
Modern Digital Communication Techniques
Prof. Suvra Sekhar Das

G. S. Sanyal School of Telecommunication
Indian Institute of Technology, Kharagpur

Lecture - 58
Synchronization Techniques (Contd.)

Welcome  to  the  lectures  on  modern  digital  communication  techniques.  So,  in  the

previous few lectures we have been looking at the situation where channel is no longer

AWGN, but it is finite band limited and we did discuss the maximum rate of signalling

under such conditions, then we discussed the concept of nyquist filter, and we further

stated that it is not realizable and hence we tried to investigate if there are other ways of

realizing such a filter.

So, what we found is that to signal at 2 times the nyquist straight, you need to have an

excess bandwidth which is the design trade off. After discussing these details what we try

to do is if it was possible to restrict the signal within the nyquist bandwidth, and yet we

could communicate at 2 times the nyquist bandwidth. 

And we found that it is possible to do so if we could use some kind of a signalling known

as partial response signalling, and we did give examples of doubinary signallings, in such

a method we found that since the signals stretches more than the symbol period t. In

other words because the pulse duration is longer the bandwidth is less it introduces inter

symbol  interference.  So,  you  brought  in  the  concept  of  controlled  inter  symbol

interference because of controlled inter symbol interference, we could recover the signal

by virtue of subtracting the interference caused; we did so by recalling that the previous

time sample or the previous time instant, we could decode the symbol of interest. We

moved further and we discussed 2 kinds of such pulse shapes; one is the doubinary one is

the modified doubinary, and we also stated that instead of cancelling interference at the

receiver one could do it at the transmitter. Meanwhile we did discuss the effect of noise

and the issue of error propagation

So, we further discussed that we could do pre code; that means, at the transmitter we

could do a doubinary we could do a module with 2 subtractions, by which we would get

a binary sequence which would be used formodulating a binary pam. After discussing the

pre  coded scheme we move forward to  discussed the  m ary  pam with such kind of



signalling and we did give the expressions of how the things would work out to be and

examples would be shared in the assignments and tutorials.

After  looking at  such  signalling  methods  we turned  our  attention  towards  non ideal

channel.  In  non-ideal  channel  we  found  that  an  impulse  launched  into  the  channel

produces a response which is no longer in impulse, but it is a spreaded version of the

impulse.

Now since  the  output  of  the  channel  has  echoes  and it  extends  beyond the  impulse

therefore, a sequence of symbols launched into the channel would cause inter symbol

interference. And we did discussed that the overall system transfer function requires to

be a raised cosine in order to make things realizable as well as inter symbol interference

free.  We stated  that  if  the  channel  is  unknown which  is  generally  the  case then  the

transmit filter and the receive filter are designed in such a way that when in cascade they

form the raised cosine, accordingly each one of them are root raised cosine.

So, we are left  with the channel  as well  as the equaliser.  So,  if  the channel  transfer

function multiplied by the equaliser transfer function produces unity, we would get the

cascaded  transfer  function  of  the  transmit  filter  the  channel  the  receive  filter,  the

equaliser has raised cosine which would result in the i s i free communication

So, that results in finding or taking the equaliser coefficients as inverse of the channel

transfer function. What we did see in that is if you do it in such a way wherever the

channel transfer function take small values, one upon channel transfer function would

take very large values. And when this factor gets multiplied with the noise we get noise

enhancement. Noise enhancement decreases the performance of communication systems.

To overcome that  we suggested the use of the minimum mean squared error criteria

based equaliser, the equaliser look complicated, but we could break down the equaliser

with certain approximations and assumptions or with certain relaxation and we found

under certain special cases it turns out to be equal to 0 forcing; or in other words we all

stated  that  the  m m s  equaliser  restricts  the  enhancement  of  noise  by  including  an

additional parameter along with the in version of the channel coefficients. So, it does not

allow the magnitude to grow very very large, it limits the amplitude growth by one upon

s n r



So, after discussing the 0 forcing NMMS equaliser, we also discussed the possibility of

including an adaptive equaliser; that means, instead of waiting for a long duration you

can continuously adapt the tap parameters, to study that we presented 2 models. One was

the system identification model in which case we would identify the channel parameters,

once we identify the channel parameters you could use it to equalise the channels.

The second model we represented was of inverse system identification. In the inverse

system identification one would directly estimate equaliser coefficients so that the signal

out  of  the  equaliser  would  match  the  desired  signal.  We  also  briefly  stated  that  to

estimate  these  parameters  one  should  send  an  impulse  in  order  to  get  an  impulse

response or find the inverse impulse response. But since sending an impulse would cause

an unrealizable transmission design we stated that p n sequences generally preferred,

whose transfer function would have uniform gain across the desired set of frequencies.

We also stated that it is very important to design training sequences carefully because the

synchronisation which we are about to start would depend on search techniques

After discussing channel equalization methods where of course, we included the method

of steepest descent as well as stochastic gradient algorithm, where we briefly stated the

outcome and we said that you can find out the details of it in other details subject, where

as in this course we are interested only in the final expression because we are using those

results in the equaliser, and again just a reminder these sections are a little bit advanced.

So, from the examination point of view of this particular course will be considering the

time constraint  that  you have in answering such questions;  however,  I  would like to

highly  encourage  you  in  pursuing  those  aspects  if  you  are  really  interested  in

implementing a state of the art receiver.

So,  when we move on to  study the  parameter  estimations  such as  carrier  frequency

synchronisation and timing synchronisation, we need to resort to certain theories known

as the estimation theory and detection theory. Unknowingly we have explained to you

some aspects of those the theory which will repeat at certain points.

So, let us quickly brush through some of the things we discussed in the previous lecture

so, that we can use them effectively in designing algorithms for carrier synchronisation

and timing synchronisation.

 (Refer Slide Time: 08:36)



So,  we  studied  the  parameter  signal  parameter  estimation  problem,  in  the  signal

parameter estimation problem we stated it as a mathematical statement and we said that

since the data is inherently random, we use p d f to describe the data, and we also stated

that in determining good estimators the first step is to mathematically model the data.

Typically the p d f is parameterized by unknown parameter of let us say theta and we

briefly explained with this diagram hope this will remind you of what we discussed.

(Refer Slide Time: 09:04)

So, we did bring in the concept of likelihood function. So, this is if x 0 is observed at

certain point let us say x 0 is observed here we said that if x 0 is observed here if we take



go up along this curve and go to this y axis will find the likelihood of observing x using

this function right which is parameterized by let us say the mean theta.

So, what we stated is that the parameter has caused the occurrence of x, and now since

we have observed x, we want to infer what was the cause which has produced this x. 

(Refer Slide Time: 09:59)

So, with this we also discussed certain other important things like when we estimate the

parameter,  how close will the estimate b to the actual parameter and are there better

estimators.

 (Refer Slide Time: 10:12)



So, while discussing this we did talk about the minimum variance unbiased estimator

where  we  said  an  estimatoris  unbiased,  if  on  an  average  it  meets  the  value  and  its

minimum variance  if  there  are  no  other  estimator  whose  variance  is  lower  than  the

current  estimator.  And we discussed the cramerrao  lower bound the cramerrao  lower

bound tells that if we I will go to that.

(Refer Slide Time: 10:34)

So, this picture that we looked at briefly tried to explain the likelihood function and the

importance of variance with respect to the likelihood function, a smaller variance means

here dependence of the unknown parameter on the p d f even more.



(Refer Slide Time: 10:53)

So, we moved further and we discussed the cramerrao lower bound, in which we stated

that if the regularity condition is satisfied which has the p d f. So, we have model the

data we have the p d f  of the date  we have assuming a p d f,  we did have a short

discourse on assuming the p d f with this condition is satisfied then cramerrao lower

bound gives a bound on any estimated that may be found a lower bound on the variance

of the estimator right. So, any estimator cannot have a variance which is lower than this

that is what it stated.

 (Refer Slide Time: 11:35)



It also stated that if variable to factorise the first derivative of the log of p x, which we

have written it better over here that if we are able to factorise the log likelihood function

the derivative  of the log likelihood function into this  form then g x would form the

efficient estimator; that means, it would estimate theta without any biasas well as the

variance would be minimum right and the variance is given by one upon i theta where i

theta is given by this term.

So, the advantage of using the cramerrao lower bound is that if you can find the first

derivative of the log likelihood function, and you can factorise in the form as discussed

then you will find the efficient estimator directly without much of a problem.

However the problem is we do not always get the opportunity to solve that particular

equation in terms of factorising the first derivative of log likelihood function, and then

we are stranded and we do not know how to find a good estimator. So, to our rescue we

have the famous expression or the method which we have already used is the maximum

likelihood estimator. So, since we have already used the maximum likelihood estimator

the discussion in this part will almost be pretty easy, and it will be remind us about the

things that we did before.

So, here we formally have the maximum likelihood estimator with us. 

(Refer Slide Time : 13:11) 



So, in some situations the MVU; that means, the minimum variance unbiased estimator

either it does not exist or it cannot be found right it can happen in this situation. So, in

those cases we would like to use the maximum likelihood estimator and we have already

done this thing, and it is very very popular it is a very popular estimator and generally

used for practical purpose. So, you must you can almost go ahead and start by using the

maximum likelihood  estimator,  but  just  to  remind  you that  when you are  using  the

maximum likelihood estimator; that means, you have already made some assumptions

and one of the strong assumptions is that, you already have the likelihood function with

you.

So, if you do not have the likelihood function in that case you cannot use the maximum

likelihood estimator because it depends upon the likelihood function. In those cases even

this is not usable and we would resort to solutions such as the least square solution which

gives us the 0 forcing algorithm or the minimum mean square algorithm as we have

presented before.

So, this particular estimator  is optimal for large data records and it  approximately or

asymptotically it is the MVU estimator we will talk more about this.

(Refer Slide Time: 14:38)

The maximum likelihood estimator is obtained using the maximum likelihood principal

we have already done this, and for a very very large data set n means the number of

observations, as n tends to infinity the expected value matches the data set the actual data



to be estimated. And as tends to infinity the variance of the estimator tends towards the

Cramer  Rao  lower  bound  so;  that  means,  it  is  asymptotically  unbiased  and  it  is

asymptotically efficient so; that means, if n is very large then it will yield asymptotically

MVU you that is the advantage of a maximum likelihood estimator.

And the other important part is that if an efficient estimator exist the MLE will yield the

efficient estimator. So, this is another very important part. So, these results tell us that if

we have a likelihood function, we can almost go for the MLE method right. So, we will

use the MLE method for signal parameter estimation.

(Refer Slide Time: 15:50)

So, the another important parameter is that the estimated parameter is generally normally

distributed  with a  mean of  whatever  we have said and variance  as  the lower  bound

asymptotically right ok.

One of the issues with which one may concerned with is how large in is and in many

cases it is manageable. So, that is what we should sometimes, we should remember that

in in quite few cases it is doable.

So, the first thing that we will discuss is since we have already studied the MLE and just

to remind you that you we have already used the maximum likelihood estimator. So, in

case of the signal detection, we have used the maximum likelihood principle in finding

out which particular signal has been sent right. The MAP criterion uses the likelihood



function, the maximum likelihood we use the maximum likelihood principal when we

said equi probable transmitted signals rights. So, we have the map detector and their

MLE detector. So, we use the maximum likelihood philosophy which states we use the

likelihood function maximize the matrix and you have your results.

 (Refer Slide Time: 17:11)

So,  the first  example  that  we will  take  in  this  case now is  the maximum likelihood

estimator of the sinusoidal phase. So, we have a discrete signal model x n is equal to A

cos 2 pi f 0 n plus phi plus w n. So, there is noise and there is the modulated signal there

is the sorry the carrier signal with some f naught, f naught is the normalised frequency

and we will assume that we will know the amplitude as well as the frequency, and we are

interested in finding the phase. W is white Gaussian noise with variance sigma squared n

in our model it is n naught by 2.

So, now we take a look at the likelihood function. So, we would generally represent with

capital lambda as a likelihood function. So, it is nothing, but the p d f where we have fed

the value of x. So, if you look at this expression we have white Gaussian noise. So, this

is the mean of the signal where everything is known except this parameter right. So, this

will this condition on this this is the mean and then if we have x like x 1 x 2 x 3 x 4 up to

x n then the joint distribution would be the product of the individual or the marginal

distribution  because  we  have  white  Gaussian  noise,  which  would  lead  to  the

independence of the observes data.



So, the likelihood function of x underscore indicating a vector parameters by phi is this

expression  which  you are  pretty  familiar  with  x n  minus  the  mean squared  and the

summation, because you have a product of the p d f s. So, the summation comes we have

seen this and there is a raise to the power of n because there are n such observed data.

So, instead of taking this whole function since we have to estimate phi, phi is available

only here. Since phi is available only here we can focus only on this part and maximizing

this means you minimise the argument, because if smaller value in the argument would

be maximization of the likelihood function.  So, you focus on this metric,  which will

remind us about the distance metric as we had done before.

So, if you take the derivative of the cost function which is in the argument and take with

respect to phi, because we are maximizing with respect to phi and set it to 0. So, if you

look at this you are going to get the expression because there is a cos squared term you

are going to get x n squared A squared cos squared and 2a cos. So, from all those terms

we want to get an expression which appears here where for brevity I have math this as

alpha n 2 pi f naught n plus phi as alpha n, because of shortage of space i have used alpha

n over here, and now this term would turn out to be a sin twice alpha n right and if you

are taking the summation for f 0 not close to 0 or f naught; that means, not close to the

extreme values of frequency this summation would turn out to be approximately 0.

So, we are making an approximation over here that for large n and f naught not close to 0

or half, we would get the right hand side of this expansion to be almost equal to 0. So,

then we can say that the left hand side is equal to 0 and now we have a sin of a plus b i

will  term  this  as  a  plus  b  which  will  expand  and  they  will  be  you  will  get  the

trigonometry expansion of this, and you are going to split the terms on both sides of the

equality and you will be landing up with an expression as in here where you have a cos

phi term a sin phi term which are the estimates and the sin 2 pi f naught n and cos 2 pi f

nought n and x n. X n is the observed data and this is a parameter to be estimated.

So, from this one can solve as the estimate of phi as tan inverse because this is outside

the summation. So, you can clearly bring it down and tan inverse of sin of this fraction

summation x n sin 2 pi f naught n, upon x n cos 2 pi f f naught n. Some of the few

important things to observe is that we wanted to estimate this phase using the MLE and

we use the log likelihood function from the likelihood function we took the cos function,



you could have set the derivative of this to 0 and you could have also got the same result,

but  we  focused  mainly  on  here  and  by  making  another  approximation  where  the

summation tends to 0, we have come to the expression of the estimate of phi which is the

tan inverse of the observed data multiplied by sin 2 pi f naught n upon the ratio of tan

inverse of the observed data times cos 2 pi f naught n.

So, what it tells is that if i observe x n I am going to multiply, I am going to get x n right.

So, I have to split x n into 2 parts in one part i will multiply cos 2 pi f naught n, look at

that f naught is known for us right and in this part I want to multiply sin 2 pi f naught n

right n is the index, and then I can take the summation and I will feed to a device which

will take if this is a this is b tan inverse of b upon a right. So, this is going to give me the

phase so; that means, using the maximum likelihood estimator we can directly calculate

the phase of the unknown signal and of course, one could find what kind of a behaviour

does it have and so and so forth. So, why such thing is important that why do we need to

find the phase of the sinusoid carrier in this kind of a situation, is something which we

should see in the next lecture.

So, at least one important thing that we could conclude is that using the MLE we could

directly arrive at the estimator of phi which is otherwise not clearly available from this

expression  right.  Because  if  you  would  like  to  estimate  phi  by  solving  algebraic

methodology you would say x n minus w n right divided by a cos inverse of that, and

then take away 2 pi f naught n.

Now, we do not have this noise. So, you cannot use such a model you have to use certain

methodology over here and since this can be modelled as Gaussian p d f. So, it helped us

in reaching this particular estimate of phi.

So,  we  continue  with  the  discussion  on  why  this  estimation  of  the  carrier  phase  is

important in the next lecture, and then we will proceed on to find the total carrier phase

or the carrier frequency at the receiver and which is very much necessary for decoding of

the signals appropriately.

Thank you.


