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Welcome to the lectures on Modern Digital Communication Techniques. So, far what we

have done is very interesting and we are standing at a juncture; where we could review

what we have done, it is a very interesting juncture that we are standing at. Because now

we could evaluate the difference schemes that we have studied, as well as bench mark

them against  certain  performance  so  that  it  helps  us  in  doing  an  exact  performance

comparison.
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So, looking back at some of the schemes that we have studied; we could say that we have

looked at situations where k; which is the bits per symbol is one of the important factors

which is used to choose the constellation size; which is M is equal to 2 to the power of k,

so, as k increases we have seen that M increases.

We stated that if T is the symbol duration, so the number of bits per symbol duration that

is sent is T upon k bits per second. On the other hand, we have also seen that if there is a

minimum  Euclidean  distance  between  two  constellation  points;  then  we  found  that



probability of error is proportional to the Q function of square root of some constant that

is a C and d min squared.

So, what we see is that an d min is somehow related to; E average, which is the average

energy. So, what we see that there are at least 3 independent factors which are available

in order to choose a particular size of constellation. We have also seen that when we

studied Q A M; there are several possibilities of choosing constellation, even though the

constellation  size would remain  the  same.  For  instance,  this  could be one choice  of

constellation that we saw and in contrast there could be another choice of constellation

what we discussed was something like this.

What we figured out that even if in these two constellations, we maintain the minimum

Euclidean distance as same; which means the same probability of error. And even if we

have  the  same  average  power  in  these  two  constellations,  still  we  stated  that  this

constellation maybe preferred because of lower peak to average power ratio compared to

this.  So,  there  are  several  criteria  based  on  which  you  would  be  able  to  choose  a

constellation.

And we had seen in general for constellations like PAM and Q A M as you have E b by N

naught on X axis and you have the probability of error on Y axis and let this be one of

the probability error curves. So, as we increase M; so, if M is equal to 2; as we increase

M equals to 4; the probability of error curves shift to the right; which means that to

maintain a certain probability of error; as we increase the constellation size; that means,

as we increase the bits k, our bits per second increases, but the minimum required SNR

or E b by N naught also keeps on increasing.

And in another way, you could say that if we keep E b by N naught constant; as we keep

increasing the size of the constellation, the probability of error keeps on increasing. So,

this is equal M equals to 4; this is let us say M is equal to 8 and 16 and so on and so

forth.  So,  as  we keep on increasing  M; that  means,  as  we keep on increasing  k by

keeping same e v by M naught, the probability of error increases.

And we explained this in the form that; if there is a certain constellation and we want to

keep the same average energy; however, we want to increase the number of constellation

points. So, then what we get is the constellation points come much closer; compared to



the  previous  case.  So,  the  constellation  points  coming  closer  means  d  min  become

smaller which means probability of error becoming larger, so that is what we have here.

Whereas when we studied orthogonal signals, what we found is that the probability of

error curves behaved in a different way. So, if this was the probability of error for M

equals to 2; for M equals to 4; it  could have been here M equals to 8. So, we could

roughly say M equals to 4; M equals to 8 and so on and so forth.

And we did discuss that what would happen, if we keep on increasing M. If we keep on

increasing M, is there a bound that we reach on gamma bar; was one of the questions but

when we reach that bound, what we could actually get is make probability of error go to

almost 0. But in this case what we had as M increases, if you think of emery orthogonal

signally; this implies that the bandwidth required also keeps on increasing. So, in one

case if you have to reduce or keep probability of error constant, while we keep increasing

M; we need not spend extra energy or extra power, we can simply keep on increasing the

bandwidth.

Whereas  in the other case;  if  we have to increase the constellation  size;  that  means,

increase the bit rate we have to spend more power. That means, if I have to keep the

same error probability and I have to increase the M value, I have to keep maintaining a

higher E b by N naught; this is E b by N naught and since N naught is constant, it is in

terms of increasing higher E b.

So, in one case your requirement on E b should go up as M increases; in the other case

the bandwidth requirement goes up. So, here bandwidth is constant and in this case you

can say E b is constant. So, we have two different possibilities and of course, there are

different variations on the error probability. So, at this stage it might be important to

discuss that how do you compare the performance of the schemes in a fair basis.

So,  to  do  that  there  has  been  very  important  contribution  from  a  very  eminent

contributor; in the sense the father of information theory Claude Shannon, who proposed

or who developed the expression for an important term known as channel capacity. So,

we are going to discuss a bit of channel capacity in this particular lecture and the aim

would be to get an insight into how the channel capacity comes into play and what is the

consequence of channel capacity in terms of the performance of a digital communication

system.



So; however, when we are studying a channel capacity; we need to ideally speaking start

off with the basics of probability theory, asymptotic equi-partition and build up a lot of

theory in order to understand the tenets of capacity, which is a practically a full course on

information theory.

So, since we do not have the luxury to go into those details; we will give an overview of

how do we arrive at the expression, what is the meaning of the expression and how we

can  use  the  expression  in  the  study  of  digital  communications.  So,  with  this  let  us

proceed into the study of channel capacity as it is famously known. 
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So,  when we study channel  capacity;  generally  there  are  we have  to  first  study the

different kinds of channel that may be available. So, one of the channels that is of our

interest is the binary symmetric channel. The binary symmetric channel is one where of

course, we consider additive void Gaussian noise; we will always consider additive noise

and this kind of channel;  the name already describes certain things; that means, it  is

telling these are binary channel and it also says, it is a symmetric channel.

So, before we go into the description let  us see that how it  is built;  so, as it  says it

includes the modulator and the demodulator. So, if you remember in the modulator; we

had the g of t and we had the S m of t. In the demodulator, again we would breakdown

the received signal a; r of t, we would breakdown r t into its components; followed by

that means, we would break it into components detector r from which we are going to get



the choice of the wave form that could have been transmitted. This is what was available

in the modulator and the demodulator.

So, now it says that we have to include this in the channel. So, I would like to remind

you at this point; in the initial parts where we studied layering and breaking down into

smaller components, we did say that you could view the channel at different points of the

transmitter  chain.  That  is  you  could  view  the  channel  as  a  medium  which  carries

electromagnetic signal, if you are looking at the channel from the prospective of from the

output of the antenna. And if you slowly go inside into the transmitter, we come to a

point where we look at symbols; that means, the output of the symbol mapper goes into

the channel. So, we have symbols going into the channel and symbols coming out of the

channel so; that means, the up conversion is part of the channel model in that case. 

But here we go even backwards and we say that the symbol mapper or the modulator is

also  part  of  the  channel.  So,  the  interface  and  layering  that  we  discussed;  if  you

remember that we were in a situation, where the bits go into the symbol mapper and at

the receiver bits come out of the detector. Because the job of the detector is to select S m

star; S m star means star indicates the particular result one of the S m.

So, once you detect the particular S m; you can easily identify the k bit sequence which

mapped to it, because if this is your constellation and this is the detected symbol. So,

definitely this symbol has a bit map which could be a 0, 1, so the output of the detector is

0,1. So that means, what we have is or let us say if this is detected at the receiver, s the

output could be 1, 0.

So, what we have is input into the system is binary bits; so that means binary digits and

output is again binary. So, we are at the binary interface right; so, when we are at the

binary interface what we have is a bit sequence. So, we will use this; that means, 0’s and

1’s goes into the symbol mapper.
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So, we construct the channel  out of that;  it  goes through the channel passes through

AWGN and demodulator detector and again it produces a sequence of 0’s and 1’s.

So, when you do so; what we have is a 0 as the input and the output could be a 0 or the

output could be a 1. Because we have stated the detector must choose something; the

detector cannot stay without choosing a particular solution. Similarly, when a 1 goes into

the system; the 1 may be detected finally, as a 1 or it could be detected as a 0; so, this is

the abstract from of the channel model.

So, at some point you may remember there is noise which is getting added to the signal.

So,  the  received  signal  r  of  t  is  made  up  of  S  m;  t  plus  noise,  so  if  you think  of

components; then r k of t is equal to S; m k of t plus n k. So; that means, there is a signal

component,  there  is  a  noise  component  and  we  have  stated  many  of  times.  Let  us

consider the b p s k model; where we have d and minus d. Suppose, I map this to 1 and

this to 0 and we have selected this for transmission.

So, if we have selected this for transmission; then if the noise is strong enough minus

negative value and it shifts to this side, then the m a p or the ml detector; the ml detector

would detect the received signal as possibly a minus d or a 0. So, in that case an error

happens and this is what we have discussed earlier.



So, and we have calculated probability of error given S 1; so, for b p s k this turns out to

be the probability of bit error; that means, the probability that when 1 is sent; it becomes

a  0.  So,  probability  that  a  1  is  sent;  it  becomes  a  0 is  p,  similarly  probability  of  0

becoming a 1.  So,  how we calculated  is  by considering  the  conditional  pdf  and the

probability of 0 becoming a 1 is the area under this curve and probability of 1 becoming

a 0 is area under this curve. 

So, probability of 0 becoming a 1 is p; so, now because of symmetricity; that means, 0

becoming 1 and 1 becoming 0, we have a symmetric channel. Because there is binary

input, binary output we have binary symmetric channel. So, probability of 0 remaining a

0 is; 1 minus probability of error which is probability of being correct. Probability of 1;

remaining a 1 is 1 minus probability of error; which is 1 minus p.

So, now we have the situation which maps a 0 to 0 and 0 to 1 and 1 to 0 and 1 to 1. So,

these provide the transition probability  values; that means,  probability  that I get a 1;

when a 0 is transmitted is p and probability that I get a 0, when a 1 is transmitted is p.

Probability that I get a 1, when 1 is transmitted is 1 minus P and probability that I get a 0

when 0 is transmitted is 1 minus P.

So, whatever we reflected here is shown in this particular setup. So, probability that I get

a 0, when I sent a 1 is same as the probability; I get a 1, when I have sent a 0 and that is

equal to P. Similarly, the probability of the output remaining same as the input; in both

the cases is 1 minus the probability of making an error and that is probability of being

correct which is 1 minus p; this is exactly that what we have written on the paper. 

So, this is the basic model and this model we do use; in some of the calculations, so this

is for mainly for you to know. So, just a side note over here; we are discussing this for

sake  of  information  so  that  our  understanding  is  complete,  but  we  will  be  mainly

interested in the final expression as we have announced in the previous lecture. 
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So,  moving  further  the  other  important  channel  of  interest  is  the  discrete  input

continuous output channel. So, as the name tells you the input is discrete and clearly we

have discrete input because our input takes values, let us say minus d or plus d; in case of

binary  pulse  amplitude  modulation.  In  case  of  (Refer  Time:  20:00)  pulse  amplitude

modulation, we will have two additional amplitudes. So, these are discrete inputs; in case

QAM is discrete input; in case of PSK; it is discrete input, so we do have discrete input.

And continuous output simply because if we send let us say d which is S m t; which is a

value of d; what we receive is plus noise, what we receive is noise. 

So, when a discrete value gets added to noise which is the continuous values signal, what

we have the situation as discrete input, but continuous output. So, this kind of channel is

this and it is very easily characterized by the modulator alphabet x 0; that means, the

discrete symbols. And the output of the detector is unquantized, so that is what we have;

the channel is characterized by the discrete input X and continuous output Y. So, it is

simply stating that you have these variables X and Y; one at the input, one at the output

and  you  have  the  set  of  conditional  probability  density  functions  which  define  the

channel.

So, simply we have already discussed that thing here; we have already discussed it in the

model that we have drawn here, this is one of the situations. So, if I am taking r k; I am



already taking a discrete input continuous output, but if I am taking the discrete output;

that means, the decision output I go to a discrete input; discrete output.

(Refer Slide Time: 21:52)

So, in case of emery; you may remember the situation was, so we have 0, d, 3 d, minus d,

minus 3 d. So, the conditional PDF is; if 3 d is sent; probability of receiving anywhere in

this is given by this particular curve. If d is send probability of receiving the signal along

this is given by this PDF, probability of; if you say minus d, this y axis is the probability

density function axis and then if you have to convert this to a discrete output, you have to

calculate  the  probability  of  error.  So  in  that  case  if  minus  d  is  send  you  will  be

calculating this area.

However what we have is probability of received signal given 3 d as this end, so; that

means, we are here it is given by the set of conditional PDF. So, it is given by the set of

conditional  PDF;  so  these  characterise.  Now  you  can  clearly  understand  that  these

conditional  PDF’s  carry  information  about  the  channel;  that  means,  they  are

characterizing the channel.

So, the noise impact is characterized into this transition probabilities; so, if we would

have gone to the previous slide, here we find that these transition probabilities; these are

the transition probabilities.
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And these are clearly due to the noise effect, which you can easily see that because of

noise you have a certain probability of error. So, probability of error in this case; it is

probability of bit error which is equal to p. So, here the noise is getting translate to a

transition probability.

So, similarly in this case as well the noise is effecting the conditional probabilities and

this and in an AWGN channel, you have the simple model Y equals to X; the transmitted

signal, no distortion due to channel plus there is noise getting added and G is 0 mean

Gaussian random variable with variance of sigma square and for all situations; we have

taken this to be N naught by 2. 

So,  that  is  what  we have  seen  before  and  the  conditional  PDF we are  used  to  this

expression. So, there is nothing new in this expression; 1 by root 2 pi sigma n; e to the

power of minus Y minus; Y is the received signal. So, we had done earlier is we had used

r minus S m t; rather we had used r k minus S m k, squared upon N naught; this is what

we had used.
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So, this is the same thing that you see over here; you do not see anything different at this

point. So, the next kind of channel what we can think of is the waveform channel; so,

with the waveform channel, we have to consider a channel bandwidth W and an ideal

frequency response. So, in the earlier case also we had the ideal frequency response; so,

it says that it has an ideal frequency response; C f equals to 1 within this bandwidth W.

So that means, you have a response like this; so this is W and this (Refer Time: 25:55) is

1 and x; t is band-limited and y t is the corresponding output.

So, this is the band limited input because you have a certain bandwidth W and y t is the

corresponding output that is a corresponding output. So, again you can see in additive

white  gaussian  noise  it  is  given  by;  so  here  x  t  takes  continuous  values,  y  t  takes

continuous values. So, continuous input continuous output and hence it is known as the

waveform channel. And of course, n t represents a sample function of additive white

gaussian noise process.

So, we expand x t, y t and n t into its complete set of orthonormal functions; which we

have already done before, we have been doing it throughout. So, y t is equal to expansion

in terms of a f i t’s, y i t’s are the components; same with x i t’s and you could write; so,

it is very small over here. Here we write that the functions are orthogonal to each other;

so finally what we write is that y k or if we use are earlier notation; we have r k that is



the  kth  component  is  equal  to  S  m  and  its  kth  component  plus  noise  and  its  kth

component.

So, how you get it? You simply get it by projecting r on f k t; integrate from 0 to t, which

is equal to 1 upon w; d t is equal to r k, that is how you get it. And you remember that f k

and fm are orthogonal to each other.

(Refer Slide Time: 27:35)

So, what we also have is f k; f m 0 to t, d t is equal to this of course, this is the function

of time, this is the function of time.
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So, these are something which we have been using, so this is classified as a waveform

channel. The main difference is input is continuous, so now in such conditions what we

had seen is that these f k’s been orthogonal because these f k’s are orthogonal, what we

found is that k naught equal to m. So, rather it is important to write it is delta m k; so,

equals to 0 for k not equal to for k equals to m; this is the whole thing. 

So, what we get is that the signals r k which is equal to s m k plus n k are independent

because n k and n m; what we had calculated earlier is that they are uncorrelated. If they

are uncorrelated, we know they are gaussian and therefore, they are independent. So, r k

given S m k is a gaussian random variable with a mean S m k and again the same applies

these are independent; these are uncorrelated,  so again they are gaussian uncorrelated

means independent.

So, at the receiver if these are the components, so the joint distribution of the received

components;  given  the  transmitted  signal  is  equal  to  the  product  of  the  marginal

conditional distributions, so simply because of orthogonality criteria that we have. So,

these are some of the things that we use, so since we know this expression already; 1

over root 2 pi sigma n; e to the power of minus r k minus S m k squared by N naught.

(Refer Slide Time: 29:33)

So,  this  is  what  we  use,  so  now  what  do  you  will  get  is  equal  to  use  all  these

corresponding expression; you are going to take get a product of them and hence you

will be able to compute the necessary things. 
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So, we stop this particular lecture here and we using the channel modules that we have

developed, we will take a look at the channel capacity from which we will finally, take a

look at the performance comparison of the different communication systems.

Thank you.


