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Welcome  to  the  lectures  on  modern  digital  communication  techniques.  So,  till  the

previous  lecture,  we  have  traversed  quiet  far  in  this  particular  subject  and  just  to

summarize although I have been saying the same thing in  the earlier  lectures  that  we

have been able to transmit a signal receive it through an AWGN channel processor at the

receiver and finally, detect the symbol or the signal that was sent and hence recover the

bits.

However, we were interested in verifying or comparing the performance of the different

digitally modulation schemes that we have been analyzing. To do this, we said we had to

look at an important expression known as the channel capacity and in the previous 2

lectures we have given a background of how to proceed into the expression or how to

arrive at the expression of channel capacity it may have been done in a quick way and I

may recommend you to look further into text prescribes in this particular course or any

other important references which you maybe more comfortable to with to arrive at those

expressions; however, it is not necessary to derive through this expression as we have

briefly given you some guidelines in the previous lectures.

What is rather more critical or more important for us is to understand the expression, it is

implications which we are going to do in this particular lecture and use it in order to

compare the performance of other digitally modulated transmission schemes.
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So, what we have is the expression of capacity for a band limited channel. So, if we have

the bandwidth W and we know that the signal power the average signal power is P a v

and  we  have  the  noise  power  spectral  density  given  by  N  naught  by  2  equivalent

baseband is N naught.

So, what we could do in turn is we write the expression of channel capacity C is given by

W log base 2 one plus P a v one W naught right this is what we have got. So, from this

expression what we can see is that first thing the expression of capacity in this form it is

in bits per second you could also say bits per channel use and channel use T is one upon

w.  So,  bits  per  channel  use  you  could  consider  in  this  way  and  generally  we  are

interested in the term C upon W which is log base 2 1 plus P a v by W N naught which is

bits per second per hertz. So, bits per second per hertz is an important entity also known

as spectral efficiency.

So, we had seen K bits earlier and when divided by T, we had bits per second and of

course, divided by W that is the bandwidth would give bits per second per hertz. So, we

would have whole divide by W as bits per second per hertz and we can compare the

performance  of  the  different  digital  modulation  techniques  or  given  a  W you  could

compare bits per second, right. So, W and T are related with as inverse of each other.

So, we would be able to compare the capacity in terms of bits per second to the term K

upon T which is also known as R bits per second that is what we have. So, our interest is



whenever you are given an average transmit power and you are given a bandwidth that is

band limited channel we should be able to compute; how many bits per second that we

are sending.

So, P average you could also modify to K times P bit that is per bit. So, P average is P

average power that is available per symbol you can say. So, you could relate within this

form.

(Refer Slide Time: 05:15)

So, we will primarily look at the expression C equals to W log base 2 1 plus will indicate

gamma as the ratio whenever needed we will translate it and C upon W is equal to log

base 2 1 plus P a v by N naught W.

Some of the important things we briefly highlighted in the previous lecture is that if W is

kept constant and P a v; that means, the transmit power is increased this means you could

keep on indefinitely increasing C and 1 way of looking at the result is will focus only in

this particular curve figure will not look at what is looking elsewhere.
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So, we will look at whatever is present at here. So, as you keep on increasing P a v, you

can keep on indefinitely increasing C upon W or C if we keep W as constant. So, if you

keep W as constant. So, denominator you can neglect and N naught is constant anyway.

So, you can neglect that. So, you can be discovered as increasing W increasing P a v, it

goes up it is also relevant from expression that we have in front of a C R.

You would also remember in terms of error probability expressions for different m. So,

as we keep increasing M 8 and. So, on and. So, forth this probability of error for a given

probability of error that is what we said as we keep increasing P a v; that means, the

average  energy  that  is  equivalent  to  in  going  on  the  right  on  this  side,  we  can

accommodate higher and higher number of bits. So, that is in consistence with this. So,

we should be able to compare C with K upon T this is one part of it.

And the next important thing is the question that we had raised earlier that if we let P a v

to be constant and we would like to increase W indefinitely, then what happens? We give

the result briefly in the previous discussion. So, this reminds us of the situation that we

have different frequencies the M-ary FSK in which a particular frequency F I is equal to

sum F 0 base frequency plus M delta F and if the symbol duration is for a duration of T

to maintain orthogonality, we have to ensure that delta F is equal to 1 by T and there we

had seen that as we increase M the curve shifts on the reverse direction.



So; that  means,  as we increase if we keep P a v constant as we increase K the E b

requirement reduces, right. So, as we increase m, in other words if this is 1 2 let us say M

as we keep increasing M our requirement  of E b by M naught  decreases and as we

increase m, we definitely find that the bandwidth occupied also increases.

So, therefore, by seeing this expression which is which gives an ultimate limit on the

maximum bits per second that can be send with almost negligible amount of error in the

communication system we are interested in seeing if this particular expression could give

us some results of our interest.

So, if we keep increasing W which is equivalent to increasing M in or corresponding to

what we meant by increasing M in this particular situation while keeping this constant

so; that means, if I would keep the P a v constant. So, that is what we had our average

because our signal; the distance of the constellations from each other were all the same

that is what we discussed. If you would remember with drew this kind of an imaginative

figure indicating that all this signals are equidistant from each other. So, what would be

the impact on P a v? So, previous discussion we kept W constant and we increased P a v

in this discussion we would like to keep P a v constant and increase W.
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So, let us look at the expression of C is equal to W log base 2 1 upon P upon. So, I am

writing P for in short notation as this. So, we could say that we could also write this in



terms of one plus C times E b bits per second times bits per energy per symbol, we are

going to get the average b N naught log base 2 of W. So, we can write C by W.

So, what we could do now is if you would look at C by W, we already said C by W is the

spectral efficiency that is bits per second bits per second per hertz so interested in the

spectral efficiency.

So,  what  we have  is  we are  interested  in  making  W go to infinity  and what  is  the

question on E b upon N naught, right. So, let us denote this by S. So, what we would like

to say is if we want the spectral efficiency S to go to 0 what would be the impact, right.

So, let us look at the expression. So, we would write S is equal to log base 2 1 plus S E b

by N naught and then from this by change of sides you could write this as 2 to the power

of S minus 1 upon S is equal to E b by N naught. So, we could have this expression that

is 2 to the power of S minus one upon S is this.

At this point, we would like to study what is the limit if S tends to 0; that means, if we let

W tends to infinity we are going to get S tending to 0. So, this would mean we would

like to put limit S tends to 0 2 to the power of S upon S; that means, we are going to find

the limiting condition on E b by N naught given S tends to 0; that means, W tends to

infinity.

So, this we could expand as limit S tends to 0 E to the power of S l n of 2 because l n is

log base E S over here means 2 to the power of S. So, this effect will means E to the

power of log base E or 2 to the power of S which is simply 2 to the power of S. So, 2 to

the power of S; we are replacing by this term minus 1 upon S. So, then we could expand

S E to the power of S l n 2 and that would be one plus S l n 2 plus S l n 2 square by 6 and

so on; there is a minus 1 term. So, we have a minus 1 upon S and of course, limit S tends

to 0.

So, going further on the same expression, so, if we would cancel this minus 1 out and we

would take out this S will be left with E b by N naught; that means, the right hand side of

what we have over here is equal to S l n 2 plus S.
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.

So, we also have canceled out S and the other S remains S l n 2 squared upon 6 and so on

and so forth with limit S tending to 0. So, if limit S tending to 0 this would turn out to be

natural logarithm of 2 which is 0.693 which is equal to minus 1.6 T b which translates to

minus 1.6 T b.

So, what we have seen here again that if we try to increase W indefinitely by keeping P a

v constant, we get a few things. one is the spectral efficiency tends to 0 simply because

we have let W tends to infinity. So, this ratio must tend to 0. So, trying to correlate that

with what we have studied before. So, as we increase M and it tends to infinity,  the

number of bits that is being sent is log base 2 of M which is K and we divide it by b

bandwidth that is M times delta F, right. So, on the right hand side, we will be having 2

to the power of K delta F.

So, as we keep increasing K this ratio becomes smaller and smaller.  So, if this ratio

becomes smaller  and smaller  as K tends to infinity;  this  ratio  tends to 0 and that  is

exactly what we have over here as W tends to infinity S tends to 0 which is achieved by

making K very very large. So, the total bandwidth available becomes very very large. So,

it is consistent on both the sides.

So, when we did the union bound; from there also, we realized that the minimum E b by

M naught that would be required is minus 1.6 T b, from this analysis also, we see that the

minimum E b by M naught that can be reached when W tends to infinity is again minus



1.6 T b. So, that is the lower limit on E b by N naught that one is required to maintain a

reliable  communication  in  this  kind  of  a  communication  system  that  is  a  digital

communication system.

So,  since  we have  seen  the  2 situations,  one is  when we would  increase  the  power

indefinitely  the  capacity  keeps  on  increasing  and  if  we  keep  decreasing  if  we  keep

increasing the bandwidth, then we see that there is a lower limit on E b by N naught

somewhere around minus 1.6 T b is the limit.

So, we have seen 2 different dimensions of the expression that we have used. Now we

are equipped to study the performance of digital communication systems with reference

to what we have discussed so far.
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So, let us take a look at some of the interesting things before we proceed into the exact

comparison. So, what we have with us is the probability of error expressions probability

of error expression, let us say for binary P S K is Q of square root of T 2 E b upon N

naught and probability of error for 4 level constellation will be 2 times Q root over 2 E S

by N naught into one minus Q of square root of 2 E S by N naught square and so on and

so forth.

So, what we will find is that the E a v the average energy of the constellation for 2

constellation point can be written in terms of T squared E g upon 2 where d is the scale



factor and E g is the energy of the pulse and E b; that means, the energy per bit on an

average is related to d squared E g by two. So, this is what we have used before. So, this

is not new.

So, when you move to 4 level constellation; you will  again find E a v is equal to d

squared E g by 2. So, interestingly this is for 2 level this is for 4 level; that means, here

we  have  BPSK  here,  we  have  QPSK;  this  has  an  equivalent  form  in  terms  of

constellations  here.  So,  you can imagine  this  to be BPSK or  binary pulse amplitude

modulation in the I channel and Q channel and hence the performance of BPSK and Q P

S K would be similar.

So, if we have to go for 16 level constellation; that means, 3 bits; sorry; 4 bits in that case

you are going to get E b a v to be d squared E g times 1.25; this is based on the average

signal energy that you would require. So, E a v; we can compute to be d squared E g

times 5 this will what it will be.

And when it  is  64  constellation  64  QAM, you are  going  to  get  E  a  v,  we  did  the

calculation of E a v for M-ary QAM would be d squared E g with 63 upon 3. So, of

course, you can do this calculation yourself E b average turns out to be d squared E g

multiplied by 3.5 and if we have to go for 256 QAM; E b a v turns out to be d squared E

g with factor of 10.625. So, these calculations will be based on the method that we did;

that means, if you have constellation points all over. So, we have to calculate the energy

of this energy of this energy of this and energy of this and take the average of it. So, and

this would be d this could be 3 d and so on and so forth following the same methods.

So, if  we have to keep the same minimum distance;  that means,  if  we keep d to be

constant what we find is as we increase the m; that means, the size of the constellation

the E b energy per bit is related to the pulse energy and d in the form over here.

So, if I have to maintain the same error probability what we find is that E b average

keeps on increasing. So, between BPSK and Q P S K there is binary PAM and QAM K,

we find that energy per bit requirement has not been different and the simple justification

is as if there is binary PAM on 2 axis.

However if you go to 16 QAM, what we find is that the factor is 2.5 times if I compare

the energy per bit the required so; that means, if I am comparing this which is for M is



equal to 2 and the energy per bit required which is for M is equal to 16 or K is equal to

four. So, here K is equal to 2 here K is equal to 1; what we find is that this requires 2.5

times energy per bit to maintain the same error probability.

If we go to 64 QAM; that means, K is equal to 6 what you will find is that this requires

seven times more energy per bit compare to a binary PAM to maintain the same error

probability  for 256; that means,  K is  equal to 8, we find it  requires nearly 21 times

energy per bit.

So, what we find is that as we keep increasing the number of bits per symbol the average

bit energy keeps on increasing at non-linear fashion this huge amount of excess energy

per bit  required.  So, this  is  an important  message that  we that  we need to take;  that

means,  in  order  to  increase  the bit  rate  per  bit  the amount  of  energy that  has  to  be

pumped in is significantly higher for high values of K compared to low values of K and

as we go higher and higher, values of K; the amount of energy per bit required will be

significantly large and the growth is not a linear growth it is a non-linear growth that we

get from these expressions.

Now, we deglaze it  is not necessary over here to repeat  the similar things for M-ary

orthogonal  signals  because  we have  already  shown that  if  you keep  the  energy  per

symbol as the same and you have the relationship E S equals to K times E b. So, in case

of M-ary orthogonal, if I keep the same constant E S I keep increasing K E b goes down.

So, in that case the energy required for bit goes down we have been saying this thing.

So, now remembering these relationships that we have over here and the relationship we

have for M-ary orthogonal and considering the expressions that we have arrived at for

capacity for 2 situations when S tends to 0; that means, W tends to infinity and as E a v

tends to infinity 2 different conditions, we would like to put all of them together in one

expression in one particular picture and compare the performance.
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So,  now what  we have  with  us  is  particular  famous representation  which  is  usually

available in many references. So, if we look at this particular picture we have the x axis

as SNR per bit also we have been noting it as gamma b which is E b by N naught right

and on the y axis, we have bits per second per hertz bits per second per hertz. So, what

we see over here is that as we keep increasing the E b by N naught the channel capacity

or  the  spectral  efficiency  keeps  on  increasing  following  this  line  and  this  is  well

established by the expressions what we had seen before.



If  we  now  compare  the  spectral  efficiency  of  digitally  modulated  signals  for  error

probability of 10 to the power of minus 5. So, what we mean to say is that we have this

error probability curve and suppose we choose some point which is 10 to the power of

minus 5, right at 10 to the power of minus 5 whatever is the E b by N naught, we choose

that because if we calculate that there are K bits per symbol then the number of bits that

are received successfully is on an average 1 minus P b. So, if P b is 10 to the power of

minus 5; what we have is nearly K bits are received successfully. So, K 10 to the power

of minus 5 is a is a good reference for considering error probability.

Of course just a side note for other situation like wireless links and that 2 short links

especially  like  mobile  communication  links these numbers  this  encoded performance

numbers can be taken to be 10 to the power of minus 3 as a bench mark, but generally 10

to the power of minus 5 is a good reference point considering all kinds of communication

system.

So, now going back to this particular curve what we see here is the constellation; the

point here is corresponding to N equals to 4 PSK and M equals to 2 PAM with SSB

single side band because PAM is a double side band signal. So, there is unnecessary use

of bandwidths; if you use single side bandwidth you are optimally using the spectrum.

So, E by N naught requirement is the same and for 4 PSK, you can think of it in many

ways as we said before. So, as if there is 2 binary PAM on the I axis and Q axis. So, it is

as  if  DSB and  2  DSBs.  So,  if  there  2  DSBs  on  the  same  bandwidth  of  curse  on

orthogonal carriers what we have is effectively the spectral locations of SSB that is why

they are here together, right.

So, then as you keep increasing M for P S K you would follow the curve as noted here

right this point is M is equal to 8 this point is M is equal to 16. So, as we keep increasing

the number of bits; that means, constellation we would require higher and higher energy

per bit to maintain the same probability of error

If we would go for PAM or QAM. So, what we have over here is 8 PAM and 64 QAM.

So, 8 PAM means 3 bits per symbol 64 QAM means 6 bits per symbol, but 6 bits mean 3

PAM on the I plus 3 PAM on the Q. So, if we use QAM it is double side band signal and

if  we  use  PAM  with  SSB;  single  side  band,  it  is  going  to  give  the  same  spectral

efficiency. So, that is why they are at the same point.



So, the PAM kind of constellations would follow the curve here which is indicated there

and as we see if we consider orthogonal signals this particular point is the 1 for M is

equal to 8 level orthogonal signals; that means, K equals to 3. So, what we find is that

this energy per bit requirement decreases and the bound can be minus 1.6 T b on this

axis.

So, what we find is the M of the communication system design engineer is generally to

find a modulation  scheme which has  the minimum distance from the capacity  curve

which is given by this; that means, at a certain E b by N naught; this particular point is

been maximum number of bits per second that one can achieve with negligible amount

of error whereas, we see that the PAM kind of curves follow this. So, there is a capacity

gap between the maximum limit and what can be achieved by PAM, right.

If you want to see the capacity gap with PSK, we have to refer to this particular curve

and if you have to refer to that for M-ary orthogonal signals of course, how this curve

extends there is what we have to see

The other way of viewing this curve would be that given a particular spectral efficiency

what is the excess amount of E b by N naught required to achieve that and clearly if we

increase our Q S criteria; that means, if we make things more stringent error probability

instead of 10 to the power of minus 5, we make it 10 to the power of minus 10 all these

curves that we have drawn here with this colors; these colors, they would shift and will

require higher P b by N naught and if we reduce the error probability threshold; that

means, say we want to compare a 10 to the power of minus 3 will be here.

So, generally 10 to the power of minus 5 is a good number and ideally speaking during

such comparisons one should use error correction codes in order to compensate for the

assumptions that have been made with the capacity expression.

So, with this I would like to conclude this particular discussion and like to keep you

engaged  with  the  comparison  of  performance  of  digital  communication  modulation

techniques with that of the channel capacity.

Thank you.


