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Lecture - 07
Source Coding (Contd.)

Welcome  to  the  lectures  on  Modern  Digital  Communication  Techniques.  We  are

discussing source coding. In the previous lecture, we had introduced a fixed length code. 

(Refer Slide Time: 00:35)

In the fixed length code,  what we have said is that if  you have M is the number of

elements in a particular set, that means if x which is the set of all symbols in a discrete

source which is given by an example like this.
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So, x is the cardinality of the set. Then, if we choose L in such a manner that M is less

than or equal to 2 to the power of L, then we can assign a different binary L tuple to each

symbol. Now, this is very important and that is what we said in the previous lecture that

this different means unique. Unique in the sense that every symbol is assigned a unique

code. If every symbol is not assigned an unique code, then the decoder will not be able to

decode. This is the fundamental thing for a source coding. Whatever kind of encoding we

do, we would like the decoder do an ambiguously decode each of the symbols.
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So, now we proceed with this particular description of things and we have already seen

that if we have M, let us as discussed in the previous thing. M denote the size of the set

which contains these symbols and we would assign L which is  the length as ceiling

function of log base 2 of M to indicate the number of bits required to represent a source

symbol. So, by ceiling function what we mean is that if M is equal to let us say 7, if M is

equal to 7, in that case what we are going to get over here is that L should be equal to 3

because 2 to the power of 3 is equal to 8. This we should keep in mind. So, if we can

choose M L equals to 3, in that case we do not have any particular problem.

The other example could be if you have M is equal to 5, in that case log base 2 of 5

would be 2.3, approximately 2.3129 in that case would also lead to a value of L is equal

to 3 because if you take the ceiling function of this, that means if I take log 5 base 2, that

means I am taking the ceiling of 2.3 which is equal to 3. That means, if you have 3 bits,

then you can uniquely decode if you choose 2. So, that clearly means I have 2 bits that

clearly means there are four distinct possibilities 0 0 0 1 1 0 1 1. So, let us say a b c and d

now if we have the 5th one e that would be reassigned to any of the code words and it

will get confused with any of the previous code words.

So, that is why we should use this particular restrained. Now, we can also say that L this

number should be greater than or equal to log base 2 of M because this number is the

largest possible integer or the smallest possible integer greater than m. This is basically

the largest possible integer greater than m. So, what we have over here is greater than

this particular number. So, this L because it is the smallest possible integer that we are

talking about should be less than log base 2 of M plus 1 because this is a real number. If

this is a real number, this may not turn out to be an integer. If it does not turn out to be an

integer, then this is the smallest integer just greater than this and since this is the smallest

integer just greater than this, it is less than this particular number.

So, this is also clear from this particular example if we take this example L is equal to 3.

So, that means log of 5 base 2 is 2.3 and this is less than or equal to L is equal to 3 which

is less than or equal to 3.3. So, that means 3 is the number which is between log of M

base 2 and log of M base 2 plus 1. So, if this condition is satisfied, then you can make

codes which are uniquely decodable. So, this equality would hold if M is equal to 2 to

the power of M that is clear. That means, say M is equal to 8. That means, small M is

equal to 3 and from this relationship we would find that L is equal to 3. In that case, this



equality holds because log base 2 of 8 is equal to 3 and L is equal to ceiling function of 3

is 3. So, that means they are all equal. So, this expression holds with equality if M is an

integer power of 2. So, this is well said, but what we can see in this is that at most there

can be one extra bit that would be required when M is not an integer power of 2.

Now, if you look at practical sequences or practical sources, you will not always find that

the sources have 2 to the power of some integer number of discrete symbols. So, that is

not always necessarily true. If that is not necessarily true, this extra margin that means

here we have is around 0.7 bits. Roughly there is 0.7 bits which are extra per symbol.

Now, if we are sending let us say 10 to the power of 7 such symbols, so that means 0.7

multiplied by 10 to the power of 7. So, many extra bits are required to communicate. So,

we will see next that if this loss, if there is a possibility of improving things while using

fixed length code.
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So, this point what we will consider is let us say that we have a block of n symbols. So,

that means there are M to the power of n tuples. So, what is meant that earlier we said

that let a b c d e be the set. We have taken this particular example and we send one

symbol at a time. Now, we say let there will be X1 X2 X3 up to Xn. Let this be a tuple,

all aright. So, this is the tuple. That means, these n tuple because there are n symbols. So,

this forms one block of symbols. So, if this forms one block of symbols, this is straight

forward. The first one can take M different values, the second symbol would again chose



from this set. So, here M is equal to 5. In this particular example, this would take M

different values and so on. So, there are M raise to the power of M different possible

values for these combinations.

So, that means there M raise to the power of n different symbols again we can think of it

like let us say I have 0 and 1 as my basic set. So, instead of this if I would group let us

say 10, such or let us say 4 such or let us say even 2, the minimum is 2. So, that means I

will have two positions. So, this can take a value of 0 or 1; this can take a value of 0 or 1.

So, this can take a value of 0 or 1; this can take a value of 1 again like this. So, what we

see that this forms a symbol, this forms another symbol, this forms another symbol and

this forms another symbol. So, now previously this was one symbol that was coming out

of it,  this  was another  symbol that  was coming out of it.  Now, we are going to get

symbols as this or as this or as this or as this or else any other sequence. So, that means,

there are four possible symbols that have now been created. So, it is a super set that has

been created from that same source.

So, what we are having is a bigger or a larger source which have been artificially created

and we will see what the advantage of this is, you can go on doing look like this instead

of taking 2 if I would take 4. So, that would clearly make 16 symbols. So, that means I

have a new source which takes 16 symbols when easy way of looking at it is suppose

there is a source which generates 0 and 1. I can have a buffer which places which has a

storage unit of two. So, it takes the first one, it takes the second one and then, it gives out

these two as the symbol, right. So, the first one is here and the second one goes there. So,

every time if I look at this particular output, I am going to get 2 bits at a time. If I am

looking at this output, I am going to get one bit at a time.

Similarly, if my buffer would have stored 3 bits and at every instant it would at a delay,

of course there will be delay. It gives out 3 bits. The first one, second one and third one, I

am going to group these and say that the source gives out 3 bits at a time. So, if we

combine these three different bits, then what we have is 2 to the power of 3 and that is 8

possible symbols. So, at this point if I look at the source, I would say that this size of M I

would call it M prime is equal to 8 whereas, here the size is 2. The size over here let us

say mark it M double prime is equal to 4.



So,  suppose  we have  this.  Now,  moving further  in  this  case  we would  say that  the

number of bits that would be required to encode.
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This would be the ceiling function of log base 2 M raise to the power of n. This is clear

from our earlier setup. We have said L is equal to log base 2 of M. Now, we say that we

have modified the source in such a way group them, so that our M has become M to the

power of n M to the power of n. This is the total number of source symbols. So, if there

are M to the power of n number of source symbols, in that case we are going to have L

because log base 2 M to the power of n and the ceiling function of that so many bits

required to encode each of this. For example, here I will require 2 bits here, I will require

3 bits  as good as that.  So,  this  is  the number of bits  that  are required and L would

indicate this as the number of bits per source symbol. That means, this is equal to L

divided by n.  Why I do this  is  because this  has n symbols encoded in it.  So, on an

average every symbol will require L upon n number of bits per original source symbol.

So, if I look at this L bar, this is equal to log base 2 M to the power of n upon n this. Of

course, the numerator is greater than n log base 2 of M because this whole number is

greater than log base 2 of M to the power of n. So, that comes out in the front and then,

you have the denominator and this particular term is equal to log base 2 of M. So, that

means what we have established over here is L bar is greater than or equal to log base 2

of m. Similarly, we can also argue that L bar which is equal to log base 2 of M to the



power of n ceiling function upon n, now this number is definitely less than or equal to

log base 2 of M plus 1 because log base 2 of M to the power of M ceiling function is less

than log base 2 M to the power of n plus 1. So, M to the power of n comes here this upon

n and this expression is equal to log base 2 of M n and n cancels out plus 1 upon n.

So, what we can establish here is that L bar is less than log base 2 of M plus 1 upon n. If

we combine these two, then the expression that we can write is log base 2 of M from

here is less than or equal to L bar and L bar is less than log base 2 of M plus 1 upon n.

Now, what can we conclude from this particular expression, this is significant what it

shows is that we look carefully into this set of expression.
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What we would find? We can make a few conclusions. One that is as n becomes very

large let us say n tends to infinity L bar tends to log base 2 of m, right. This is very

interesting. So, if I make n very large. I can make this loss negligible. If we compare this

to the earlier result, we look at this that L is less than equal to log base 2 of M plus 1, but

here what we have is that this is less than log base 2 of M plus 1 over n.

Now, this change has happened because we have taken a group of n symbols. You recall

this. We have taken a block of n symbols because there are M to the power of n tuples

that are possible. So, as there are M to the power of n tuples that are possible, this is the

number of bits that would be required and we have showed here this L bar is greater than

log  base  2  of  n  and  we  have  also  showed  is  less  than  this  particular  number  and



therefore,  able  to  establish  this  particular  relationship.  So,  with  this  particular

relationship, we are able to establish that as n is made very large, our losses which were

earlier can be reduced to significantly small number. So, that means we can have better

efficiency.

The second thing that we can note over here is, it is still fixed length. This still fixed

length and we have not made any assumption regarding the randomness of the source.

This is important. So, we have not used a probabilistic model, right. So, even without

using a probabilistic model, now with probabilistic model what is the advantage we will

come to  it  very  soon.  Even without  using  probabilistic  model,  we are  able  to  get  a

situation where we are able to reduce this particular kind of, we are able to reduce the

overhead. The other important thing to note at this point is that this gives us a hint if you

look at this or even the earlier expression, even this particular expression even this, but

better this because even is very large, this tends log base 2 of M. You may have heard

about  the  term  entropy  which  we  will  again  define.  Why entropy  or  a  measure  of

information is expressed as log base 2 of some number and that we are going to see at to

certain point.

So, these are some of the observations which we can take and this is quite useful. We can

refer back to this particular expression when we are doing random source or when we are

taking probabilistic model and variable length source coding to hint at even fixed length

codes can give us quite a lot of advantage if we take blocks which are pretty large.
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So, with this we move to variable length code. Now, why we move to variable length

code is simple because this source that we have said these letters that we have used let

say even I take a b c d e, let us say up to z and a, a full stop and all these things together

what is well known is that one of the largest used letters of such a source. There is the

English alphabet source would be e, right compared to let say z. So, the next common

letter that can be thought of is probably t. So, if you look at these particular statistics,

what we find is if we draw histogram, we are going to find the most probable symbol is

e, whereas the least probable symbol is may be z. 

So, now, this can give us some advantage instead of assigning the same number of bits to

all  of  this.  So,  suppose I  have let  us say 32 symbols for example.  So,  our  previous

exercise let us that we can choose L is equal to 5 because 2 to the power of 5 is equal to

32. So, that means I will be assigning the same number of bits to all the symbols whether

it is e or t or h or q or z or p, whatever it is. However, these symbols do not come out

with the equal probability. So, more often I am going to get e and less often I will get z.

So, that gives us a hint that if we can assign lesser number of bits to e and more number

of bits to z, then on an average we might have the number of bits going out of the source

per source symbol which is less than if we had used this kind of a fixed length coding.

So, with that particular motivation we get into this variable length code. Now, variable

length code you may have heard about mass code which was used in the telegram system



that inherently use this kind of property, where it use the more frequent of the letters or

the symbols that are present. You are going to put less number of bits or dots and dashes

to that particular symbol whereas, the less frequent symbol, you would make it longer

stream of  dots  and dashes.  So,  same thing  applies  over  here.  So,  we can think of a

variable, a variable code, a variable length code let us say we put c which maps similar to

the definition we have given for fixed length code maps each source symbol. Let us say

we assign with the name a of sub j in a source alphabet x which contains a1 a2 up to am.

Let us say we have this to a binary string c of a j called a code word or this is similar to

the fixed length and the length or the number of bits in a j c of a j is called L of a j. This

is the notation that we are going to follow of c of a j. That means, you are saying so

many bits are assigned to this.

Now, this  is an additional thing in case of fixed length code. We said it  is the fixed

number. In this case, every symbol will have a certain number of bits assigned to it, right.

For example, if we take a particular example and let say our x contains a b and c, if we

take a simple source like this and the lengths could be or the code let us look at the

codes. The code of a if we say it is 0, then the code of b let it be 1 0 and the code of c let

it be 1 1. In this case, we would point out length of symbol a is equal to 1. In this case,

the length for symbol b is equal to 2 and in this case, the length of symbol c is equal to 2.

That means, we are using 1 bit to encode a 2 bits to encode b and 2 bits to encode c. So,

in this case if it was a fixed length code, we would have chosen 2 bits because we have

the number 3 M is equal to 3 in this case and if we have 2 to the power of 2 that is equal

to 4. That is the smallest integer greater than log base to of 3. So, that means it is 2. So,

that means in that case 2 is the number. So, we have two positions, 2 bits and there are

four possible outcomes 0 0 0 1 1 0 1 1. So, we could assign this to a, this to b, this to c

and this is not going to be used. So, every symbol is taking 2 bits, whereas here first one

is taking 1 bit, this taking 2 bit, this taking 3 bit. 

Now, if you could try to see that whether it gives an advantages or not, suppose I say that

a comes with the probability of half, b comes with the probability of one-fourth and c

comes with the probability of one-fourth.
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If we take this particular example, then we can calculate that whenever a comes, we are

going to get 1 bit. So, how often does a come half percentage of time? A comes plus, we

are going to get 2 bits. Whenever b is going to come and b comes one-fourth of the times

plus, we are going to get 2 multiplied by 1 by 4. So, this results in half plus half plus half

which is equal to one and half bits on an average. This is less than 2 bits which were used

in  case  of  fixed  length  code.  So,  although  you  might  be  confused  that  what  is  the

meaning of 1.5 bits, 1.5 bits what mean over here is on an average every symbol as you

are seeing over here whenever the source generates a, it  generates a 0. Whenever the

source generates b, it generates 1 0. Whenever it generates c, it generates 1 1. So, that

means  that  the  source  is  generating  distinct  symbols  and  the  encoder  is  generating

distinct code words. 

So, there is no question of generating half a bit. It is always generating integer number of

bits, but if we are taking this source and observing it for a very long time, let us say we

are looking at the source which generates 100 such symbols. Let us say we take that. So,

what we will  find that 50 percent of all  those symbols will be 25 percent, of all the

symbols will be b and 25 percent of all the symbols will be c. So, if I have used 0 to

represent a, I am going to get 50 number of zeros. If I have used 1 0 to represent b, I am

going to get 25 number of b s. That means, I am going to get 50 number of binary digits

and c there are 25 number of c. That means, again I am going to get 50 number of total of

ones and zeros. So, in total I am to get 150 bits if there are 100 such symbols whereas, if



you have a fixed length code, you would have used 2 bits per symbol. So, that means you

would have had to encode these 100 symbols into 200 bits. So, this clearly shows you

have saved 50 bits for this particular source when you are supposed to send 100 bits.

Now,  just  imagine  when  the  world  is  going  towards  an  exaltation  communication

systems and it is expected that the traffic would be like 10 to the power of 15 or 10 to the

power of 17 kind of bits, then the huge amounts of saving can be done if we exploit the

probabilistic nature of the source rather than use a fixed length coding, but again at tacit

point I should like to remind you that required a few minutes ago we explained that if we

use M tuples,  then  the loss  that  you would encounter  in  fixed length  code could be

reduced, but of course the penalty have to pay. There is a delay in it. 

So, we would like to bring this particular discussion as I stop and we continue on with

this in the next immediate lecture.


