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Welcome to the lectures on modern digital communication techniques, till the previous

lecture we have been looking into source coding and what we have seen is fixed length

coding  where  you  have  we  have  assigned  a  fixed  number  of  binary  strings  for  a

particular symbol and of course, we do not need to mention we are looking at discrete

sources. 

So,  for discrete  sources what we mean is  that we are having a source which has an

alphabet, alphabet would mean a group of symbols which is fixed for that and then the

source produces each letter  or each symbol of that alphabet  at  a time and there is a

certain probability for each of the symbols. So, when we do a fixed length coding what

we said is we assign a fixed number of bits for each symbol, and we do it in such a way

that each symbol gets a unique code; that means, there is no 2 symbol which are assigned

the same code so, every one of them are different.

Now, when we did this we saw that there is a gap of approximately one bit that can

happen and compared to what can be done in a better way. So, we did another method

where we saw that instead of taking one symbol at a time, if  the source outputs are

grouped or if they are buffered and we take a n number of symbols. So, if we assume that

there are m symbols in the alphabet, and now we say that we take n symbols and make a

new symbol out of this which is a super symbol. So, then we can reduce the overload or

the overhead and the gap reduces to one upon n, where n is the number of symbols we

group together.

So, then we also discussed that instead of doing in a fixed length code, we can use some

kind of a variable length code where we take into account the fact that the symbols do

not occur with equal probability.  For example,  we have taken if  we take the English

alphabet that is probably e occurs with highest probability compared to z and then we

could assign the lowest stream length to e, and the highest stream length to z. So, that

overall when we take the average number of bits per symbol what we get to is lower than



what you used in  a fixed length code and we had taken a  particular  example  in the

previous lectures and we had showed you that it is better to use variable length code.

Now, when we did variable length code, what we saw is that if we are not wise enough

then what could happen is that the receiver could get confused as to which particular

code  was  sent.  Although  the  receiver  has  a  code  book  which  is  shared  with  the

transmitter, but still the receiver make bit confused for example, if I use if I have three

symbols a b and c and I use 0 for a one for b and 0 one for c in that case when a 0 one

comes that the decoder does not know whether it is a or a or a b or a c. So, whereas, there

was another example which was taken and a was given the code let us say 0, b was given

1 0 and c was given 1 1. In that particular case we found that each of the code were in

such a manner that the receiver could parse it in such a way that it would not cause any

confusion.

So, what we are hinting towards is that we get something known as unique decodability

condition. Unique decodability condition what we said is that when the codes when the

bits come in assuming there is a initial synchronisation it will read every bit go into the

code book and check if that particular bit is in the code book. If it is not in the code book

it comes back and records the next bit and now these 2 bits become a code word it goes

back to the code book checks if that code book if that entry existed in the code book then

it decodes the symbol if it does not exists it releases it, if it exists then it records that

particular  entry as the symbol that  is  been sent and clears  the buffer.  It  is  starts  the

reading or parts synch for in a new code word from the next bit onwards.

So, in that manners it can decode every symbol almost instantaneously. So, also what we

will see is this types of codes are also in the instantaneous codes and what we have

assigned are what we came up to was the term known as prefix free code. What it meant

is that every symbol when it maps to a particular code is unique and not only that it will

never be a prefix of any other code. It can be a unique, but if it prefix then it is it does not

serve the purpose for example, if I take a 1 0 as one of my codes and another code is 1 0

1; in that case since 1 0 is a prefix of 1 0 one while decoding the moment the receiver

finds 1 0 it will decode it as the previous symbol compared to the other symbol. So, what

we landed up into was the definition of prefix free code.



So, when we discuss prefix free code we said that we can construct a binary tree; a

binary tree which goes from the left and goes towards the right, and it starts at the node

and at every node that we generate in the binary tree would either be a code which is the

leaf node or if it is an intermediately node it will be a prefix of some other code, and only

the leaf nodes will be assigned as code words because the leaf nodes would be unique.
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And we have also taken one example where we had seen it is the binary code starts from

here and it grows from the left to the right. So, this could be assigned as 1, this could be

assigned as 0, there is an intermediately node and the tree keeps on growing 1 and a 0

and the tree keeps on going right and you could assign this particular leaf node as a, this

particular node sorry this particular leaf node as a, this particular leaf node as b, this

particular leaf node as c and then b would get a code word of 1 1, a could get a code

word of 0, and c could get a code word of 1 0 1.

In this case what you will find is that this is unique there is no prefix, but still we have

some more things to take care of and those few definitions which are very important for

designing an efficient prefix free code is what we are going to start off with today. So, if

we look at prefix free codes, what we can say is that we are going to look at the prefix

free condition that we have mentioned in the previous lecture. So, what we will say is

that the prefix free condition ensures that each code word corresponds to a leaf node that

is what we have just mentioned, that is no adjoining branch going to the right.



So; that means, this is absolutely these three that we have identified are codes nothing

which goes to the right of each one of them. So, absolutely perfect there is no problem.

But we have another interesting point which is very important a prefix free code will be

called full; now this is important will be called full if no code word can be added without

destroying the prefix free property.  So,  this  is  one part  so; that  means,  I  cannot add

another code word, if I can add another code word to this without destroying the prefix

free property; that means, this is not full. So, we will see something more and I will write

in short a prefix free code is also called full; if no code word can be shortened without

destroying the prefix free property right

So, if we look at these 2, the first thing that we have here that a prefix free code will be

called full if no code word can be added without destroying the prefix free property. Now

if we look at this tree we can easily add one more branch over here without destroying

the property right, but we cannot add anything here because then b will become a prefix

and if we look at the previous definitions previous steps in the definition what we said is

any  node  that  you  see  the  nodes  that  you  see  over  here,  these  nodes  are  either

intermediate nodes; that means, they are prefix or they are leaf nodes; that means, they

are code words.

So, now in this case I can add one branch to this, and it does not destroy the prefix yet.

So, if I call it something it is namely 1 0 0. So, this will be 1 0 0 let us say I put it as d

right.  So,  this  is  not  a  prefix  of  anything  and hence  it  can  be  easily  added without

destroying the prefix free. So, that would clearly mean that this is not a full tree the

second definition the second statement here as a prefix free code is also called full, if no

code word can be shortened without destroying the prefix free property. Now you should

always note that this is a prefix free code there is no problem with it, but if I re draw it

and I say that this is part right and I have this as leaf nodes call this a, I call this b, I call

this c see in other words I have shorten this code I have removed this particular branch

this is also feasible. So, if I do that I get one 0. So, this is how I get.

So, a remains 0, b remains 1 1, and c becomes 1 0. See if we compare these 2 what we

get a is as it, b is as it, is only c is 1 0 1 e of the one is cropped so; that means, c is

shortened from a 1 0 1 to a 1 0 without destroying the prefix free property right. So, this

is very important note. So, this particular tree we can call a full prefix tree full tree right.



So, this is an example of a full tree and this is you can say non full tree or not a full tree

right. So, both are prefix free there is no problem with this.

If I now apply these 2 to this tree, what we get is that I cannot add anything. So, if I look

at this if I add I will be growing the tree further right. So, it says you cannot add to the

existing tree, if the tree was here we could say that yes this is something which I could

have added while I if I add this I am not destroying the prefix free property, but still I am

able to remain within the tree structure, but here what is happening is I have if I have to

add a tree I am changing the tree this will be different tree if I add it into this, and if I

shorten c suppose I short this tree I want to make it one instead of c as 1 0 I want to make

it as 1 . So, when I make it one it is an intermediary node and every intermediately node

is a prefix. So, this point this is a prefix only leaf nodes so; that means, I cannot add this

condition  and  this  condition  I  cannot  shorten.  So,  b  if  I  shorten  it  becomes  a

intermediately node c if I shorten it, it become an intermediately node. So, if I do any of

these things then it does not the prefix free property does not hold, and then I can say that

the tree is full.

Now, this is very important now, what is the importance of a full tree is what we are

going to see very shortly because the importance that you see if it is not a full tree. The

important thing to note is that I can add a code to it so; that means, the code is somewhat

not efficient you can say or in some manner I mean it is not correct to say it is not a

efficient you can say that there is some provision to take a few more symbols and if you

can shorten; that means, we have been unnecessarily using a longer code length right. So,

which we do not want to do because if I am using a longer code word which is not

necessary, then I am basically unnecessarily creating more bits which is going to inner

lies  my bandwidth  that  means,  called  uses  extra  bits  extras  bits  per  second or  extra

capacity of my communication links. So, I would like to happy to as less as possible. So,

full tree is is very very important.
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So,  in  this  context  we  move  forward  and  we  have  something  known  as  the  Kraft

inequality. So, Kraft inequality is something which tells us that whether it is possible to

construct a prefix free code with the set of code word lengths. For example, I give you a

set of code word lengths let us say one to 2 so; that means, there will be one code word

with the length of one bit and there will be 2 code words with lengths 2 bits age. So,

now, the question is I am not given you code words I have given you lengths.

Now, what we should understand is that lengths are very important for us, once you have

the lengths then you can conduct then you can construct prefix free codes. Now there is

this connection is very very important, because if you start constructing the code well

one can approach that, but rather it is quite interesting that what would be my average

code word length of this, this is because this finally, decides the bit rate of the source. So,

Kraft inequality something which will tell you that given a set of lengths whether prefix

free codes are possible or not this is something critical.

So, we can write down that it is condition determining whether it is possible to construct

a prefix free code for a given discrete source alphabet x would symbols let us say a one a

2 a m. Now it is not important to what we put we just put there are m alphabets with a

given set of code word lengths marked by l of a j where j is less than or equal to m

starting from 1. So, this if you note the way we are changing from the initial statements

what we are saying is that let  there will be a discrete source with this alphabet;  that



means, x defined by this set of symbols. So, with which goes with our previous example

you can take the dye this is one example you can take you can take the heads and tails of

the coin you can also take letters of English alphabet as we have been always saying.

So, if we say that this alphabet is given and now we say instead of probabilities what we

are talking about is suppose few lengths are given this is important we are not talking

about, the code we are saying code word lengths we have not said about the code word

only the lengths now given this lengths code word could be any combination that is a

different story. So, now, given this lengths whether from these lengths you can construct

codes look at the construct, I have given you a symbol and a set of symbols which is an

alphabet now with these symbols I have also given you a few set of lengths.

So, as if there is a set of symbols a 1, a 2 up to let us say a m and I have told you that let

there will be certain lengths. So, which maps l of a 1 and let us say this is length of am.

So, let there be one is to one mapping and there could be one to many mapping also it

does not matter there would be a few code words have the same lengths not a problem

we have not talked about code words itself this is important. So, all we want to know is

that if it is possible to construct a code word which is prefix free now once you know

that it is possible to construct a prefix free code then life is easy what you can do is you

can refer back to this binary tree and you can construct the code tree and then you can

assign the leaf nodes and you know from our previous discussion that this tree forms a

prefix free code right.

So, at this point we have this theorem known as the Kraft inequality. So, it also known as

theorem for Kraft inequality for prefix free code. So, it states that every prefix free code

for an alphabet let us say x which is equal to a 1 a 2 up to a m with code word lengths l

of a j with j ranging from 1 to m satisfies this inequality sum of j equals 1 to m 2 to the

power of minus l of a j is less than or equal to 1. So, if I give you lest say the lengths as 1

2 and 2 and ask you that whether I can construct a prefix free code with this or not what

you are going to do is 2 to the power of minus 1 plus 2 to the power of minus 2 plus 2 to

the power of minus 2 so; that means, a half plus 1 upon 4 plus 1 upon 4 which is equal to

half plus half it is 1 so; that means, this sum which is the left hand side which is less than

or equal to one. So, if since it is equal to 1 then we can say that yes this inequality is

satisfied which means that a prefix free code can be constructed.



Now, what is the importance of this? The importance of this is that since I know of prefix

free code can be constructed I can easily go head and construct the prefix free code now

how do we construct the prefix free code get back to the tree and construct this tree

which has code word length of one. So, length of if I call this a is equal to 1, I can call

this as b and this is 11. So, length of the code word for b is 2 and this is c and I can say

length of c is 2. So, clearly a is not a prefix of b or c and it is a full tree that I have

conduct constructed and from this example you can also see that this if the tree is full this

inequality is satisfied with the equality constraint. Now if it is not a full tree then that you

can easily guess that it will be a less than a 1 this will not be equal to one. So, that is

another criteria for other condition through which you can check whether the tree that

you are going to construct will be a full tree or will it not be a full tree.
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The advantage of the full tree is that full tree that you are using a full set of symbols as

best  as  possible.  So,  we  carry  one  with  this  and  you  can  additionally  say  is  that

conversely if this summation that j equals one to capital M 2 to the power of minus the

lengths of the code words are less than or equal to 1; that means, if this inequality is

satisfied then a prefix free code with lengths length of a j 1 less than or equal to j is less

than or equal to m exists more over every full this we have already said prefix free code

satisfied if I say this is let us say A this is A with strict in with strict equality right.



So, what we mean by this is that you have this set of symbols, this symbols you are

mapping to binary sequence. So, what we are asking the question before we map to the

binary sequence whether at all  prefix free codes can be formed with a certain set of

lengths right and then you go ahead once you know that yes prefix free code can be

constructed, then you form the tree and once you form the tree with appropriate lengths

as you need then you can easily choose the code words as the length or the leaf nodes

and you can construct the tree.

So,  now the  proof  of  this  is  there  it  is  a  there  is  a  logical  proof  for  this  particular

statement and there are many ways to go around this particular proof. So, one particular

way of doing it is you can consider a binary string this is a this is a decimal point. So, as

this now this can be expressed as the real number this binary string can be expressed as

m equals to 1 to let us say l y of m 2 to the power of minus m so; that means, if I write a

point one that I get one multiplied by 2 to the power of minus 1. So, half and this has an

interval 2 to the power of minus l. So, if there are l bits in it the interval is 2 to the power

of minus l. So, for example, if you have 0 point or if you have point 0 1 1, this would

map to 0 plus 1 by 4 plus 1 by 8 because this 0 one multiplied by 2 to the power of minus

2 plus one multiplied by 2 to the power of minus 3 and this has an interval of 1 upon 8.

Now, so; that means, this particular sequence it covers an interval which is marked by 2

to the power of y of m, 2 to the power of minus m, m equals to 1 to l to m equals to 1 to l

y of m 2 to the power of minus m plus 2 to the power of minus l because this is the

interval length which we have said so; that means, this particular one covers this region

from this to this plus 1 upon 8. So, this is the interval which it covers now at this point

you can note that all the codes that form part of this are unique. So that means, this codes

do not overlap; that means, there is no prefix when we say it is a prefix free code. So, if

they are all unique that means, they do not overlap because they form different intervals

these different intervals and if you see the length that it would cover.
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So, it would cover a length from 0 up to 1 right that is the full length that it can cover and

every length every length being unique; that means, this interval formed by a particular

code is different from another interval formed by a code is it is a full tree is going to

cover this full length between 0 and 1, and if it not a full tree it is not going to cover this

full length from 0 to 1 it will be less than 1.

So, that is intuitive way of describing that you have a parts which add up to form a

maximum value of one or it can form value which is less than 1. In other very simple

way of looking at it is could be when the code tree starts it starts from here, and if this is

the minimum code tree that you can have. So, these are the code word lengths that gets

added and what  we have seen that  when you have such a  source these symbols  are

probabilistic of course, they come with equal probability still  there is certain amount

probability, but they are probabilistic in nature and what we will find later on is that

somewhat connectivity of this length with this probability. So, what we see is that in this

a full tree we can assign it a value of one over here, and you can say there are every node

it splits into a value of half right this is 0 this is 1 and whenever there is a split these

values add up to the value of the node.

So, again this will be half and this will be half. So, even if it does not exists it does not

extend this arm is half this arm is half, this is split into half of half and half of half so;

that means, at this point the value is 1 by 4 at this point the value is 1 by 4 like if this one



splits further this is half. So, this half of this value half of 1 by 4 half of 1 by 4 so; that

means, this value is equal to 1 by 8, this value is equal to 1 by 8 right. So, again that is

also available from here; that means, we are basically doing the same thing in another

way. So, at every node you have the same value and even if it splits the some value up to

that node remains the same and the starting point is this is 0 and this is 1. So, there is half

and half length assigned to these.

So, again if you add this up it comes to one. So, what we have over here is it is kind of

more  of  logical  proof  at  this  point  and what  it  summarizes  to  tell  us  is  that  if  this

particular inequality that we have over here or we used over here is satisfied by this set

of lengths, all it tells you is that you can construct a prefix free code. Prefix free code is

very important which we have established earlier, now once you know that the prefix

free code can be constructed  you can construct  binary  tree with appropriate  lengths.

Once you construct a binary tree with appropriate lengths you just assign symbols to the

leaf nodes and you gets codes corresponding to those code words.

So, we stop this particular discussion at this point and we continue on source coding in

the next lecture.

Thank you. 


