is no fight they are complimentary when this off then only the other goes

on.

Student: Sir (Refer Time: 23:38) divided into 2 part. So, why can not we simply derive

within 2 parts without (Refer Time: 23:43) buffer.

So, miss with if you do not add the buffers and how are you going to, if you do not have

this inverter then this load capacitance remain same.

Student: (Refer Time: 23:56).

That is the main purpose right to dividing the load caption is making it smaller. So, if I if

this was connected to you know 8 logic gates then the fan out of this was 8. Now I

inverted infrared some buffers and then this buffer is driving for this buffer is having 4.

So, for my fan out of each of these 4. Any other question? So, we can end the discussion

and resume with a new topic.

