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Welcome  to  the  lectures  on  modern  digital  communication  techniques.  So,  in  the

previous lectures, we have been looking at equalization techniques, the earlier side of

equalization that we have seen are single shot equaliser namely the 0 forcing and MSC

equaliser in both of them. We directly get the equaliser coefficients in one calculation in

one step calculation then we put forward the situation where would like to do it in a

fashion based on the error that we compute when we get the output of the equaliser and

compare it with the desired response.

(Refer Slide Time: 01:01)

So, we have taken system identification modern by which we can estimate the channel

coefficients, we are taken an inverse system identification model by which we could find

the weight coefficients, if you find the channel coefficients then we can follow it up with

equalization by procedures as mentioned earlier such as 0 forcing or the MMSC. 



(Refer Slide Time: 01:26)

When we say; we want to adapt adaptively; calculate the channel coefficient, we want to

make an iterative approach in which at every step; you would like the cost function to be

lower  than  the  cost  function  that  is  the  means  squires  error  less  than  the  previous

iteration. So, first we describe the method of steepest descent, it is excessively adjust the

weights W; that means, whatever we have found to the next iteration in a manner or in

the direction of the steepest descent that is opposite to the slope of this.
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So, if the slope is in the direction; that means, if there is some W, let us say and this is the

cost function. So, if the slope is in this direction; would like to go in this direction and if

it is a bowl like this. So, if we here and the slope and the slope is in this direction would

like to come down. So, that we attain the minimum of the cost function. So, just a note at

this point, I would like to mention for a subject like this and the particular course that

you are attending in this particular mode it may not be feasible to go through all the

details of such advance mechanism.

However I am still exposing you to the known or most popular techniques which are

used and can be easily accommodated in the receiver regarding examination we will try

to  ensure  that  the  questions  that  is  usually  put  forward  in  evaluating  these  kind  of

algorithms as we are discussing which is usually very very cumbersome is made in a way

that you could address them within the limited time that is possible and I would highly

encourage you to follow the assignments that would be given along with this lectures.

So,  that  you  practice  what  the  kind  of  way,  we  can  evaluate  the  understanding  of

knowledge in this particular area; however, the particular things that we have discussed

till the point where we have come up to the maximum likelihood detector at the receiver

seems to be pretty minimum basic requirement to understand this course.

So, moving ahead, so, let say we define g as the gradient of J which is derivative of J

with respect to W, we can define the weights in the next iterations as the weights in the

previous iteration and just it with some step which is a function of G. So, one has to

calculate the slope once, one calculate the slope then with the certain steps, size, one

would  like  to  continuously  improve  the  weights  from  the  one  iteration  to  the  next

iteration  and in  every  iteration,  one  could  get  outputs  y  n  which  would  add to  the

computation of the errors which would finally, drive this particular weight calculations.

So,  when we apply this  method of steepest  descent,  as  you just  described by to  the

winner filters  which we have described earlier;  that means, we have described in air

filters which requires the value in single shot, select, apply this method to the method of

winner filters. We define e that is the error as the desired signal minus the estimated

value of the desired signal that the filter produces. So, which is the error term the d is the

desired single d cap which is the estimate is the outcome of the filter; that means the

inner product of the filter coefficients and the input to the filter. So, the cost function J in



the n are iteration would work out to a expression which appears like this again and

mention.
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We need not worry much about how this expression comes, it is a matter of algebraic

computations and we will not require you to remember this particular expression in the

examinations and then if you produce; calculate the gradient, one would get a simpler

expression which is given that again I mentioned one need not worry about remembering

this expression either. So, as we proceed, we would define the weight in the next step, to

be the weight in the previous step. So, we put an underline indicating the vector as we

had done for signal expansion, we follow the similar notation plus a few that is the step

factor and gradient of J. So, there is a half. So, half and to cancel south and there is a

minus sign, earlier you may have noted that there was a minus an half this minus and

half would cancel out this too and this minus becomes a plus and this plus becomes a

minus where is the covariance matrix; where.

We find this earlier, similarly define P and these are the weights in the previous iteration.

So, what we find is that this calculation is a deterministic gradient because we are as if

calculate in this priory and it follows on improving in this manner which requires you to

calculate the expectation of the output with respect itself. So, there is a covariance matrix

to be calculated. In order to calculate this particular order to use the particular method;

that means, you need to have the prior PDF of the output of the signal so; that means, of



the channel response the other method which is followed comes from the family of stood

caustic gradient we call it to pester gradient.

Because it does not use her deterministic gradient and it does not need one to calculate

the cross correlation and autocorrelation mattresses we have the output y n which is the

inner product of the input an filter coefficients and the errors as the desired signal minus

the output. So, we have been shifting between y n and d cap of n is the same thing, the

filter taps in the next iteration is the filter tap in the prier iteration plus the mew, there is

the step size times the input and the error which we have computer here. So, in this kind

of  functions,  we  do  not  need  to  calculate  the  covariance  matrices,  we  just  need  to

calculate the error and what we can see is that the rate at which this changes is raring

randomly because we have a random input sequence and the error which is a function of

the previously learnt with values this relaxes some of the conditions.

So, there are convergence issues, but if we can design the input sequence appropriately,

we could find the weights to convert  pretty  fast  this  kind of algorithm are also very

commonly  used  for  estimational  channel  coefficients  as  well  as  for  estimation  of

equaliser  coefficients.  So,  next;  once  we  have  found  methods  to  find  the  channel

coefficients as well as covered the underlying philosophy of channel equalization while

maintaining that the received signal the overall trans of function of the received signal

after getting processed for lost a raised cosine function we are now interested in studying

some more non ideal characteristics which is the estimation of carrier phase and clock.

So, till this point, we had assumed perfect synchronisation of the carriers between the

transmitter  and  receiver  as  well  as  perfect  synchronisation  of  the  clock  from  the

transmitter and receiver; that means, we assumed that there is no phase distortion there is

no error in the sampling clock in clock instance and so on and so forth. So, when we look

at this whole set of operation; what we essentially do is wear estimating; some of the

important  parameters  of  the communication  system. So,  when we write  the received

signal, it is R of t is equal to S of t plus noise and S of t the is S L of t into the par of J 2

pi of c t and the real part of that.

When demodulate at the; we do the correlation receiver or the matched filter receiver in

both the cases we generally take the projection of the signal on the basis functions. So,

projection on the basis function means to integrate from 0 to t times F K of t with the

basis function and R of t; that means, multiply E t with F K t integrate from 0 to t, if your



basis function, if it is a pan your basis function is cost 2 pi F C t times G t F t minus n t if

it is QAM, you have a cosine and you have the sin if it is a emery FSK, you have E to the

power of J 2 pi m delta F t.

So, most of the cases you have a sinusoid or a sinusoid getting multiplied by the received

signal now this we have assumed to be 2 pi F C t there is a F C is the career and the

transmit signal also had 2 pi F C t it is not necessary that the received oscillator has the

same frequency F C and their  could also be a phase difference between the transmit

signal and the received signal further the clock which dance at the receiver which is used

to sample at time instance capital t may not be perfect and it may not sample at exact t

instants  nor does the receiver  know which is  that  particular  instant  of  time where it

should sample although the receiver can keep on sampling at regular capital T intervals,

but when to start is not known at the receiver this is because of propagation delay and

unknown clock start and end the oscillator start at the receiver.

So, when we try to  estimate  these parameters,  it  is  very helpful that  we look at  the

general class of estimation theory using which; we should be able to formulate a few

expressions. The expressions would be used directly where we apply the signal model;

we should develop. So, far and once we apply the signal model into the expression of the

estimator that will be see shortly will be able to estimate the parameters of our interest.

(Refer Slide Time: 13:49)



So, we have the general problem of estimating the signal and we would like to state the

mathematical estimation problem and as we have stated since the beginning, we want to

write down the expression of the signal at every stage of operation. So, that we get an

unambiguous output which could be used for the designer of the implementation of the

particular communication system.

So, we have we can state it as the mathematical problems and let us see what it gives us.

So, in determining good estimators; that means, want to get an estimate just a small note;

we already have discussed the channel estimation procedure and signal estimation where

we have done channel equalization, channel equalization is as good as estimating the

signal. So, we did not mention their estimation detection philosophy is there, but here

would like to describe them with the little more time. So, that you get the basics of the

philosophy which is used in deriving the estimators. Once we get those expressions, they

will be helping us in getting estimation of carrier phase and clock. So, in determining

good estimators, the first step is to mathematical model the data once again if you are not

writing the appropriate expression of the data will not be able to write the algorithm, we

want to operate on the data.

So, since data is inherently random we use the PDF to describe the data because random

variable  is well  described by its  probability  density function typically  the probability

density function is parameterized by the unknown parameter theta; that means, we have

P indicating the PDF of the observed data.
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And there is some unknown parameter theta it will be clear shortly what we mean by this

particular description. So, suppose our PDF is Gaussian again which is a very familiar to

us because we have Gaussian noise.

So, we receive a particular sample that sample contains a data point as well as there is

noise. So, the conditional PDF of the observed signal condition on a particular data is the

Gaussian distribution with the mean value of that of the signal. So, the PDF of the data

can be expressed in this form were theta is the mean and x 0 because we have a single

observation. So, this PDF can be plotted along the x 0. So, if put a 0 and we parameters

is this by different values of theta; so, what we find that if I have received x of 0 which is

negative on this site most likely value of theta would be theta 1 and not theta 2 and theta

3,  right  and this  kind  of  description,  we have  given  we talked  about  the  maximum

likelihood detector and we have used the PDF and we have you some form of philosophy

of destination detection theory which will be a parent very soon.

So, what we see from this is theta influences the PDF of E x. So, for example, if this is d

this is 3 d, this is minus d, all mean to say if I receive x 0 somewhere here the most likely

function  of  the  most  likely  signal  that  must  have  been  sent  is  minus  t  which  is

represented as theta one over here. So, the likelihood of that parameter being theta 3 is

much less because if we take the PDF, the area under the curve here is much less than the

area under the cove over here. So, we could plot like this that theta that is a parameter



causes x means we have chosen minus d to be transmitted and that would influence what

I observe of course, theta is perturbed by noise to produce x.

What we want to do? We observed x, we want to in for what we want 2 inform what

theta was. So, this inference problem that is what very interested in the reverse direction

that is what we going. So, if we see this picture we will find that specification of the PDF

is very critical  in determining a good estimator;  that means, if we do not choose the

appropriate PDF or the PDF itself affects the choice of estimation right and in practice

we are not given the PDF, but must choose one that is consistent with the data what is

means is that in practical systems its hardly possible to have the exact PDF of the signal.

So, we generally choose a PDF which is which closely matches that of the data that is all

that it means and the other important criteria we should have is that it is mathematical

attractable otherwise not viewed to derive the algorithms.

(Refer Slide Time: 19:17)

So, when we have estimated; we would like to evaluate the performance of the estimator

some of the questions which we ask how close the estimated output will be that to the

original parameters that we want to design that you want to estimate and are there better

estimators available. So, before we proceed, we must remember that the estimator is a

random variable this is a very important concept because the estimator some function of

the  received  signals;  receive  signals  are  random,  therefore,  the  function  also  should

produce  a  random outcome and therefore,  we can  say  that  this  function  represent  a



random variable which is the estimator and hence is performance is described statistical

by its probability density function since the estimator is random variable.

We use PDF to describe  its  behaviour  and we should also not  that  use of  computer

simulations to access the estimated performance is never conclusive. So, we should try to

find the PDF and there are other techniques by which we could estimate whether these 2

are achieved or not. So, one way to do that is to find whether the estimator is unbiased;

that means, on an average it produces the parameters which we required and whether it

produces  the  minimum variance.  So,  we should  be able  to  analytically  describe  this

behaviour of the random variable of interest.

(Refer Slide Time: 21:04)

And then we have the minimum variance unbiased estimator as the status un bias means

on  an  average,  the  estimated  or  the  random  variable  reaches  the  parameter  to  be

identified and it is minimum variance; that means, no other estimator is found whose

variance is lesser than that what we are found. So, some of the procedure to determine

the minimum unwired minimum variance unbiased estimator are through the camarilla

by the lower bound which will be see shortly and through the Rao Blackwell Lehmann

Shettle theorem or with linear constant will restrict also itself to this.
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And then will move bring to the maximum likelihood estimator just if you note before

we are actually able to produce the estimator is that if we consider PDF with 2 different

variances one with one third another was one this is just for representative sake.

What we can make an observation is that the smaller the variance tighter the PDF, better

is the estimator accuracy because if the PDF is spread larger, we cover a larger region in

this axis. So, it is less accurate that is what people say. So, for example, of course, we

call this as the likelihood function as you mentioned before and I would like to consider

the 0 that is the observed variable and this is the PDF parameterized by the unknown

parameter along with the observed data. So, I have the PDF function with this I observe

this I will put this year and is to be an estimated which is given as theta over here.

So, what happens if I consider this particular PDF which is parameterized by theta and

suppose I have observed x at this point. So, when I put the value of x in this PDF, right, I

could find. So, of course, this PDF is parameterised by A or theta over here I would find

that this function yields a value which is here. So, this tells the likelihood of receiving x

0, when I put into this PDF for a choice of A or theta as it may be, if we considered this

dashed PDF which is green in colour, then will find the likelihood to get the signal is

almost 0 which is very small. So, this is the shifted PDF, right, where is the black one is

nearly added mean. Now if we compare the one with this red PDF which has a larger



variance right what be fine is the likelihood would be more than that of the green, but it

is significantly less than that of the black.

So, all what we try to mean is that the estimator accuracy the more accurate estimator

will be the one which has a lower variance and as well as it is parameterized by the

unknown  parameter  theta.  So,  our  job  would  be  to  find  the  parameter  using  the

likelihood function and this description also explains; why shall we call the PDF when it

uses the data set and the unknown parameter has the likelihood function.

(Refer Slide Time: 24:47)

So, that picture is drawn here, it is a bigger version of the picture. So, that visibility is

there and of course, we have if sigma 1 squared is less than sigma 2 squared; that means,

as sigma decreases it becomes smaller the curvature increases.

So, it becomes shorter and sharper and the sharper it is the better is the estimator that is

point stated at these points the likelihood values of x 0 driven by these different PDF

noted in different colours. So, what we say that estimate accuracy somewhat related to

the curvature. So, will discuss more about or tell you about the curvature once again;

whatever we are discussing at this instant of time R for sake of information; however, the

final results that we get will be the ones that are important and the ones which you may

remember; however, if you are interested in designing receivers one should learn these

methods away from a examination point of view, one did not exactly remember all the

detailed steps of derivation. So, instead of taking the likelihood function directly.
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We consider the log likelihood function, the reason to take log likelihood function is

when we take the logic expression becomes easier because instead of exponent, we get it

directly here and we take the derivative. So, what we have. So, for the Gaussian PDF

when we take the double derivative over here, we see that this particular expression is

inverse related to the variance; that means, we can conclude that somehow curvature

could be connected to this parameter. So, we define that the curvature in general has a

negative of expectation of this particular function will see how is an important role.
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Next we define the very important Cramer Rao Lower bound.

So, in this it is assumed that the PDF P of x theta; x is the observed is the parameter to be

observed to be to be found out satisfies the regularity condition; that means, the first

derivative of the log likelihood function and expectation of it goes to 0, right where the

expectation is taken with respect to the PDF this, then we can state that if this condition

is satisfied, the variance of any unbiased estimator which you had describe before must

satisfy the condition that variance is bounded by this which is the curvature; that means,

the lower bound of an unbiased estimator is given by the Cramer Rao Lower bound

through  this  expectation  through  this  expression  where  e  is  the  expectation  used

computed using P of x theta.
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So, where the derivative is evaluated at the true value of theta, so, this is calculated at

exact value of theta because we want to calculate the variance for a certain value of theta,

for instance, if this is theta and this is the variance of the estimator, we would like to

calculate at a particular value of theta what is this. So, then we can calculate the variance

of the estimator. So, what it says that if this condition is satisfied then the variance of any

unbiased estimator is lower bounded by this expression furthermore it also says so, very

very important thing that an unbiased estimator may be found. So, it not only tells the

lower bound of the estimated, it also gives an opportunity to find the unbiased estimator

if and only if the derivative of the log likelihood function can be factored into i of theta;



that means, it has to be factored in such a way that there is some function i of theta and g

of x minus theta g is some function which has only the observed data minus theta.

So, if you can factor the first derivative of the log likelihood function in that case you

could claim that the estimator is given by this function g of x and it is the MVU; that is

the minimum variance unbiased estimator while the variance of this theta is equal to 1

upon i theta and i theta is equal to nothing, but this expression, right so; that means, tells

you that if one can factor it in this form, one would always find the estimator given by

this. So, it is very simple to understand that it is a function of observe data this function

produces theta cap which estimates theta and the variance is set equal to; that means,

achieves the lower bound right just to summarise.
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So, an estimator which is unbiased and attains the Carmer Rao Lower bound is said to be

an efficient estimator because it you can find the estimated directly and on an average, it

will produce theta while the variance is the minimum lower bound.

So, it will be unbiased as well as it will be lower bound and therefore, you call it the

efficient estimator. So, what the Cramer Rao Lower bound give that is the lower bound

of any estimator if the regulating condition is satisfied and if you can factor the first

derivative of the log likelihood function you can directly get the MU estimator.

Thank you.


